Search results for: distillers’ dried grain with soluble (DDGS)
1183 Structural Geology along the Jhakri-Wangtu Road (Jutogh Section) Himachal Pradesh, NW Higher Himalaya, India
Authors: Rajkumar Ghosh
Abstract:
The paper presents a comprehensive study of the structural analysis of the Chaura Thrust in Himachal Pradesh, India. The research focuses on several key aspects, including the activation timing of the Main Central Thrust (MCT) and the South Tibetan Detachment System (STDS), the identification and characterization of mylonitised zones through microscopic examination, and the understanding of box fold characteristics and their implications in the regional geology of the Himachal Himalaya. The primary objective of the study is to provide field documentation of the Chaura Thrust, which was previously considered a blind thrust with limited field evidence. Additionally, the research aims to characterize box folds and their signatures within the broader geological context of the Himachal Himalaya, document the temperature range associated with grain boundary migration (GBM), and explore the overprinting structures related to multiple sets of Higher Himalayan Out-of-Sequence Thrusts (OOSTs). The research methodology employed geological field observations and microscopic studies. Samples were collected along the Jhakri-Chaura transect at regular intervals of approximately 1 km to conduct strain analysis. Microstructural studies at the grain scale along the Jhakri-Wangtu transect were used to document the GBM-associated temperature range. The study reveals that the MCT activated in two parts, as did the STDS, and provides insights into the activation ages of the Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). Under microscopic examination, the study identifies two mylonitised zones characterized by S-C fabric, and it documents dynamic and bulging recrystallization, as well as sub-grain formation. Various types of crenulated schistosity are observed in photomicrographs, including a rare occurrence where crenulation cleavage and sigmoid Muscovite are found juxtaposed. The study also notes the presence of S/SE-verging meso- and micro-scale box folds around Chaura, which may indicate structural upliftment. Kink folds near Chaura are visible, while asymmetric shear sense indicators in augen mylonite are predominantly observed under microscopic examination. Moreover, the research highlights the documentation of the Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh, which activated the MCT and occurred within a zone south of the Main Central Thrust Upper (MCTU). The presence of multiple sets of OOSTs suggests a zigzag pattern of strain accumulation in the area. The study emphasizes the significance of understanding the overprinting structures associated with OOSTs. Overall, this study contributes to the understanding of the structural analysis of the Chaura Thrust and its implications in the regional geology of the Himachal Himalaya. The research underscores the importance of microscopic studies in identifying mylonitised zones and various types of crenulated schistosity. Additionally, the study documents the GBM-associated temperature range and provides insights into the activation of the Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh. The findings of the study were obtained through geological field observations, microscopic studies, and strain analysis, offering valuable insights into the activation timing, mylonitization characteristics, and overprinting structures related to the Chaura Thrust and the broader tectonic framework of the region.Keywords: Main Central Thrust, Jhakri Thrust, Chaura Thrust, Higher Himalaya, Out-of-Sequence Thrust, Sarahan Thrust
Procedia PDF Downloads 1021182 Introduction of PMMA-Tag to VHH for Improving Recovery and Immobilization Rate of VHHS
Authors: Bongmun Kang, Kagnari Yamakawa, Yoshihisa Hagihara, Yuji Ito, Michimasa Kishimoto, Yoichi Kumada
Abstract:
The PMMA-tag was genetically fused with the C-terminal region of VHH molecules. This antibody, VHH, is known as a single-chain domain, which is devoid of light chains. The PMMA-tag, which could affect the isoelectric point (pI) changeable with a charge of amino acid in VHHs were closely related to the solubility of VHH molecules during refolding. The genetic fusion of PMMA-tag to C-terminal region of VHHs significantly affects the recovery of their soluble protein during refolding by 50 mM TAPS at pH 8.5. It could be refolded with a recovery of more than 95% by dialysis at pH 8.5. A marked difference in the antigen-binding activities in the adsorption state was significantly high in VHH-PM compared to the wild type of VHH. There are approximately 8-fold differences in the antigen-binding activities in the adsorption state between VHH-PM and VHH.Keywords: VHH, PMMA-tag, isoelectric point, pH, Solubility, refolding, immobilization, ELISA
Procedia PDF Downloads 4191181 Effects of Drying and Extraction Techniques on the Profile of Volatile Compounds in Banana Pseudostem
Authors: Pantea Salehizadeh, Martin P. Bucknall, Robert Driscoll, Jayashree Arcot, George Srzednicki
Abstract:
Banana is one of the most important crops produced in large quantities in tropical and sub-tropical countries. Of the total plant material grown, approximately 40% is considered waste and left in the field to decay. This practice allows fungal diseases such as Sigatoka Leaf Spot to develop, limiting plant growth and spreading spores in the air that can cause respiratory problems in the surrounding population. The pseudostem is considered a waste residue of production (60 to 80 tonnes/ha/year), although it is a good source of dietary fiber and volatile organic compounds (VOC’s). Strategies to process banana pseudostem into palatable, nutritious and marketable food materials could provide significant social and economic benefits. Extraction of VOC’s with desirable odor from dried and fresh pseudostem could improve the smell of products from the confectionary and bakery industries. Incorporation of banana pseudostem flour into bakery products could provide cost savings and improve nutritional value. The aim of this study was to determine the effects of drying methods and different banana species on the profile of volatile aroma compounds in dried banana pseudostem. The banana species analyzed were Musa acuminata and Musa balbisiana. Fresh banana pseudostem samples were processed by either freeze-drying (FD) or heat pump drying (HPD). The extraction of VOC’s was performed at ambient temperature using vacuum distillation and the resulting, mostly aqueous, distillates were analyzed using headspace solid phase microextraction (SPME) gas chromatography – mass spectrometry (GC-MS). Optimal SPME adsorption conditions were 50 °C for 60 min using a Supelco 65 μm PDMS/DVB Stableflex fiber1. Compounds were identified by comparison of their electron impact mass spectra with those from the Wiley 9 / NIST 2011 combined mass spectral library. The results showed that the two species have notably different VOC profiles. Both species contained VOC’s that have been established in literature to have pleasant appetizing aromas. These included l-Menthone, D-Limonene, trans-linlool oxide, 1-Nonanol, CIS 6 Nonen-1ol, 2,6 Nonadien-1-ol, Benzenemethanol, 4-methyl, 1-Butanol, 3-methyl, hexanal, 1-Propanol, 2-methyl- acid، 2-Methyl-2-butanol. Results show banana pseudostem VOC’s are better preserved by FD than by HPD. This study is still in progress and should lead to the optimization of processing techniques that would promote the utilization of banana pseudostem in the food industry.Keywords: heat pump drying, freeze drying, SPME, vacuum distillation, VOC analysis
Procedia PDF Downloads 3341180 Effect of Selenite and Selenate Uptake by Maize Plants on Specific Leaf Area
Authors: F. Garousi, Sz. Veres, É. Bódi, Sz. Várallyay, B. Kovács
Abstract:
Specific leaf area (SLA; cm2leaf g-1leaf) is a key ecophysiological parameter influencing leaf physiology, photosynthesis, and whole plant carbon gain and also can be used as a rapid and diagnostic tool. In this study, two species of soluble inorganic selenium forms, selenite (SeIV) and selenate (SeVI) at different concentrations were investigated on maize plants that were growing in nutrient solutions during 2 weeks and at the end of the experiment, amounts of SLA for first and second leaves of maize were measured. In accordance with the results we observed that our regarded Se concentrations in both forms of SeIV and SeVI were not effective on maize plants’ SLA significantly although high level of 3 mg.kg-1 SeIV had negative affect on growth of the samples that had been treated by it but about SeVI samples we did not observe this state and our different considered SeVI concentrations were not toxic for maize plants.Keywords: maize, sodium selenate, sodium selenite, specific leaf area
Procedia PDF Downloads 4001179 The Evaluation of Apricot (Prunus armeniaca L.) Materials Collected from Southeast Anatolia Region of Turkey
Authors: M. Kubilay Önal
Abstract:
The objective of this study was to determine the adaptabilities of native apricot materials collected from Southeast Anatolia region of Turkey to Aegean Region conditions. Different phenological and pomological characteristics of the cultivars were observed during study. Determination of promising types for adaptation trials were performed employing the 'weighed-ranking' method. To determine them the relative points were given to the characteristics such as yield, average fruit weight, attractiveness, soluble solid, seed ratio by weight and aroma. As a result of two-year evaluation studies on the phenological and pomological characteristics of 22 types, 9 out of them, viz., nos. 2235, 2236, 2237, 2239, 2242, 2244, 2246, 2249, 2257 were selected as promising ones.Keywords: apricot, phenological characters, pomological characters, weight-ranking method
Procedia PDF Downloads 2801178 Advancing Microstructure Evolution in Tungsten Through Rolling in Laser Powder Bed Fusion
Authors: Narges Shayesteh Moghaddam
Abstract:
Tungsten (W), a refractory metal known for its remarkably high melting temperature, offers tremendous potential for use in challenging environments prevalent in sectors such as space exploration, defense, and nuclear industries. Additive manufacturing, especially the Laser Powder-Bed Fusion (LPBF) technique, emerges as a beneficial method for fabricating tungsten parts. This technique enables the production of intricate components while simultaneously reducing production lead times and associated costs. However, the inherent brittleness of tungsten and its tendency to crack under high-temperature conditions pose significant challenges to the manufacturing process. Our research primarily focuses on the process of rolling tungsten parts in a layer-by-layer manner in LPBF and the subsequent changes in microstructure. Our objective is not only to identify the alterations in the microstructure but also to assess their implications on the physical properties and performance of the fabricated tungsten parts. To examine these aspects, we conducted an extensive series of experiments that included the fabrication of tungsten samples through LPBF and subsequent characterization using advanced materials analysis techniques. These investigations allowed us to scrutinize shifts in various microstructural features, including, but not limited to, grain size and grain boundaries occurring during the rolling process. The results of our study provide crucial insights into how specific factors, such as plastic deformation occurring during the rolling process, influence the microstructural characteristics of the fabricated parts. This information is vital as it provides a foundation for understanding how the parameters of the layer-by-layer rolling process affect the final tungsten parts. Our research significantly broadens the current understanding of microstructural evolution in tungsten parts produced via the layer-by-layer rolling process in LPBF. The insights obtained will play a pivotal role in refining and optimizing manufacturing parameters, thus improving the mechanical properties of tungsten parts and, therefore, enhancing their performance. Furthermore, these findings will contribute to the advancement of manufacturing techniques, facilitating the wider application of tungsten parts in various high-demand sectors. Through these advancements, this research represents a significant step towards harnessing the full potential of tungsten in high-temperature and high-stress applications.Keywords: additive manufacturing, rolling, tungsten, refractory materials
Procedia PDF Downloads 971177 Influence of Natural Gum on Curcumin Supersaturationin Gastrointestinal Fluids
Authors: Patcharawalai Jaisamut, Kamonthip Wiwattanawongsa, Ruedeekorn Wiwattanapatapee
Abstract:
Supersaturation of drugs in the gastrointestinal tract is one approach to increase the absorption of poorly water-soluble drugs. The stabilization of a supersaturated state was achieved by adding precipitation inhibitors that may act through a variety of mechanisms.In this study, the effect of the natural gums, acacia, gelatin, pectin and tragacanth on curcumin supersaturation in simulated gastric fluid (SGF) (pH 1.2), fasted state simulated gastric fluid (FaSSGF) (pH 1.6), and simulated intestinal fluid (SIF) (pH 6.8)was investigated. The results indicated that all natural gums significantly increased the curcum insolubility (about 1.2-6-fold)when compared to the absence of gum, and assisted in maintaining the supersaturated drug solution. Among the tested gums, pectin at 3% w/w was the best precipitation inhibitor with a significant increase in the degree of supersaturation about 3-fold in SGF, 2.4-fold in FaSSGF and 2-fold in SIF.Keywords: curcumin, solubility, supersaturation, precipitation inhibitor
Procedia PDF Downloads 3491176 Mechanical and Microstructural Properties of Rotary-Swaged Wire of Commercial-Purity Titanium
Authors: Michal Duchek, Jan Palán, Tomas Kubina
Abstract:
Bars made of titanium grade 2 and grade 4 were subjected to rotary forging with up to 2.2 true strain reduction in the cross-section from 10 to 3.81 mm. During progressive deformation, grain refinement in the transverse direction took place. In the longitudinal direction, ultrafine microstructure has not developed. It has been demonstrated that titanium grade 2 strengthens more than grade 4. The ultimate tensile strength increased from 650 MPa to 1040 MPa in titanium grade 4. Hardness profiles on the cross section in both materials show an increase in the centre of the wire.Keywords: commercial-purity titanium, wire, rotary swaging, tensile test, hardness, modulus of elasticity, microstructure
Procedia PDF Downloads 2381175 Optimizing the Pair Carbon Xerogels-Electrolyte for High Performance Supercapacitors
Authors: Boriana Karamanova, Svetlana Veleva, Luybomir Soserov, Ana Arenillas, Francesco Lufrano, Antonia Stoyanova
Abstract:
Supercapacitors have received a lot of research attention and are promising energy storage devices due to their high power and long cycle life. In order to developed an advanced device with significant capacity for storing charge and cheap carbon materials, efforts must focus not only on improving synthesis by controlling the morphology and pore size but also on improving electrode-electrolyte compatibility of the resulting systems. The present study examines the relationship between the surface chemistry of two activated carbon xerogels, the electrolyte type, and the electrochemical properties of supercapacitors. Activated carbon xerogels were prepared by varying the initial pH of the resorcinol-formaldehyde aqueous solution. The materials produced are physicochemical characterized by DTA/TGA, porous characterization, and SEM analysis. The carbon xerogel based electrodes were prepared by spreading over glass plate a slurry containing the carbon gel, graphite, and poly vinylidene difluoride (PVDF) binder. The layer formed was dried consecutively at different temperatures and then detached by water. After, the layer was dried again to improve its mechanical stability. The developed electrode materials and the Aquivion® E87-05S membrane (Solvay Specialty Polymers), socked in Na2SO4 as a polymer electrolyte, were used to assembly the solid-state supercapacitor. Symmetric supercapacitor cells composed by same electrodes and 1 M KOH electrolytes are also assembled and tested for comparison. The supercapacitor performances are verified by different electrochemical methods - cyclic voltammetry, galvanostatic charge/discharge measurements, electrochemical impedance spectroscopy, and long-term durability tests in neutral and alkaline electrolytes. Specific capacitances, energy, and power density, energy efficiencies, and durability were compared into studied supercapacitors. Ex-situ physicochemical analyses on the synthesized materials have also been performed, which provide information about chemical and structural changes in the electrode morphology during charge / discharge durability tests. They are discussed on the basis of electrode-electrolyte interaction. The obtained correlations could be of significance in order to design sustainable solid-state supercapacitors with high power and energy density. Acknowledgement: This research is funded by the Ministry of Education and Science of Bulgaria under the National Program "European Scientific Networks" (Agreement D01-286 / 07.10.2020, D01-78/30.03.2021). Authors gratefully acknowledge.Keywords: carbon xerogel, electrochemical tests, neutral and alkaline electrolytes, supercapacitors
Procedia PDF Downloads 1361174 Effects of a Cooler on the Sampling Process in a Continuous Emission Monitoring System
Authors: J. W. Ahn, I. Y. Choi, T. V. Dinh, J. C. Kim
Abstract:
A cooler has been widely employed in the extractive system of the continuous emission monitoring system (CEMS) to remove water vapor in the gas stream. The effect of the cooler on analytical target gases was investigated in this research. A commercial cooler for the CEMS operated at 4 C was used. Several gases emitted from a coal power plant (i.e. CO2, SO2, NO, NO2 and CO) were mixed with humid air, and then introduced into the cooler to observe its effect. Concentrations of SO2, NO, NO2 and CO were made as 200 ppm. The CO2 concentration was 8%. The inlet absolute humidity was produced as 12.5% at 100 C using a bubbling method. It was found that the reduction rate of SO2 was the highest (~21%), followed by NO2 (~17%), CO2 (~11%) and CO (~10%). In contrast, the cooler was not affected by NO gas. The result indicated that the cooler caused a significant effect on the water soluble gases due to condensate water in the cooler. To overcome this problem, a correction factor may be applied. However, water vapor might be different, and emissions of target gases are also various. Therefore, the correction factor is not only a solution, but also a better available method should be employed.Keywords: cooler, CEMS, monitoring, reproductive, sampling
Procedia PDF Downloads 3611173 Quality Control Parameters and Pharmacological Aspects of Less Known Medicinal Plant of India: Plumeria pudica Linn.
Authors: Shweta Shriwas, Sumeet Dwivedi, Raghvendra Dubey
Abstract:
Plumeria pudica Linn. Family Apocynaceae commonly known as Nag Chmapa is grown wildly in many parts of India. The plant is medium size shrub, grown up to height of 5-10 feet, evergreen with white flowers. In traditional system of medicine, the plant is widely used in the treatment of worms, infection, inflammation, etc. So, far no any systematic and documented study was done to revealed quality control parameters and pharmacological aspect of the selected plant species, therefore, the attempt was made in present investigation to reveal the same. The parameters such as Ash value, FOM, LOD, SI, etc. were studied using various coarsely dried plant materials of the species. Analgesic, anti-inflammatory, anthelmentic and anti-microbial activity of various extract was investigated and reported in present work.Keywords: Plumeria pudica, quality control, pharmacology, parameters
Procedia PDF Downloads 2161172 In Silico Modeling of Drugs Milk/Plasma Ratio in Human Breast Milk Using Structures Descriptors
Authors: Navid Kaboudi, Ali Shayanfar
Abstract:
Introduction: Feeding infants with safe milk from the beginning of their life is an important issue. Drugs which are used by mothers can affect the composition of milk in a way that is not only unsuitable, but also toxic for infants. Consuming permeable drugs during that sensitive period by mother could lead to serious side effects to the infant. Due to the ethical restrictions of drug testing on humans, especially women, during their lactation period, computational approaches based on structural parameters could be useful. The aim of this study is to develop mechanistic models to predict the M/P ratio of drugs during breastfeeding period based on their structural descriptors. Methods: Two hundred and nine different chemicals with their M/P ratio were used in this study. All drugs were categorized into two groups based on their M/P value as Malone classification: 1: Drugs with M/P>1, which are considered as high risk 2: Drugs with M/P>1, which are considered as low risk Thirty eight chemical descriptors were calculated by ACD/labs 6.00 and Data warrior software in order to assess the penetration during breastfeeding period. Later on, four specific models based on the number of hydrogen bond acceptors, polar surface area, total surface area, and number of acidic oxygen were established for the prediction. The mentioned descriptors can predict the penetration with an acceptable accuracy. For the remaining compounds (N= 147, 158, 160, and 174 for models 1 to 4, respectively) of each model binary regression with SPSS 21 was done in order to give us a model to predict the penetration ratio of compounds. Only structural descriptors with p-value<0.1 remained in the final model. Results and discussion: Four different models based on the number of hydrogen bond acceptors, polar surface area, and total surface area were obtained in order to predict the penetration of drugs into human milk during breastfeeding period About 3-4% of milk consists of lipids, and the amount of lipid after parturition increases. Lipid soluble drugs diffuse alongside with fats from plasma to mammary glands. lipophilicity plays a vital role in predicting the penetration class of drugs during lactation period. It was shown in the logistic regression models that compounds with number of hydrogen bond acceptors, PSA and TSA above 5, 90 and 25 respectively, are less permeable to milk because they are less soluble in the amount of fats in milk. The pH of milk is acidic and due to that, basic compounds tend to be concentrated in milk than plasma while acidic compounds may consist lower concentrations in milk than plasma. Conclusion: In this study, we developed four regression-based models to predict the penetration class of drugs during the lactation period. The obtained models can lead to a higher speed in drug development process, saving energy, and costs. Milk/plasma ratio assessment of drugs requires multiple steps of animal testing, which has its own ethical issues. QSAR modeling could help scientist to reduce the amount of animal testing, and our models are also eligible to do that.Keywords: logistic regression, breastfeeding, descriptors, penetration
Procedia PDF Downloads 711171 Comparative Analysis of Chemical Composition of Two Ecotypes of Achillea wilhelmsii in Iran
Authors: L. Amjad, M. Torki, F. Yazdani
Abstract:
The genus Achillea belongs to Asteraceae family. This plant is widely found in different regions of Iran and used for treatment of different diseases. The aim of this study was to evaluate the chemical composition of Achillea wilhelmsii in Iran. The aerial parts of A. wilhelmsii collected from Shahrekord and Mazandaran Province, Iran and they were analyzed by using GC/MS. The 23, 13 compounds were identified in dried aerial parts of A. wilhelmsii from Shahrekord and Mazandaran, respectively. The major components in Shahrekord were: 1,8-Cineole (35.532%), α-pinene (22.885%), Camphor (12.238%), Camphene (8.691%), Piperitol (3.748%), Ethanone (2.274%) and The major components in Mazandaran were: 1,8-Cineole (52.951%), α-pinene (13.985%), Camphor (11.824%), Camphene (8.531%), Terpineol (2.533%), α-Thujone (2.330%). According to the results, difference in essential oil components of Achillea species in different regions may be due to the several factors that leads to change in compositions of plant.Keywords: achillea wilhelmsii, essential oils, GC/MS
Procedia PDF Downloads 3651170 Devulcanization of Waste Rubber Using Thermomechanical Method Combined with Supercritical CO₂
Authors: L. Asaro, M. Gratton, S. Seghar, N. Poirot, N. Ait Hocine
Abstract:
Rubber waste disposal is an environmental problem. Particularly, many researches are centered in the management of discarded tires. In spite of all different ways of handling used tires, the most common is to deposit them in a landfill, creating a stock of tires. These stocks can cause fire danger and provide ambient for rodents, mosquitoes and other pests, causing health hazards and environmental problems. Because of the three-dimensional structure of the rubbers and their specific composition that include several additives, their recycling is a current technological challenge. The technique which can break down the crosslink bonds in the rubber is called devulcanization. Strictly, devulcanization can be defined as a process where poly-, di-, and mono-sulfidic bonds, formed during vulcanization, are totally or partially broken. In the recent years, super critical carbon dioxide (scCO₂) was proposed as a green devulcanization atmosphere. This is because it is chemically inactive, nontoxic, nonflammable and inexpensive. Its critical point can be easily reached (31.1 °C and 7.38 MPa), and residual scCO₂ in the devulcanized rubber can be easily and rapidly removed by releasing pressure. In this study thermomechanical devulcanization of ground tire rubber (GTR) was performed in a twin screw extruder under diverse operation conditions. Supercritical CO₂ was added in different quantities to promote the devulcanization. Temperature, screw speed and quantity of CO₂ were the parameters that were varied during the process. The devulcanized rubber was characterized by its devulcanization percent and crosslink density by swelling in toluene. Infrared spectroscopy (FTIR) and Gel permeation chromatography (GPC) were also done, and the results were related with the Mooney viscosity. The results showed that the crosslink density decreases as the extruder temperature and speed increases, and, as expected, the soluble fraction increase with both parameters. The Mooney viscosity of the devulcanized rubber decreases as the extruder temperature increases. The reached values were in good correlation (R= 0.96) with de the soluble fraction. In order to analyze if the devulcanization was caused by main chains or crosslink scission, the Horikx's theory was used. Results showed that all tests fall in the curve that corresponds to the sulfur bond scission, which indicates that the devulcanization has successfully happened without degradation of the rubber. In the spectra obtained by FTIR, it was observed that none of the characteristic peaks of the GTR were modified by the different devulcanization conditions. This was expected, because due to the low sulfur content (~1.4 phr) and the multiphasic composition of the GTR, it is very difficult to evaluate the devulcanization by this technique. The lowest crosslink density was reached with 1 cm³/min of CO₂, and the power consumed in that process was also near to the minimum. These results encourage us to do further analyses to better understand the effect of the different conditions on the devulcanization process. The analysis is currently extended to monophasic rubbers as ethylene propylene diene monomer rubber (EPDM) and natural rubber (NR).Keywords: devulcanization, recycling, rubber, waste
Procedia PDF Downloads 3851169 Effect of Heat Treatment on the Microstructural Evolution in Weld Region of X70 Pipeline Steel
Authors: K. Digheche, K. Saadi, Z. Boumerzoug
Abstract:
Welding is one of the most important technological processes used in many branches of industry such as industrial engineering, shipbuilding, pipeline fabrication among others. Generally, welding is the preferred joining method and most common steels are weldable. This investigation is a contribution to scientific work of welding of low carbon steel. This work presents the results of the isothermal heat treatment effect at 200, 400 and 600 °C on microstructural evolution in weld region of X70 pipeline steel. The welding process has been realized in three passes by industrial arc welding. We have found that the heat treatments cause grain growth reaction.Keywords: heat treatments, low carbon steel, microstructures, welding
Procedia PDF Downloads 4601168 Vertically Grown P–Type ZnO Nanorod on Ag Thin Film
Authors: Jihyun Park, Tae Il Lee, Jae-Min Myoung
Abstract:
A Silver (Ag) thin film is introduced as a template and doping source for vertically aligned p–type ZnO nanorods. ZnO nanorods were grown using a ammonium hydroxide based hydrothermal process. During the hydrothermal process, the Ag thin film was dissolved to generate Ag ions in the solution. The Ag ions can contribute to doping in the wurzite structure of ZnO and the (111) grain of Ag thin film can be the epitaxial temporal template for the (0001) plane of ZnO. Hence, Ag–doped p–type ZnO nanorods were successfully grown on the substrate, which can be an electrode or semiconductor for the device application. To demonstrate the potentials of this idea, p–n diode was fabricated and its electrical characteristics were demonstrated.Keywords: hydrothermal process, Ag–doped ZnO nanorods, p–type ZnO
Procedia PDF Downloads 4641167 Depositional Environment and Diagenetic Alterations, Influences of Facies and Fine Kaolinite Formation Migration on Sandstones’ Reservoir Quality, Sarir Formation, Sirt Basin Libya
Authors: Faraj M. Elkhatri, Hana Ali Allafi
Abstract:
The spatial and temporal distribution of diagenetic alterations related impact on the reservoir quality of the Sarir Formation. (present day burial depth of about 9000 feet) Depositional facies and diagenetic alterations are the main controls on reservoir quality of Sarir Formation Sirt Ba-sin Libya; these based on lithology and grain size as well as authigenic clay mineral types and their distributions. However, petrology investigation obtained on study area with five sandstone wells concentrated on main rock components and the parameters that may have impacts on reservoirs. the main authigenic clay minerals are kaolinite and dickite, these investigations have confirmed by X.R.D analysis and clay fraction. mainly Kaolinite and Dickite were extensively presented on all of wells with high amounts. As well as trace of detrital smectite and less amounts of illitized mud-matrix are possibly find by SEM image. Thin layers of clay presented as clay-grain coatings in local depth interpreted as remains of dissolved clay matrix is partly transformed into kaolinite adjacent and towards pore throat. This also may have impacts on most of the pore throats of this sandstone which are open and relatively clean with some of fine martial have been formed on occluded pores. This material is identified by EDS analysis to be collections of not only kaolinite booklets, but also small, disaggregated kaolinite platelets derived from the dis-aggregation of larger kaolinite booklets. These patches of kaolinite not only fill this pore, but also coat some of the sur-rounding framework grains. Quartz grains often enlarged by authigenic quartz overgrowths partially occlude and re-duce porosity. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM) was conducted on the post-test samples to examine any mud filtrate particles that may be in the pore throats. Semi-qualitative elemental data on select-ed minerals observed during the SEM study were obtained using an Energy Dispersive Spectroscopy (EDS) unit. The samples showed mostly clean open pore throats, with limited occlusion by kaolinite.Keywords: por throat, formation damage, porosity lose, solids plugging
Procedia PDF Downloads 591166 Phytotoxicity of Lead on the Physiological Parameters of Two Varieties of Broad Bean (Vicia faba)
Authors: El H. Bouziani, H. A. Reguieg Yssaad
Abstract:
The phytotoxicity of heavy metals can be expressed on roots and visible part of plants and is characterized by molecular and metabolic answers at various levels of organization of the whole plant. The present study was undertaken on two varieties of broad bean Vicia faba (Sidi Aïch and Super Aguadulce). The device was mounted on a substrate prepared by mixing sand, soil and compost, the substrate was artificially contaminated with three doses of lead nitrate [Pb(NO3)2] 0, 500 and 1000 ppm. Our objective is to follow the behavior of plant opposite the stress by evaluating the physiological parameters. The results reveal a reduction in the parameters of the productivity (chlorophyll and proteins production) with an increase in the osmoregulators (soluble sugars and proline).These results show that the production of broad bean is strongly modified by the disturbance of its internal physiology under lead exposure.Keywords: broad bean, lead, stress, physiological parameters, phytotoxicity
Procedia PDF Downloads 3071165 Effect of Alginate and Surfactant on Physical Properties of Oil Entrapped Alginate Bead Formulation of Curcumin
Authors: Arpa Petchsomrit, Namfa Sermkaew, Ruedeekorn Wiwattanapatapee
Abstract:
Oil entrapped floating alginate beads of curcumin were developed and characterized. Cremophor EL, Cremophor RH and Tween 80 were utilized to improve the solubility of the drug. The oil-loaded floating gel beads prepared by emulsion gelation method contained sodium alginate, mineral oil and surfactant. The drug content and % encapsulation declined as the ratio of surfactant was increased. The release of curcumin from 1% alginate beads was significantly more than for the 2% alginate beads. The drug released from the beads containing 25% of tween 80 was about 70% while a higher drug release was observed with the beads containing Cremophor EL or Cremohor RH (approximately 90%). The developed floating beads of curcumin powder with surfactant provided a superior drug release than those without surfactant. Floating beads based on oil entrapment containing the drug solubilized in surfactants is a new delivery system to enhance the dissolution of poorly soluble drugs.Keywords: alginate, curcumin, floating drug delivery, oil entrapped bead
Procedia PDF Downloads 3851164 Assessment of the Change in Strength Properties of Biocomposites Based on PLA and PHA after 4 Years of Storage in a Highly Cooled Condition
Authors: Karolina Mazur, Stanislaw Kuciel
Abstract:
Polylactides (PLA) and polyhydroxyalkanoates (PHA) are the two groups of biodegradable and biocompatible thermoplastic polymers most commonly utilised in medicine and rehabilitation. The aim of this work is to determine the changes in the strength properties and the microstructures taking place in biodegradable polymer composites during their long-term storage in a highly cooled environment (i.e. a freezer at -24ºC) and to initially assess the durability of such biocomposites when used as single-use elements of rehabilitation or medical equipment. It is difficult to find any information relating to the feasibility of long-term storage of technical products made of PLA or PHA, but nonetheless, when using these materials to make products such as casings of hair dryers, laptops or mobile phones, it is safe to assume that without storing in optimal conditions their degradation time might last even several years. SEM images and the assessment of the strength properties (tensile, bending and impact testing) were carried out and the density and water sorption of two polymers, PLA and PHA (NaturePlast PLE 001 and PHE 001), filled with cellulose fibres (corncob grain – Rehofix MK100, Rettenmaier&Sohne) up to 10 and 20% mass were determined. The biocomposites had been stored at a temperature of -24ºC for 4 years. In order to find out the changes in the strength properties and the microstructure taking place after such a long time of storage, the results of the assessment have been compared with the results of the same research carried out 4 years before. Results shows a significant change in the manner of fractures – from ductile with developed surface for the PHA composite with corncob grain when the tensile testing was performed directly after the injection into a more brittle state after 4 years of storage, which is confirmed by the strength tests, where a decrease of deformation is observed at point of fracture. The research showed that there is a way of storing medical devices made out of PLA or PHA for a reasonably long time, as long as the required temperature of storage is met. The decrease of mechanical properties found during tensile testing and bending for PLA was less than 10% of the tensile strength, while the modulus of elasticity and deformation at fracturing slightly rose, which may implicate the beginning of degradation processes. The strength properties of PHA are even higher after 4 years of storage, although in that case the decrease of deformation at fracturing is significant, reaching even 40%, which suggests its degradation rate is higher than that of PLA. The addition of natural particles in both cases only slightly increases the biodegradation.Keywords: biocomposites, PLA, PHA, storage
Procedia PDF Downloads 2651163 Effects of a Dwarfing Gene sd1-d (Dee-Geo-Woo-Gen Dwarf) on Yield and Related Traits in Rice: Preliminary Report
Authors: M. Bhattarai, B. B. Rana, M. Kamimukai, I. Takamure, T. Kawano, M. Murai
Abstract:
The sd1-d allele at the sd1 locus on chromosome 1, originating from Taiwanese variety Dee-geo-woo-gen, has been playing important role for developing short-culm and lodging-resistant indica varieties such as IR36 in rice. The dominant allele SD1 for long culm at the locus is differentiated into SD1-in and SD1-ja which are harbored in indica and japonica subspecies’s, respectively. The sd1-d of an indica variety IR36 was substituted with SD1-in or SD1-ja by recurrent backcrosses of 17 times with IR36, and two isogenic tall lines regarding the respective dominant alleles were developed by using an indica variety IR5867 and a japonica one ‘Koshihikari’ as donors, which were denoted by '5867-36' and 'Koshi-36', respectively. The present study was conducted to examine the effect of sd1-d on yield and related traits as compared with SD1-in and SD1-ja, by using the two isogenic tall lines. Seedlings of IR36 and the two isogenic lines were transplanted on an experimental field of Kochi University, by the planting distance of 30 cm × 15 cm with two seedlings per hill, on May 3, 2017. Chemical fertilizers were supplied by basal application and top-dressing at a rate of 8.00, 6.57 and 7.52 g/m², respectively, for N, P₂O₅ and K₂O in total. Yield, yield components, and other traits were measured. Culm length (cm) was in the order of 5867-36 (101.9) > Koshi-36 (80.1) > IR36 (60.0), where '>' indicates statistically significant difference at the 5% level. Accordingly, sd1-d reduced culm by 41.9 and 20.1 cm, compared with SD1-in and SD1-ja, respectively, and the effect of elongating culm was higher in the former allele than in the latter one. Total brown rice yield (g/m²), including unripened grains, was in the order of IR36 (611) ≧ 5867-36 (586) ≧ Koshi-36 (572), indicating non-significant differences among them. Yield-1.5mm sieve (g/m²) was in the order of IR36 (596) ≧ 5867-36 (575) ≧ Koshi-36 (558). Spikelet number per panicle was in the order of 5867-36 (89.2) ≧ IR36 (84.7) ≧ Koshi-36 (79.8), and 5867-36 > Koshi-36. Panicle number per m² was in the order of IR36 (428) ≧ Koshi-36 (403) ≧ 5867-36 (353), and IR36 > 5867-36, suggesting that sd1-d increased number of panicles compared with SD1-in. Ripened-grain percentage-1.5mm sieve was in the order of Koshi-36 (86.0) ≧ 5867-36 (85.0) ≧ IR36 (82.7), and Koshi-36 > IR36. Thousand brown-rice-grain weight-1.5mm sieve (g) was in the order of 5867-36 (21.5) > Koshi-36 (20.2) ≧ IR36 (19.9). Total dry weight at maturity (g/m²) was in the order of 5867-36 (1404 ) ≧ IR36 (1310) ≧ Kosihi-36 (1290). Harvest index of total brown rice (%) was in the order of IR36 (39.6) > Koshi-36 (37.7) > 5867-36 (35.5). Hence, sd1-d did not exert significant effect on yield in indica genetic background. However, lodging was observed from the late stage of maturity in 5867-36 and Koshi-36, particularly in the former, which was principally due to their long culms. Consequently, sd1-d enables higher yield with higher fertilizer application, by enhancing lodging resistance, particularly in indica subspecies.Keywords: rice, dwarfing gene, sd1-d, SD1-in, SD1-ja, yield
Procedia PDF Downloads 1691162 Potential of ᵞ-Polyglutamic Acid for Cadmium Toxicity Alleviation in Rice
Authors: N. Kotabin, Y. Tahara, K. Issakul, O. Chunhachart
Abstract:
Cadmium (II) (Cd) is one of the major toxic elemental pollutants which is hazardous for humans, animals and plants. γ-Polyglutamic acid (γ-PGA) is an extracellular biopolymer produced by several species of Bacillus which has been reported to be an effective biosorbent for metal ions. The effect of γ-PGA on growth of rice grown under laboratory conditions was investigated. Rice seeds were germinated and then grown at 30±1°C on filter paper soaked with Cd solution and γ-PGA for 7 days. The result showed that Cd significantly inhibited the growth of roots and shoots by reducing root and shoot lengths. Fresh and dry weights also decreased compared with control; however, the addition of 500 mg•L-1 γ-PGA alleviated rice seedlings from the adverse effects of Cd. The analysis of physiological traits revealed that Cd caused a decrease in the total chlorophyll and soluble protein contents and amylase activities in all treatments. The Cd content in seedling tissues increased for the Cd 250 μM treatment (P < 0.05) but the addition of 500 mg•L-1 γ-PGA resulted in a noticeable decrease in Cd (P < 0.05).Keywords: polyglutamic acid, cadmium, rice, bacillus subtilis
Procedia PDF Downloads 2991161 Influence of Thermal Ageing on Microstructural Features and Mechanical Properties of Reduced Activation Ferritic/Martensitic Grades
Authors: Athina Puype, Lorenzo Malerba, Nico De Wispelaere, Roumen Petrov, Jilt Sietsma
Abstract:
Reduced Activation Ferritic/Martensitic (FM) steels like EUROFER are of interest for first wall application in the future demonstration (DEMO) fusion reactor. Depending on the final design codes for the DEMO reactor, the first wall material will have to function in low-temperature mode or high-temperature mode, i.e. around 250-300°C of above 550°C respectively. However, the use of RAFM steels is limited up to a temperature of about 550°C. For the low-temperature application, the material suffers from irradiation embrittlement, due to a shift of ductile-to-brittle transition temperature (DBTT) towards higher temperatures upon irradiation. The high-temperature response of the material is equally insufficient for long-term use in fusion reactors, due to the instability of the matrix phase and coarsening of the precipitates at prolonged high-temperature exposure. The objective of this study is to investigate the influence of thermal ageing for 1000 hrs and 4000 hrs on microstructural features and mechanical properties of lab-cast EUROFER. Additionally, the ageing behavior of the lab-cast EUROFER is compared with the ageing behavior of standard EUROFER97-2 and T91. The microstructural features were investigated with light optical microscopy (LOM), electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). Additionally, hardness measurements, tensile tests at elevated temperatures and Charpy V-notch impact testing of KLST-type MCVN specimens were performed to study the microstructural features and mechanical properties of four different F/M grades, i.e. T91, EUROFER97-2 and two lab-casted EUROFER grades. After ageing for 1000 hrs, the microstructures exhibit similar martensitic block sizes independent on the grain size before ageing. With respect to the initial coarser microstructures, the aged microstructures displayed a dislocation structure which is partially fragmented by polygonization. On the other hand, the initial finer microstructures tend to be more stable up to 1000hrs resulting in similar grain sizes for the four different steels. Increasing the ageing time to 4000 hrs, resulted in an increase of lath thickness and coarsening of M23C6 precipitates leading to a deterioration of tensile properties.Keywords: ageing experiments, EUROFER, ferritic/martensitic steels, mechanical properties, microstructure, T91
Procedia PDF Downloads 2611160 Swelling Behaviour of Kappa Carrageenan Hydrogel in Neutral Salt Solution
Authors: Sperisa Distantina, Fadilah Fadilah, Mujtahid Kaavessina
Abstract:
Hydrogel films were prepared from kappa carrageenan by crosslinking with glutaraldehyde. Carrageenan films extracted from Kappaphycus alvarezii seaweed were immersed in glutaraldehyde solution for 2 min and then cured at 110 °C for 25 min. The obtained crosslinked films were washed with ethanol to remove the unreacted glutaraldehyde and then air dried to constant weights. The aim of this research was to study the swelling degree behaviour of the hydrogel film to neutral salts solution, namely NaCl, KCl, and CaCl2. The results showed that swelling degree of crosslinked films varied non-monotonically with salinity of NaCl. Swelling degree decreased with the increasing of KCl concentration. Swelling degree of crosslinked film in CaCl2 solution was lower than that in NaCl and in KCl solutions.Keywords: carrageenan, hydrogel, glutaraldehyde, salt, swelling
Procedia PDF Downloads 2441159 Drying Modeling of Banana Using Cellular Automata
Authors: M. Fathi, Z. Farhaninejad, M. Shahedi, M. Sadeghi
Abstract:
Drying is one of the oldest preservation methods for food and agriculture products. Appropriate control of operation can be obtained by modeling. Limitation of continues models for complex boundary condition and non-regular geometries leading to appearance of discrete novel methods such as cellular automata, which provides a platform for obtaining fast predictions by rule-based mathematics. In this research a one D dimensional CA was used for simulating thin layer drying of banana. Banana slices were dried with a convectional air dryer and experimental data were recorded for validating of final model. The model was programmed by MATLAB, run for 70000 iterations and von-Neumann neighborhood. The validation results showed a good accordance between experimental and predicted data (R=0.99). Cellular automata are capable to reproduce the expected pattern of drying and have a powerful potential for solving physical problems with reasonable accuracy and low calculating resources.Keywords: banana, cellular automata, drying, modeling
Procedia PDF Downloads 4381158 Preparation of Low-Molecular-Weight 6-Amino-6-Deoxychitosan (LM6A6DC) for Immobilization of Growth Factor
Authors: Koo-Yeon Kim, Eun-Hye Kim, Tae-Il Son
Abstract:
Epidermal Growth Factor (EGF, Mw=6,045) has been reported to have high efficiency of wound repair and anti-wrinkle effect. However, the half-life of EGF in the body is too short to exert the biological activity effectively when applied in free form. Growth Factors can be stabilized by immobilization with carbohydrates from thermal and proteolytic degradation. Low molecular weight chitosan (LMCS) and its derivate prepared by hydrogen peroxide has high solubility. LM6A6DC was successfully prepared as a reactive carbohydrate for the stabilization of EGF by the reactions of LMCS with alkalization, tosylation, azidation and reduction. The structure of LM6A6DC was confirmed by FT-IR, 1H NMR and elementary analysis. For enhancing the stability of free EGF, EGF was attached with LM6A6DC by using water-soluble carbodiimide. EGF-LM6A6DC conjugates did not show any cytotoxicity on the Normal Human Dermal Fibroblast(NHDF) 3T3 proliferation at least under 100 ㎍/㎖. In the result, it was considered that LM6A6DC is suitable to immobilize of growth factor.Keywords: epidermal growth factor (EGF), low-molecular-weight chitosan, immobilization
Procedia PDF Downloads 4731157 Chemical Vapor Deposition (CVD) of Molybdenum Disulphide (MoS2) Monolayers
Authors: Omar Omar, Yuan Jun, Hong Jinghua, Jin Chuanhong
Abstract:
In this work molybdenum dioxide (MoO2) and sulphur powders are used to grow MoS2 mono layers at elevated temperatures T≥800 °C. Centimetre scale continues thin films with grain size up to 410 µm have been grown using chemical vapour deposition. To our best knowledge, these domains are the largest that have been grown so far. Advantage of our approach is not only because of the high quality films with large domain size one can produce, but also the procedure is potentially less hazardous than other methods tried. The thin films have been characterized using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy.Keywords: molybdenum disulphide (MoS2), monolayers, chemical vapour deposition (CVD), growth and characterization
Procedia PDF Downloads 3281156 Cotton Fabrics Functionalized with Green and Commercial Ag Nanoparticles
Authors: Laura Gonzalez, Santiago Benavides, Martha Elena Londono, Ana Elisa Casas, Adriana Restrepo-Osorio
Abstract:
Cotton products are sensitive to microorganisms due to its ability to retain moisture, which might cause change into the coloration, mechanical properties reduction or foul odor generation; consequently, this represents risks to the health of users. Nowadays, have been carried out researches to give antibacterial properties to textiles using different strategies, which included the use of silver nanoparticles (AgNPs). The antibacterial behavior can be affected by laundering process reducing its effectiveness. In the other way, the environmental impact generated for the synthetic antibacterial agents has motivated to seek new and more ecological ways for produce AgNPs. The aims of this work are to determine the antibacterial activity of cotton fabric functionalized with green (G) and commercial (C) AgNPs after twenty washing cycles, also to evaluate morphological and color changes. A plain weave cotton fabric suitable for dyeing and two AgNPs solutions were use. C a commercial product and G produced using an ecological method, both solutions with 0.5 mM concentration were impregnated on cotton fabric without stabilizer, at a liquor to fabric ratio of 1:20 in constant agitation during 30min and then dried at 70 °C by 10 min. After that the samples were subjected to twenty washing cycles using phosphate-free detergent simulated on agitated flask at 150 rpm, then were centrifuged and dried on a tumble. The samples were characterized using Kirby-Bauer test determine antibacterial activity against E. coli y S. aureus microorganisms, the results were registered by photographs establishing the inhibition halo before and after the washing cycles, the tests were conducted in triplicate. Scanning electron microscope (SEM) was used to observe the morphologies of cotton fabric and treated samples. The color changes of cotton fabrics in relation to the untreated samples were obtained by spectrophotometer analysis. The images, reveals the presence of inhibition halo in the samples treated with C and G AgNPs solutions, even after twenty washing cycles, which indicated a good antibacterial activity and washing durability, with a tendency to better results against to S. aureus bacteria. The presence of AgNPs on the surface of cotton fiber and morphological changes were observed through SEM, after and before washing cycles. The own color of the cotton fiber has been significantly altered with both antibacterial solutions. According to the colorimetric results, the samples treated with C lead to yellowing while the samples modified with G to red yellowing Cotton fabrics treated AgNPs C and G from 0.5 mM solutions exhibited excellent antimicrobial activity against E. coli and S. aureus with good laundering durability effects. The surface of the cotton fibers was modified with the presence of AgNPs C and G due to the presence of NPs and its agglomerates. There are significant changes in the natural color of cotton fabric due to deposition of AgNPs C and G which were maintained after laundering process.Keywords: antibacterial property, cotton fabric, fastness to wash, Kirby-Bauer test, silver nanoparticles
Procedia PDF Downloads 2461155 Compositional and Morphological Characteristics of Three Common Dates (Phoenix dactylifera L.) Grown in Algeria
Authors: H. Amellal, Y. Noui, A. Djouab, S. Benamara
Abstract:
Mech-Degla, Degla-Beida, and Frezza are the date (Phoenix dactylifera L.) common varieties with a more or less good availability and feeble trade value. Some morphologic and physicochemical factors were determined. Results show that the whole date weight is significantly different (P= 95%) concerning Mech-Degla and Degla-Beida which are more commercialised than Frezza whereas the pulp/kernel ratio for this last is highest (above 7) since it represents almost the double of that found for the two other varieties. The water content for all fruits is below 15g/100g (wet basis) what confers a dried consistence for common date. Some other morphologic and chemical proprieties of the whole pulps and their two constitutive parts (brown or pigmented and white) are also investigated. The predominance of phenolics in Mech-Degla (4.01g/100g, w.b) and Frezza (4.96 g/100g, w.b) pulps brown part is the main result revealed in this study.Keywords: common dates, phenolics, sugars, tissues
Procedia PDF Downloads 4121154 Fuel Properties of Distilled Tire Pyrolytic Oil and Its Blends with Biodiesel and Commercial Diesel Fuel
Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng
Abstract:
Tires are extremely challenging to recycle due to the available chemically cross-linked polymer which constitutes their nature and therefore, they are neither fusible nor soluble and consequently, cannot be remoulded into other shapes without serious degradation. Pyrolysis of tires produces four valuable products namely; char, steel, tire pyrolytic oil (TPO) and non-condensable gases. TPO has been reported to have similar properties to commercial diesel fuel (CDF). In this study, distillation of TPO was carried out in a batch distillation column and biodiesel was produced from waste cooking oil. FTIR analysis proved that TPO can be used as a fuel due to the available compounds detected and GC analysis displayed 94% biodiesel concentration from waste cooking oil. Different blends of TPO/biodiesel, TPO/CDF and biodiesel/CDF were prepared at different ratios. Fuel properties such as viscosity, density, flash point, and calorific value were studied. Viscosity and density models were also studied to measure the quality of different blends.Keywords: biodiesel, distillation, pyrolysis, tire
Procedia PDF Downloads 161