Search results for: data to action
26251 Geographic Information Systems as a Tool to Support the Sustainable Development Goals
Authors: Gulnara N. Nabiyeva, Stephen M. Wheeler
Abstract:
Geographic Information Systems (GIS) is a multipurpose computer-based tool that provides a sophisticated ability to map and analyze data on different spatial layers. However, GIS is far more easily applied in some policy areas than others. This paper seeks to determine the areas of sustainable development, including environmental, economic, and social dimensions, where GIS has been used to date to support efforts to implement the United Nations Sustainable Development Goals (SDGs), and to discuss potential areas where it might be used more. Based on an extensive analysis of published literature, we ranked the SDGs according to how frequently GIS has been used to study related policy. We found that SDG#15 “Life on Land” is most often addressed with GIS, following by SDG#11 “Sustainable Cities and Communities”, and SDG#13 “Climate Action”. On the other hand, we determined that SDG#2 “Zero Hunger”, SDG#8 “Decent Work and Economic Growth”, and SDG#16 “Peace, Justice, and Strong Institutions” are least addressed with GIS. The paper outlines some specific ways that GIS might be applied to the SDGs least linked to this tool currently.Keywords: GIS, GIS application, sustainable community development, sustainable development goals
Procedia PDF Downloads 13326250 Interaction Tasks of CUE Model in Virtual Language Learning in Travel English for Taiwanese College EFL Learners
Authors: Kuei-Hao Li, Eden Huang
Abstract:
Motivation suggests the willingness one person has towards taking action. Learners’ motivation has frequently been regarded as the most crucial factor in successful language acquisition. Without sufficient motivation, learners cannot achieve long-term learning goals despite remarkable abilities. Therefore, the study aims to investigate motivation of interaction tasks designed by the researchers for college EFL learners in Travel English class in virtual reality environment, integrating CUE model, Cognition, Usage and Expansion in the course. Thirty college learners were asked to join the virtual language learning website designed by the researchers. Data was collected via feedback questionnaire, interview, and learner interactions. The findings indicated that the course in the CUE model in language learning website of virtual reality environment was effective at motivating EFL learners and improving their oral communication and social interactions in the learning process. Some pedagogical implications are also provided in helping both language instructors and EFL learners in virtual reality environment.Keywords: motivation, virtual reality, virtual language learning, second language acquisition
Procedia PDF Downloads 39126249 Overview of the 2017 Fire Season in Amazon
Authors: Ana C. V. Freitas, Luciana B. M. Pires, Joao P. Martins
Abstract:
In recent years, fire dynamics in deforestation areas of tropical forests have received considerable attention because of their relationship to climate change. Climate models project great increases in the frequency and area of drought in the Amazon region, which may increase the occurrence of fires. This study analyzes the historical record number of fire outbreaks in 2017 using satellite-derived data sets of active fire detections, burned area, precipitation, and data of the Fire Program from the Center for Weather Forecasting and Climate Studies (CPTEC/INPE). A downward trend in the number of fire outbreaks occurred in the first half of 2017, in relation to the previous year. This decrease can be related to the fact that 2017 was not an El Niño year and, therefore, the observed rainfall and temperature in the Amazon region was close to normal conditions. Meanwhile, the worst period in history for fire outbreaks began with the subsequent arrival of the dry season. September of 2017 exceeded all monthly records for number of fire outbreaks per month in the entire series. This increase was mainly concentrated in Bolivia and in the states of Amazonas, northeastern Pará, northern Rondônia and Acre, regions with high densities of rural settlements, which strongly suggests that human action is the predominant factor, aggravated by the lack of precipitation during the dry season allowing the fires to spread and reach larger areas. Thus, deforestation in the Amazon is primarily a human-driven process: climate trends may be providing additional influences.Keywords: Amazon forest, climate change, deforestation, human-driven process, fire outbreaks
Procedia PDF Downloads 12826248 Data Mining Approach for Commercial Data Classification and Migration in Hybrid Storage Systems
Authors: Mais Haj Qasem, Maen M. Al Assaf, Ali Rodan
Abstract:
Parallel hybrid storage systems consist of a hierarchy of different storage devices that vary in terms of data reading speed performance. As we ascend in the hierarchy, data reading speed becomes faster. Thus, migrating the application’ important data that will be accessed in the near future to the uppermost level will reduce the application I/O waiting time; hence, reducing its execution elapsed time. In this research, we implement trace-driven two-levels parallel hybrid storage system prototype that consists of HDDs and SSDs. The prototype uses data mining techniques to classify application’ data in order to determine its near future data accesses in parallel with the its on-demand request. The important data (i.e. the data that the application will access in the near future) are continuously migrated to the uppermost level of the hierarchy. Our simulation results show that our data migration approach integrated with data mining techniques reduces the application execution elapsed time when using variety of traces in at least to 22%.Keywords: hybrid storage system, data mining, recurrent neural network, support vector machine
Procedia PDF Downloads 30726247 Transparency of Algorithmic Decision-Making: Limits Posed by Intellectual Property Rights
Authors: Olga Kokoulina
Abstract:
Today, algorithms are assuming a leading role in various areas of decision-making. Prompted by a promise to provide increased economic efficiency and fuel solutions for pressing societal challenges, algorithmic decision-making is often celebrated as an impartial and constructive substitute for human adjudication. But in the face of this implied objectivity and efficiency, the application of algorithms is also marred with mounting concerns about embedded biases, discrimination, and exclusion. In Europe, vigorous debates on risks and adverse implications of algorithmic decision-making largely revolve around the potential of data protection laws to tackle some of the related issues. For example, one of the often-cited venues to mitigate the impact of potentially unfair decision-making practice is a so-called 'right to explanation'. In essence, the overall right is derived from the provisions of the General Data Protection Regulation (‘GDPR’) ensuring the right of data subjects to access and mandating the obligation of data controllers to provide the relevant information about the existence of automated decision-making and meaningful information about the logic involved. Taking corresponding rights and obligations in the context of the specific provision on automated decision-making in the GDPR, the debates mainly focus on efficacy and the exact scope of the 'right to explanation'. In essence, the underlying logic of the argued remedy lies in a transparency imperative. Allowing data subjects to acquire as much knowledge as possible about the decision-making process means empowering individuals to take control of their data and take action. In other words, forewarned is forearmed. The related discussions and debates are ongoing, comprehensive, and, often, heated. However, they are also frequently misguided and isolated: embracing the data protection law as ultimate and sole lenses are often not sufficient. Mandating the disclosure of technical specifications of employed algorithms in the name of transparency for and empowerment of data subjects potentially encroach on the interests and rights of IPR holders, i.e., business entities behind the algorithms. The study aims at pushing the boundaries of the transparency debate beyond the data protection regime. By systematically analysing legal requirements and current judicial practice, it assesses the limits of the transparency requirement and right to access posed by intellectual property law, namely by copyrights and trade secrets. It is asserted that trade secrets, in particular, present an often-insurmountable obstacle for realising the potential of the transparency requirement. In reaching that conclusion, the study explores the limits of protection afforded by the European Trade Secrets Directive and contrasts them with the scope of respective rights and obligations related to data access and portability enshrined in the GDPR. As shown, the far-reaching scope of the protection under trade secrecy is evidenced both through the assessment of its subject matter as well as through the exceptions from such protection. As a way forward, the study scrutinises several possible legislative solutions, such as flexible interpretation of the public interest exception in trade secrets as well as the introduction of the strict liability regime in case of non-transparent decision-making.Keywords: algorithms, public interest, trade secrets, transparency
Procedia PDF Downloads 12426246 Discussion on Big Data and One of Its Early Training Application
Authors: Fulya Gokalp Yavuz, Mark Daniel Ward
Abstract:
This study focuses on a contemporary and inevitable topic of Data Science and its exemplary application for early career building: Big Data and Leaving Learning Community (LLC). ‘Academia’ and ‘Industry’ have a common sense on the importance of Big Data. However, both of them are in a threat of missing the training on this interdisciplinary area. Some traditional teaching doctrines are far away being effective on Data Science. Practitioners needs some intuition and real-life examples how to apply new methods to data in size of terabytes. We simply explain the scope of Data Science training and exemplified its early stage application with LLC, which is a National Science Foundation (NSF) founded project under the supervision of Prof. Ward since 2014. Essentially, we aim to give some intuition for professors, researchers and practitioners to combine data science tools for comprehensive real-life examples with the guides of mentees’ feedback. As a result of discussing mentoring methods and computational challenges of Big Data, we intend to underline its potential with some more realization.Keywords: Big Data, computation, mentoring, training
Procedia PDF Downloads 36226245 Towards a Secure Storage in Cloud Computing
Authors: Mohamed Elkholy, Ahmed Elfatatry
Abstract:
Cloud computing has emerged as a flexible computing paradigm that reshaped the Information Technology map. However, cloud computing brought about a number of security challenges as a result of the physical distribution of computational resources and the limited control that users have over the physical storage. This situation raises many security challenges for data integrity and confidentiality as well as authentication and access control. This work proposes a security mechanism for data integrity that allows a data owner to be aware of any modification that takes place to his data. The data integrity mechanism is integrated with an extended Kerberos authentication that ensures authorized access control. The proposed mechanism protects data confidentiality even if data are stored on an untrusted storage. The proposed mechanism has been evaluated against different types of attacks and proved its efficiency to protect cloud data storage from different malicious attacks.Keywords: access control, data integrity, data confidentiality, Kerberos authentication, cloud security
Procedia PDF Downloads 33526244 Evaluation of the Role of Theatre for Development in Combating Climate Change in South Africa
Authors: Isaiah Phillip Smith, Sam Erevbenagie Usadolo, Pamela Theresa Tancsik
Abstract:
This paper is part of ongoing doctoral research that examines the role of Theatre for Development (TfD) in addressing climate change in the Mosuthu community in Reservoir Hills, Durban, South Africa. The context of the research underscores the pressing challenges facing South Africa, including drought, water shortages, deterioration of land, and civil unrest that require innovative approaches to the mitigation of climate change. TfD, described as a dialogical form of theatre that allows communities to express and contribute to development, emerges as a strategic medium for engaging communities in the process. The research problem focused on the unexamined potential of TfD in promoting community involvement and critical awareness of climate change. The study objectives included assessing the community's understanding of climate change, exploring TfD's potential as a participatory tool, examining its role in community mobilization, and developing recommendations for its effective implementation. A review of relevant literature and preliminary investigations in the research community indicates that TfD is an effective medium for promoting societal transformation and engaging marginalized communities. Through culturally resonant narratives, TfD can instill a deeper understanding of environmental challenges, fostering empathy and motivating behavioural changes. By integrating community voices and cultural elements, TfD serves as a powerful catalyst for promoting climate change awareness and inspiring collective action within the South African context. This research contributes to the global discourse on innovative approaches to climate change awareness and action.Keywords: TfD, climate change, community involvement, societal transformation, culture
Procedia PDF Downloads 5726243 Ontological Modeling Approach for Statistical Databases Publication in Linked Open Data
Authors: Bourama Mane, Ibrahima Fall, Mamadou Samba Camara, Alassane Bah
Abstract:
At the level of the National Statistical Institutes, there is a large volume of data which is generally in a format which conditions the method of publication of the information they contain. Each household or business data collection project includes a dissemination platform for its implementation. Thus, these dissemination methods previously used, do not promote rapid access to information and especially does not offer the option of being able to link data for in-depth processing. In this paper, we present an approach to modeling these data to publish them in a format intended for the Semantic Web. Our objective is to be able to publish all this data in a single platform and offer the option to link with other external data sources. An application of the approach will be made on data from major national surveys such as the one on employment, poverty, child labor and the general census of the population of Senegal.Keywords: Semantic Web, linked open data, database, statistic
Procedia PDF Downloads 17426242 The Role of Data Protection Officer in Managing Individual Data: Issues and Challenges
Authors: Nazura Abdul Manap, Siti Nur Farah Atiqah Salleh
Abstract:
For decades, the misuse of personal data has been a critical issue. Malaysia has accepted responsibility by implementing the Malaysian Personal Data Protection Act 2010 to secure personal data (PDPA 2010). After more than a decade, this legislation is set to be revised by the current PDPA 2023 Amendment Bill to align with the world's key personal data protection regulations, such as the European Union General Data Protection Regulations (GDPR). Among the other suggested adjustments is the Data User's appointment of a Data Protection Officer (DPO) to ensure the commercial entity's compliance with the PDPA 2010 criteria. The change is expected to be enacted in parliament fairly soon; nevertheless, based on the experience of the Personal Data Protection Department (PDPD) in implementing the Act, it is projected that there will be a slew of additional concerns associated with the DPO mandate. Consequently, the goal of this article is to highlight the issues that the DPO will encounter and how the Personal Data Protection Department should respond to this subject. The study result was produced using a qualitative technique based on an examination of the current literature. This research reveals that there are probable obstacles experienced by the DPO, and thus, there should be a definite, clear guideline in place to aid DPO in executing their tasks. It is argued that appointing a DPO is a wise measure in ensuring that the legal data security requirements are met.Keywords: guideline, law, data protection officer, personal data
Procedia PDF Downloads 7826241 Using the Transtheoretical Model to Investigate Stages of Change in Regular Volunteer Service among Seniors in Community
Authors: Pei-Ti Hsu, I-Ju Chen, Jeu-Jung Chen, Cheng-Fen Chang, Shiu-Yan Yang
Abstract:
Taiwan now is an aging society Research on the elderly should not be confined to caring for seniors, but should also be focused on ways to improve health and the quality of life. Senior citizens who participate in volunteer services could become less lonely, have new growth opportunities, and regain a sense of accomplishment. Thus, the question of how to get the elderly to participate in volunteer service is worth exploring. Apply the Transtheoretical Model to understand stages of change in regular volunteer service and voluntary service behaviour among the seniors. 1525 adults over the age of 65 from the Renai district of Keelung City were interviewed. The research tool was a self-constructed questionnaire and individual interviews were conducted to collect data. Then the data was processed and analyzed using the IBM SPSS Statistics 20 (Windows version) statistical software program. In the past six months, research subjects averaged 9.92 days of volunteer services. A majority of these elderly individuals had no intention to change their regular volunteer services. We discovered that during the maintenance stage, the self-efficacy for volunteer services was higher than during all other stages, but self-perceived barriers were less during the preparation stage and action stage. Self-perceived benefits were found to have an important predictive power for those with regular volunteer service behaviors in the previous stage, and self-efficacy was found to have an important predictive power for those with regular volunteer service behaviors in later stages. The research results support the conclusion that community nursing staff should group elders based on their regular volunteer services change stages and design appropriate behavioral change strategies.Keywords: seniors, stages of change in regular volunteer services, volunteer service behavior, self-efficacy, self-perceived benefits
Procedia PDF Downloads 42626240 Development a Home-Hotel-Hospital-School Community-Based Palliative Care Model for Patients with Cancer in Suratthani, Thailand
Authors: Patcharaporn Sakulpong, Wiriya Phokhwang
Abstract:
Background: Banpunrug (Love Sharing House) established in 2013 provides a community-based palliative care for patients with cancer from 7 provinces in southern Thailand. These patients come to receive outpatient chemotherapy and radiotherapy at Suratthani Cancer Hospital. They are poor and uneducated; they need an accommodation during their 30-45 day course of therapy. Methods: A community-participatory action research (PAR) was employed to establish a model of palliative care for patients with cancer. The participants included health care providers, community, and patients and families. The PAR process includes problem identification and need assessment, community and team establishment, field survey, organization founding, model of care planning, action and inquiry (PDCA), outcome evaluation, and model distribution. Results: The model of care at Banpunrug involves the concepts of HHHS model, in that Banpunrug is a Home for patients; patients live in a house comfortable like in a Hotel resource; the patients are given care and living facilities similarly to those in a Hospital; the house is a School for patients to learn how to take care themselves, how to live well with cancer, and most importantly how to prepare themselves for a good death. The house is also a humanized care school for health care providers. Banpunrug’s philosophy of care is based on friendship therapy, social and spiritual support, community partnership, patient-family centeredness, Live & Love sharing house, and holistic and humanized care. With this philosophy, the house is managed as a home of the patients and everyone involved; everything is costless for all eligible patients and their family members; all facilities and living expense are donated from benevolent people, friends, and community. Everyone, including patients and family, has a sense of belonging to the house and there is no authority between health care providers and the patients in the house. The house is situated in a temple and a community and supported by many local nonprofit organizations and healthcare facilities such as a health promotion hospital at sub-disctrict level and Suratthani Cancer Hospital. Village health volunteers and multi-professional health care volunteers have contributed not only appropriate care, but also knowledge and experience to develop a distinguishing HHHS community-based palliative care model for patients with cancer. Since its opening the house has been a home for more than 400 patients and 300 family members. It is also a model for many national and international healthcare organizations and providers, who come to visit and learn about palliative care in and by community. Conclusions: The success of this palliative care model comes from community involvement, multi-professional volunteers and distributions, and concepts of HHHS model. Banpunrug promotes a consistent care across the cancer trajectory independent of prognosis in order to strengthen a full integration of palliativeKeywords: community-based palliative care, model, participatory action research, patients with cancer
Procedia PDF Downloads 26826239 An Assessment of the Role of Actors in the Medical Waste Management Policy-Making Process of Bangladesh
Authors: Md Monirul Islam, Shahaduz Zaman, Mosarraf H. Sarker
Abstract:
Context: Medical waste management (MWM) is a critical sector in Bangladesh due to its impact on human health and the environment. There is a need to assess the current policies and identify the role of policy actors in the policy formulation and implementation process. Research Aim: The study aimed to evaluate the role of policy actors in the medical waste management policy-making process in Bangladesh, identify policy gaps, and provide actionable recommendations for improvement. Methodology: The study adopted a qualitative research method and conducted key informant interviews. The data collected were analyzed using the thematic coding approach through Atlas.ti software. Findings: The study found that policies are formulated at higher administrative levels and implemented in a top-down approach. Higher-level institutions predominantly contribute to policy development, while lower-level institutions focus on implementation. However, due to negligence, ignorance, and lack of coordination, medical waste management receives insufficient attention from the actors. The study recommends the need for immediate strategies, a comprehensive action plan, regular policy updates, and inter-ministerial meetings to enhance medical waste management practices and interventions. Theoretical Importance: The research contributes to evaluating the role of policy actors in medical waste management policymaking and implementation in Bangladesh. It identifies policy gaps and provides actionable recommendations for improvement. Data Collection: The study used key informant interviews as the data collection method. Thirty-six participants were interviewed, including influential policymakers and representatives of various administrative spheres. Analysis Procedures: The data collected was analyzed using the inductive thematic analysis approach. Question Addressed: The study aimed to assess the role of policy actors in medical waste management policymaking and implementation in Bangladesh. Conclusion: In conclusion, the study provides insights into the current medical waste management policy in Bangladesh, the role of policy actors in policy formulation and implementation, and the need for improved strategies and policy updates. The findings of this study can guide future policy-making efforts to enhance medical waste management practices and interventions in Bangladesh.Keywords: key informant, medical waste management, policy maker, qualitative study
Procedia PDF Downloads 8126238 Data Collection Based on the Questionnaire Survey In-Hospital Emergencies
Authors: Nouha Mhimdi, Wahiba Ben Abdessalem Karaa, Henda Ben Ghezala
Abstract:
The methods identified in data collection are diverse: electronic media, focus group interviews and short-answer questionnaires [1]. The collection of poor-quality data resulting, for example, from poorly designed questionnaires, the absence of good translators or interpreters, and the incorrect recording of data allow conclusions to be drawn that are not supported by the data or to focus only on the average effect of the program or policy. There are several solutions to avoid or minimize the most frequent errors, including obtaining expert advice on the design or adaptation of data collection instruments; or use technologies allowing better "anonymity" in the responses [2]. In this context, we opted to collect good quality data by doing a sizeable questionnaire-based survey on hospital emergencies to improve emergency services and alleviate the problems encountered. At the level of this paper, we will present our study, and we will detail the steps followed to achieve the collection of relevant, consistent and practical data.Keywords: data collection, survey, questionnaire, database, data analysis, hospital emergencies
Procedia PDF Downloads 10826237 Applications of Evolutionary Optimization Methods in Reinforcement Learning
Authors: Rahul Paul, Kedar Nath Das
Abstract:
The paradigm of Reinforcement Learning (RL) has become prominent in training intelligent agents to make decisions in environments that are both dynamic and uncertain. The primary objective of RL is to optimize the policy of an agent in order to maximize the cumulative reward it receives throughout a given period. Nevertheless, the process of optimization presents notable difficulties as a result of the inherent trade-off between exploration and exploitation, the presence of extensive state-action spaces, and the intricate nature of the dynamics involved. Evolutionary Optimization Methods (EOMs) have garnered considerable attention as a supplementary approach to tackle these challenges, providing distinct capabilities for optimizing RL policies and value functions. The ongoing advancement of research in both RL and EOMs presents an opportunity for significant advancements in autonomous decision-making systems. The convergence of these two fields has the potential to have a transformative impact on various domains of artificial intelligence (AI) applications. This article highlights the considerable influence of EOMs in enhancing the capabilities of RL. Taking advantage of evolutionary principles enables RL algorithms to effectively traverse extensive action spaces and discover optimal solutions within intricate environments. Moreover, this paper emphasizes the practical implementations of EOMs in the field of RL, specifically in areas such as robotic control, autonomous systems, inventory problems, and multi-agent scenarios. The article highlights the utilization of EOMs in facilitating RL agents to effectively adapt, evolve, and uncover proficient strategies for complex tasks that may pose challenges for conventional RL approaches.Keywords: machine learning, reinforcement learning, loss function, optimization techniques, evolutionary optimization methods
Procedia PDF Downloads 8026236 Federated Learning in Healthcare
Authors: Ananya Gangavarapu
Abstract:
Convolutional Neural Networks (CNN) based models are providing diagnostic capabilities on par with the medical specialists in many specialty areas. However, collecting the medical data for training purposes is very challenging because of the increased regulations around data collections and privacy concerns around personal health data. The gathering of the data becomes even more difficult if the capture devices are edge-based mobile devices (like smartphones) with feeble wireless connectivity in rural/remote areas. In this paper, I would like to highlight Federated Learning approach to mitigate data privacy and security issues.Keywords: deep learning in healthcare, data privacy, federated learning, training in distributed environment
Procedia PDF Downloads 14126235 Public Participation for an Effective Flood Risk Management: Building Social Capacities in Ribera Alta Del Ebro, Spain
Authors: Alba Ballester Ciuró, Marc Pares Franzi
Abstract:
While coming decades are likely to see a higher flood risk in Europe and greater socio-economic damages, traditional flood risk management has become inefficient. In response to that, new approaches such as capacity building and public participation have recently been incorporated in natural hazards mitigation policy (i.e. Sendai Framework for Action, Intergovernmental Panel on Climate Change reports and EU Floods Directive). By integrating capacity building and public participation, we present a research concerning the promotion of participatory social capacity building actions for flood risk mitigation at the local level. Social capacities have been defined as the resources and abilities available at individual and collective level that can be used to anticipate, respond to, cope with, recover from and adapt to external stressors. Social capacity building is understood as a process of identifying communities’ social capacities and of applying collaborative strategies to improve them. This paper presents a proposal of systematization of participatory social capacity building process for flood risk mitigation, and its implementation in a high risk of flooding area in the Ebro river basin: Ribera Alta del Ebro. To develop this process, we designed and tested a tool that allows measuring and building five types of social capacities: knowledge, motivation, networks, participation and finance. The tool implementation has allowed us to assess social capacities in the area. Upon the results of the assessment we have developed a co-decision process with stakeholders and flood risk management authorities on which participatory activities could be employed to improve social capacities for flood risk mitigation. Based on the results of this process, and focused on the weaker social capacities, we developed a set of participatory actions in the area oriented to general public and stakeholders: informative sessions on flood risk management plan and flood insurances, interpretative river descents on flood risk management (with journalists, teachers, and general public), interpretative visit to the floodplain, workshop on agricultural insurance, deliberative workshop on project funding, deliberative workshops in schools on flood risk management (playing with a flood risk model). The combination of obtaining data through a mixed-methods approach of qualitative inquiry and quantitative surveys, as well as action research through co-decision processes and pilot participatory activities, show us the significant impact of public participation on social capacity building for flood risk mitigation and contributes to the understanding of which main factors intervene in this process.Keywords: flood risk management, public participation, risk reduction, social capacities, vulnerability assessment
Procedia PDF Downloads 21126234 Tokenism and Invisible Labor of Black Women Within Social Work Education
Authors: LaShawnda N. Fields, Valandra
Abstract:
As part of a larger study, this particular line of inquiry focuses on experiences of tokenism and invisible labor expected of Black women within social work education. Black women faculty members and doctoral students participated in semi-formal, in-depth interviews. All participants were identified as members of schools of social work within Carnegie-designated R-1 institutions. Several participants believed that their race independently and the intersection of their race and gender was often misrepresented by their institution as an indication of a diverse and equitable environment. These women believed they were often solicited to participate in visual materials and make public appearances to benefit the school while feeling invisible. Most of the Black women interviewed, whether faculty members or doctoral students, were the sole Black person or one of very few Black women at these schools of social work. Similarly, the Black doctoral students spoke of being “paraded around” as a prized show horse while enduring a toxic culture that lacks inclusion. These women expressed frustration and disappointment as their images and scholarship were featured on websites and within marketing materials, not the pride and joy such exposure should elicit. These experiences of tokenism were taking place while the women constantly received messages of not being good enough or not a good fit at their institution. Invisible labor refers to work that is not compensated nor formally recognized. This labor is primarily committee work and student support. Representation of Black women faculty members is limited at these research-intensive schools of social work resulting in these women being sought out by students across disciplines. Similarly, the Black women doctoral students are informally recruited as peer mentors to support those students rising in the ranks behind them. Though this work is rooted in retention efforts, it is never identified as such. All participants identified committee work related to their identities as another way they find themselves engaged in work that often goes unrecognized and underappreciated. Committee work is usually tied to identity work, such as diversity, equity, and inclusion though it rarely translates to action and improvements. This qualitative study provides insight into the lived experiences of an at-risk and under-represented demographic. Institutions can better understand how they can support this demographic. These Black women scholars have been invited into these institutions but have not historically been granted full access. These women have survived unsavory conditions through sheer determination and support found mostly outside their schools of social work. Utilizing this data as a springboard for informed and action-oriented strategic planning would allow institutions to create inclusive and equity cultures that result in Black women thriving versus simply surviving.Keywords: education, equity, invisible labor, tokenism, intersectionality
Procedia PDF Downloads 8926233 The Utilization of Big Data in Knowledge Management Creation
Authors: Daniel Brian Thompson, Subarmaniam Kannan
Abstract:
The huge weightage of knowledge in this world and within the repository of organizations has already reached immense capacity and is constantly increasing as time goes by. To accommodate these constraints, Big Data implementation and algorithms are utilized to obtain new or enhanced knowledge for decision-making. With the transition from data to knowledge provides the transformational changes which will provide tangible benefits to the individual implementing these practices. Today, various organization would derive knowledge from observations and intuitions where this information or data will be translated into best practices for knowledge acquisition, generation and sharing. Through the widespread usage of Big Data, the main intention is to provide information that has been cleaned and analyzed to nurture tangible insights for an organization to apply to their knowledge-creation practices based on facts and figures. The translation of data into knowledge will generate value for an organization to make decisive decisions to proceed with the transition of best practices. Without a strong foundation of knowledge and Big Data, businesses are not able to grow and be enhanced within the competitive environment.Keywords: big data, knowledge management, data driven, knowledge creation
Procedia PDF Downloads 11626232 A Principal’s Role in Creating and Sustaining an Inclusive Environment
Authors: Yazmin Pineda Zapata
Abstract:
Leading a complete school and culture transformation can be a daunting task for any administrator. This is especially true when change agents are advocating for inclusive reform in their schools. As leaders embark on this journey, they must ascertain that an inclusive environment is not a place, a classroom, or a resource setting; it is a place of acceptance nurtured by supportive and meaningful learning opportunities where all students can thrive. A qualitative approach, phenomenology, was used to investigate principals’ actions and behaviors that supported inclusive schooling for students with disabilities. Specifically, this study sought to answer the following research question: How do leaders develop and maintain inclusive education? Fourteen K-12 principals purposefully selected from various sources (e.g., School Wide Integrated Framework for Transformation (SWIFT), The Maryland Coalition for Inclusive Education (MCIE), The Arc of Texas Inclusion Works organization, The Association for Persons with Severe Handicaps (TASH), the CAL State Summer Institute in San Marcos, and the PEAK Parent Center and/or other recognitions were interviewed individually using a semi-structured protocol. Upon completion of data collection, all interviews were transcribed and marked using A priori coding to analyze the responses and establish a correlation among Villa and Thousand’s five organizational supports to achieve inclusive educational reform: Vision, Skills, Incentives, Resources, and Action Plan. The findings of this study reveal the insights of principals who met specific criteria and whose schools had been highlighted as exemplary inclusive schools. Results show that by implementing the five organizational supports, principals were able to develop and sustain successful inclusive environments where both teachers and students were motivated, made capable, and supported through the redefinition and restructuring of systems within the school. Various key details of the five variables for change depict essential components within these systems, which include quality professional development, coaching and modeling of co-teaching strategies, collaborative co-planning, teacher leadership, and continuous stakeholder (e.g., teachers, students, support staff, and parents) involvement. The administrators in this study proved the valuable benefits of inclusive education for students with disabilities and their typically developing peers. Together, along with their teaching and school community, school leaders became capable stakeholders that promoted the vision of inclusion, planned a structured approach, and took action to make it a reality.Keywords: Inclusive education, leaders, principals, shared-decision making, shared leadership, special education, sustainable change
Procedia PDF Downloads 7326231 Survey on Data Security Issues Through Cloud Computing Amongst Sme’s in Nairobi County, Kenya
Authors: Masese Chuma Benard, Martin Onsiro Ronald
Abstract:
Businesses have been using cloud computing more frequently recently because they wish to take advantage of its advantages. However, employing cloud computing also introduces new security concerns, particularly with regard to data security, potential risks and weaknesses that could be exploited by attackers, and various tactics and strategies that could be used to lessen these risks. This study examines data security issues on cloud computing amongst sme’s in Nairobi county, Kenya. The study used the sample size of 48, the research approach was mixed methods, The findings show that data owner has no control over the cloud merchant's data management procedures, there is no way to ensure that data is handled legally. This implies that you will lose control over the data stored in the cloud. Data and information stored in the cloud may face a range of availability issues due to internet outages; this can represent a significant risk to data kept in shared clouds. Integrity, availability, and secrecy are all mentioned.Keywords: data security, cloud computing, information, information security, small and medium-sized firms (SMEs)
Procedia PDF Downloads 8426230 Cloud Design for Storing Large Amount of Data
Authors: M. Strémy, P. Závacký, P. Cuninka, M. Juhás
Abstract:
Main goal of this paper is to introduce our design of private cloud for storing large amount of data, especially pictures, and to provide good technological backend for data analysis based on parallel processing and business intelligence. We have tested hypervisors, cloud management tools, storage for storing all data and Hadoop to provide data analysis on unstructured data. Providing high availability, virtual network management, logical separation of projects and also rapid deployment of physical servers to our environment was also needed.Keywords: cloud, glusterfs, hadoop, juju, kvm, maas, openstack, virtualization
Procedia PDF Downloads 35226229 Estimation of Missing Values in Aggregate Level Spatial Data
Authors: Amitha Puranik, V. S. Binu, Seena Biju
Abstract:
Missing data is a common problem in spatial analysis especially at the aggregate level. Missing can either occur in covariate or in response variable or in both in a given location. Many missing data techniques are available to estimate the missing data values but not all of these methods can be applied on spatial data since the data are autocorrelated. Hence there is a need to develop a method that estimates the missing values in both response variable and covariates in spatial data by taking account of the spatial autocorrelation. The present study aims to develop a model to estimate the missing data points at the aggregate level in spatial data by accounting for (a) Spatial autocorrelation of the response variable (b) Spatial autocorrelation of covariates and (c) Correlation between covariates and the response variable. Estimating the missing values of spatial data requires a model that explicitly account for the spatial autocorrelation. The proposed model not only accounts for spatial autocorrelation but also utilizes the correlation that exists between covariates, within covariates and between a response variable and covariates. The precise estimation of the missing data points in spatial data will result in an increased precision of the estimated effects of independent variables on the response variable in spatial regression analysis.Keywords: spatial regression, missing data estimation, spatial autocorrelation, simulation analysis
Procedia PDF Downloads 38226228 Association Rules Mining and NOSQL Oriented Document in Big Data
Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub
Abstract:
Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.Keywords: Apriori, Association rules mining, Big Data, Data Mining, Hadoop, MapReduce, MongoDB, NoSQL
Procedia PDF Downloads 16026227 Immunization-Data-Quality in Public Health Facilities in the Pastoralist Communities: A Comparative Study Evidence from Afar and Somali Regional States, Ethiopia
Authors: Melaku Tsehay
Abstract:
The Consortium of Christian Relief and Development Associations (CCRDA), and the CORE Group Polio Partners (CGPP) Secretariat have been working with Global Alliance for Vac-cines and Immunization (GAVI) to improve the immunization data quality in Afar and Somali Regional States. The main aim of this study was to compare the quality of immunization data before and after the above interventions in health facilities in the pastoralist communities in Ethiopia. To this end, a comparative-cross-sectional study was conducted on 51 health facilities. The baseline data was collected in May 2019, while the end line data in August 2021. The WHO data quality self-assessment tool (DQS) was used to collect data. A significant improvment was seen in the accuracy of the pentavalent vaccine (PT)1 (p = 0.012) data at the health posts (HP), while PT3 (p = 0.010), and Measles (p = 0.020) at the health centers (HC). Besides, a highly sig-nificant improvment was observed in the accuracy of tetanus toxoid (TT)2 data at HP (p < 0.001). The level of over- or under-reporting was found to be < 8%, at the HP, and < 10% at the HC for PT3. The data completeness was also increased from 72.09% to 88.89% at the HC. Nearly 74% of the health facilities timely reported their respective immunization data, which is much better than the baseline (7.1%) (p < 0.001). These findings may provide some hints for the policies and pro-grams targetting on improving immunization data qaulity in the pastoralist communities.Keywords: data quality, immunization, verification factor, pastoralist region
Procedia PDF Downloads 12326226 Design of a Fuzzy Expert System for the Impact of Diabetes Mellitus on Cardiac and Renal Impediments
Authors: E. Rama Devi Jothilingam
Abstract:
Diabetes mellitus is now one of the most common non communicable diseases globally. India leads the world with largest number of diabetic subjects earning the title "diabetes capital of the world". In order to reduce the mortality rate, a fuzzy expert system is designed to predict the severity of cardiac and renal problems of diabetic patients using fuzzy logic. Since uncertainty is inherent in medicine, fuzzy logic is used in this research work to remove the inherent fuzziness of linguistic concepts and uncertain status in diabetes mellitus which is the prime cause for the cardiac arrest and renal failure. In this work, the controllable risk factors "blood sugar, insulin, ketones, lipids, obesity, blood pressure and protein/creatinine ratio" are considered as input parameters and the "the stages of cardiac" (SOC)" and the stages of renal" (SORD) are considered as the output parameters. The triangular membership functions are used to model the input and output parameters. The rule base is constructed for the proposed expert system based on the knowledge from the medical experts. Mamdani inference engine is used to infer the information based on the rule base to take major decision in diagnosis. Mean of maximum is used to get a non fuzzy control action that best represent possibility distribution of an inferred fuzzy control action. The proposed system also classifies the patients with high risk and low risk using fuzzy c means clustering techniques so that the patients with high risk are treated immediately. The system is validated with Matlab and is used as a tracking system with accuracy and robustness.Keywords: Diabetes mellitus, fuzzy expert system, Mamdani, MATLAB
Procedia PDF Downloads 29026225 Identifying Critical Success Factors for Data Quality Management through a Delphi Study
Authors: Maria Paula Santos, Ana Lucas
Abstract:
Organizations support their operations and decision making on the data they have at their disposal, so the quality of these data is remarkably important and Data Quality (DQ) is currently a relevant issue, the literature being unanimous in pointing out that poor DQ can result in large costs for organizations. The literature review identified and described 24 Critical Success Factors (CSF) for Data Quality Management (DQM) that were presented to a panel of experts, who ordered them according to their degree of importance, using the Delphi method with the Q-sort technique, based on an online questionnaire. The study shows that the five most important CSF for DQM are: definition of appropriate policies and standards, control of inputs, definition of a strategic plan for DQ, organizational culture focused on quality of the data and obtaining top management commitment and support.Keywords: critical success factors, data quality, data quality management, Delphi, Q-Sort
Procedia PDF Downloads 21726224 Satellite-Based Drought Monitoring in Korea: Methodologies and Merits
Authors: Joo-Heon Lee, Seo-Yeon Park, Chanyang Sur, Ho-Won Jang
Abstract:
Satellite-based remote sensing technique has been widely used in the area of drought and environmental monitoring to overcome the weakness of in-situ based monitoring. There are many advantages of remote sensing for drought watch in terms of data accessibility, monitoring resolution and types of available hydro-meteorological data including environmental areas. This study was focused on the applicability of drought monitoring based on satellite imageries by applying to the historical drought events, which had a huge impact on meteorological, agricultural, and hydrological drought. Satellite-based drought indices, the Standardized Precipitation Index (SPI) using Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM); Vegetation Health Index (VHI) using MODIS based Land Surface Temperature (LST), and Normalized Difference Vegetation Index (NDVI); and Scaled Drought Condition Index (SDCI) were evaluated to assess its capability to analyze the complex topography of the Korean peninsula. While the VHI was accurate when capturing moderate drought conditions in agricultural drought-damaged areas, the SDCI was relatively well monitored in hydrological drought-damaged areas. In addition, this study found correlations among various drought indices and applicability using Receiver Operating Characteristic (ROC) method, which will expand our understanding of the relationships between hydro-meteorological variables and drought events at global scale. The results of this research are expected to assist decision makers in taking timely and appropriate action in order to save millions of lives in drought-damaged areas.Keywords: drought monitoring, moderate resolution imaging spectroradiometer (MODIS), remote sensing, receiver operating characteristic (ROC)
Procedia PDF Downloads 32926223 Towards an Environmental Knowledge System in Water Management
Authors: Mareike Dornhoefer, Madjid Fathi
Abstract:
Water supply and water quality are key problems of mankind at the moment and - due to increasing population - in the future. Management disciplines like water, environment and quality management therefore need to closely interact, to establish a high level of water quality and to guarantee water supply in all parts of the world. Groundwater remediation is one aspect in this process. From a knowledge management perspective it is only possible to solve complex ecological or environmental problems if different factors, expert knowledge of various stakeholders and formal regulations regarding water, waste or chemical management are interconnected in form of a knowledge base. In general knowledge management focuses the processes of gathering and representing existing and new knowledge in a way, which allows for inference or deduction of knowledge for e.g. a situation where a problem solution or decision support are required. A knowledge base is no sole data repository, but a key element in a knowledge based system, thus providing or allowing for inference mechanisms to deduct further knowledge from existing facts. In consequence this knowledge provides decision support. The given paper introduces an environmental knowledge system in water management. The proposed environmental knowledge system is part of a research concept called Green Knowledge Management. It applies semantic technologies or concepts such as ontology or linked open data to interconnect different data and information sources about environmental aspects, in this case, water quality, as well as background material enriching an established knowledge base. Examples for the aforementioned ecological or environmental factors threatening water quality are among others industrial pollution (e.g. leakage of chemicals), environmental changes (e.g. rise in temperature) or floods, where all kinds of waste are merged and transferred into natural water environments. Water quality is usually determined with the help of measuring different indicators (e.g. chemical or biological), which are gathered with the help of laboratory testing, continuous monitoring equipment or other measuring processes. During all of these processes data are gathered and stored in different databases. Meanwhile the knowledge base needs to be established through interconnecting data of these different data sources and enriching its semantics. Experts may add their knowledge or experiences of previous incidents or influencing factors. In consequence querying or inference mechanisms are applied for the deduction of coherence between indicators, predictive developments or environmental threats. Relevant processes or steps of action may be modeled in form of a rule based approach. Overall the environmental knowledge system supports the interconnection of information and adding semantics to create environmental knowledge about water environment, supply chain as well as quality. The proposed concept itself is a holistic approach, which links to associated disciplines like environmental and quality management. Quality indicators and quality management steps need to be considered e.g. for the process and inference layers of the environmental knowledge system, thus integrating the aforementioned management disciplines in one water management application.Keywords: water quality, environmental knowledge system, green knowledge management, semantic technologies, quality management
Procedia PDF Downloads 22026222 The Impact of Professional Development in the Area of Technology Enhanced Learning on Higher Education Teaching Practices Across Atlantic Technological University – Research Methodology and Preliminary Findings
Authors: Annette Cosgrove
Abstract:
The objectives of this research study is to examine the impact of professional development in Technology Enhanced Learning (TEL) and the digitisation of learning in teaching communities across multiple higher education sites in the ATU (Atlantic Technological University *) ( 2020-2025), including the proposal of an evidence based digital teaching model for use in a future pandemic. The research strategy undertaken for this PhD Study is a multi-site study using mixed methods. Qualitative & quantitative methods are being used in the study to collect data. A pilot study was carried out initially , feedback collected and the research instrument was edited to reflect this feedback, before being administered. The purpose of the staff questionnaire is to evaluate the impact of professional development in the area of TEL, and to capture the practitioners views on the perceived impact on their teaching practice in the higher education sector across ATU (West of Ireland – 5 Higher education locations ). The phenomenon being explored is ‘ the impact of professional development in the area of technology enhanced learning and on teaching practice in a higher education institution.’ The research methodology chosen for this study is an Action based Research Study. The researcher has chosen this approach as it is a prime strategy for developing educational theory and enhancing educational practice . This study includes quantitative and qualitative methods to elicit data which will quantify the impact that continuous professional development in the area of digital teaching practice and technologies has on the practitioner’s teaching practice in higher education. The research instruments / data collection tools for this study include a lecturer survey with a targeted TEL Practice group ( Pre and post covid experience) and semi-structured interviews with lecturers.. This research is currently being conducted across the ATU multisite campus and targeting Higher education lecturers that have completed formal CPD in the area of digital teaching. ATU, a west of Ireland university is the focus of the study , The research questionnaire has been deployed, with 75 respondents to date across the ATU - the primary questionnaire and semi- formal interviews are ongoing currently – the purpose being to evaluate the impact of formal professional development in the area of TEL and its perceived impact on the practitioners teaching practice in the area of digital teaching and learning . This paper will present initial findings, reflections and data from this ongoing research study.Keywords: TEL, DTL, digital teaching, digital assessment
Procedia PDF Downloads 70