Search results for: classical text
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2273

Search results for: classical text

1613 Training a Neural Network to Segment, Detect and Recognize Numbers

Authors: Abhisek Dash

Abstract:

This study had three neural networks, one for number segmentation, one for number detection and one for number recognition all of which are coupled to one another. All networks were trained on the MNIST dataset and were convolutional. It was assumed that the images had lighter background and darker foreground. The segmentation network took 28x28 images as input and had sixteen outputs. Segmentation training starts when a dark pixel is encountered. Taking a window(7x7) over that pixel as focus, the eight neighborhood of the focus was checked for further dark pixels. The segmentation network was then trained to move in those directions which had dark pixels. To this end the segmentation network had 16 outputs. They were arranged as “go east”, ”don’t go east ”, “go south east”, “don’t go south east”, “go south”, “don’t go south” and so on w.r.t focus window. The focus window was resized into a 28x28 image and the network was trained to consider those neighborhoods which had dark pixels. The neighborhoods which had dark pixels were pushed into a queue in a particular order. The neighborhoods were then popped one at a time stitched to the existing partial image of the number one at a time and trained on which neighborhoods to consider when the new partial image was presented. The above process was repeated until the image was fully covered by the 7x7 neighborhoods and there were no more uncovered black pixels. During testing the network scans and looks for the first dark pixel. From here on the network predicts which neighborhoods to consider and segments the image. After this step the group of neighborhoods are passed into the detection network. The detection network took 28x28 images as input and had two outputs denoting whether a number was detected or not. Since the ground truth of the bounds of a number was known during training the detection network outputted in favor of number not found until the bounds were not met and vice versa. The recognition network was a standard CNN that also took 28x28 images and had 10 outputs for recognition of numbers from 0 to 9. This network was activated only when the detection network votes in favor of number detected. The above methodology could segment connected and overlapping numbers. Additionally the recognition unit was only invoked when a number was detected which minimized false positives. It also eliminated the need for rules of thumb as segmentation is learned. The strategy can also be extended to other characters as well.

Keywords: convolutional neural networks, OCR, text detection, text segmentation

Procedia PDF Downloads 161
1612 Determination of the Effective Economic and/or Demographic Indicators in Classification of European Union Member and Candidate Countries Using Partial Least Squares Discriminant Analysis

Authors: Esra Polat

Abstract:

Partial Least Squares Discriminant Analysis (PLSDA) is a statistical method for classification and consists a classical Partial Least Squares Regression (PLSR) in which the dependent variable is a categorical one expressing the class membership of each observation. PLSDA can be applied in many cases when classical discriminant analysis cannot be applied. For example, when the number of observations is low and when the number of independent variables is high. When there are missing values, PLSDA can be applied on the data that is available. Finally, it is adapted when multicollinearity between independent variables is high. The aim of this study is to determine the economic and/or demographic indicators, which are effective in grouping the 28 European Union (EU) member countries and 7 candidate countries (including potential candidates Bosnia and Herzegovina (BiH) and Kosova) by using the data set obtained from database of the World Bank for 2014. Leaving the political issues aside, the analysis is only concerned with the economic and demographic variables that have the potential influence on country’s eligibility for EU entrance. Hence, in this study, both the performance of PLSDA method in classifying the countries correctly to their pre-defined groups (candidate or member) and the differences between the EU countries and candidate countries in terms of these indicators are analyzed. As a result of the PLSDA, the value of percentage correctness of 100 % indicates that overall of the 35 countries is classified correctly. Moreover, the most important variables that determine the statuses of member and candidate countries in terms of economic indicators are identified as 'external balance on goods and services (% GDP)', 'gross domestic savings (% GDP)' and 'gross national expenditure (% GDP)' that means for the 2014 economical structure of countries is the most important determinant of EU membership. Subsequently, the model validated to prove the predictive ability by using the data set for 2015. For prediction sample, %97,14 of the countries are correctly classified. An interesting result is obtained for only BiH, which is still a potential candidate for EU, predicted as a member of EU by using the indicators data set for 2015 as a prediction sample. Although BiH has made a significant transformation from a war-torn country to a semi-functional state, ethnic tensions, nationalistic rhetoric and political disagreements are still evident, which inhibit Bosnian progress towards the EU.

Keywords: classification, demographic indicators, economic indicators, European Union, partial least squares discriminant analysis

Procedia PDF Downloads 280
1611 Cultural Dynamics in Online Consumer Behavior: Exploring Cross-Country Variances in Review Influence

Authors: Eunjung Lee

Abstract:

This research investigates the intricate connection between cultural differences and online consumer behaviors by integrating Hofstede's Cultural Dimensions theory with analysis methodologies such as text mining, data mining, and topic analysis. Our aim is to provide a comprehensive understanding of how national cultural differences influence individuals' behaviors when engaging with online reviews. To ensure the relevance of our investigation, we systematically analyze and interpret the cultural nuances influencing online consumer behaviors, especially in the context of online reviews. By anchoring our research in Hofstede's Cultural Dimensions theory, we seek to offer valuable insights for marketers to tailor their strategies based on the cultural preferences of diverse global consumer bases. In our methodology, we employ advanced text mining techniques to extract insights from a diverse range of online reviews gathered globally for a specific product or service like Netflix. This approach allows us to reveal hidden cultural cues in the language used by consumers from various backgrounds. Complementing text mining, data mining techniques are applied to extract meaningful patterns from online review datasets collected from different countries, aiming to unveil underlying structures and gain a deeper understanding of the impact of cultural differences on online consumer behaviors. The study also integrates topic analysis to identify recurring subjects, sentiments, and opinions within online reviews. Marketers can leverage these insights to inform the development of culturally sensitive strategies, enhance target audience segmentation, and refine messaging approaches aligned with cultural preferences. Anchored in Hofstede's Cultural Dimensions theory, our research employs sophisticated methodologies to delve into the intricate relationship between cultural differences and online consumer behaviors. Applied to specific cultural dimensions, such as individualism vs. collectivism, masculinity vs. femininity, uncertainty avoidance, and long-term vs. short-term orientation, the study uncovers nuanced insights. For example, in exploring individualism vs. collectivism, we examine how reviewers from individualistic cultures prioritize personal experiences while those from collectivistic cultures emphasize communal opinions. Similarly, within masculinity vs. femininity, we investigate whether distinct topics align with cultural notions, such as robust features in masculine cultures and user-friendliness in feminine cultures. Examining information-seeking behaviors under uncertainty avoidance reveals how cultures differ in seeking detailed information or providing succinct reviews based on their comfort with ambiguity. Additionally, in assessing long-term vs. short-term orientation, the research explores how cultural focus on enduring benefits or immediate gratification influences reviews. These concrete examples contribute to the theoretical enhancement of Hofstede's Cultural Dimensions theory, providing a detailed understanding of cultural impacts on online consumer behaviors. As online reviews become increasingly crucial in decision-making, this research not only contributes to the academic understanding of cultural influences but also proposes practical recommendations for enhancing online review systems. Marketers can leverage these findings to design targeted and culturally relevant strategies, ultimately enhancing their global marketing effectiveness and optimizing online review systems for maximum impact.

Keywords: comparative analysis, cultural dimensions, marketing intelligence, national culture, online consumer behavior, text mining

Procedia PDF Downloads 47
1610 The Impact of Smart Educational Aids in Learning Listening Among Pupils with Attention and Listening Problems

Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Aayah Al Yaari, Ayman Al Yaari, Montaha Al Yaari, Sajedah Al Yaari, Fatehi Eissa

Abstract:

The recent rise of smart educational aids and the move away from traditional listening aids are leading to a fundamental shift in the way in which individuals with attention and listening problems (ALP) manipulate listening inputs and/or act appropriately to the spoken information presented to them. A total sample of twenty-six ALP pupils (m=20 and f=6) between 7-12 years old was selected from different strata based on gender, region and school. In the sample size, thirteen (10 males and 3 females) received the treatment in terms of smart classes provided with smart educational aids in a listening course that lasted for four month-semester while others did not (they studied the same course by the same instructor but in ordinary class). A pretest was administered to assess participants’ levels, and a posttest was given to evaluate their attention and listening comprehension performance, namely in phonetic and phonological tests with sociolinguistic themes that have been designed for this purpose. Test results were analyzed both psychoneurolinguistically and statistically. Results reveal a remarkable change in pupils’ behavioral listening where scores witnessed a significant difference in the performance of the experimental ALP group in the pretest compared to the posttest (Pupils performed better at the pretest-posttest on phonetics than at the two tests on phonology). It is concluded that smart educational aids designed for listening skills help not only increase the listening command of pupils with ALP to understand what they listen to but also develop their interactive listening capability and, at the same rate, are responsible for increasing concentrated and in-depth listening capacity. Plus, ALP pupils become able to grasp the audio content of text recordings, including educational audio recordings, news, oral stories and tales, views, spiritual/religious text and general knowledge. However, the pupils have not experienced individual smart audio-visual aids that connect listening to other language receptive and productive skills, which could be the future area of research.

Keywords: language skills, implementing, listening skill, attention, smart aids

Procedia PDF Downloads 42
1609 Quantile Coherence Analysis: Application to Precipitation Data

Authors: Yaeji Lim, Hee-Seok Oh

Abstract:

The coherence analysis measures the linear time-invariant relationship between two data sets and has been studied various fields such as signal processing, engineering, and medical science. However classical coherence analysis tends to be sensitive to outliers and focuses only on mean relationship. In this paper, we generalized cross periodogram to quantile cross periodogram and provide richer inter-relationship between two data sets. This is a general version of Laplace cross periodogram. We prove its asymptotic distribution under the long range process and compare them with ordinary coherence through numerical examples. We also present real data example to confirm the usefulness of quantile coherence analysis.

Keywords: coherence, cross periodogram, spectrum, quantile

Procedia PDF Downloads 390
1608 Aeroelastic Stability Analysis in Turbomachinery Using Reduced Order Aeroelastic Model Tool

Authors: Chandra Shekhar Prasad, Ludek Pesek Prasad

Abstract:

In the present day fan blade of aero engine, turboprop propellers, gas turbine or steam turbine low-pressure blades are getting bigger, lighter and thus, become more flexible. Therefore, flutter, forced blade response and vibration related failure of the high aspect ratio blade are of main concern for the designers, thus need to be address properly in order to achieve successful component design. At the preliminary design stage large number of design iteration is need to achieve the utter free safe design. Most of the numerical method used for aeroelastic analysis is based on field-based methods such as finite difference method, finite element method, finite volume method or coupled. These numerical schemes are used to solve the coupled fluid Flow-Structural equation based on full Naiver-Stokes (NS) along with structural mechanics’ equations. These type of schemes provides very accurate results if modeled properly, however, they are computationally very expensive and need large computing recourse along with good personal expertise. Therefore, it is not the first choice for aeroelastic analysis during preliminary design phase. A reduced order aeroelastic model (ROAM) with acceptable accuracy and fast execution is more demanded at this stage. Similar ROAM are being used by other researchers for aeroelastic and force response analysis of turbomachinery. In the present paper new medium fidelity ROAM is successfully developed and implemented in numerical tool to simulated the aeroelastic stability phenomena in turbomachinery and well as flexible wings. In the present, a hybrid flow solver based on 3D viscous-inviscid coupled 3D panel method (PM) and 3d discrete vortex particle method (DVM) is developed, viscous parameters are estimated using boundary layer(BL) approach. This method can simulate flow separation and is a good compromise between accuracy and speed compared to CFD. In the second phase of the research work, the flow solver (PM) will be coupled with ROM non-linear beam element method (BEM) based FEM structural solver (with multibody capabilities) to perform the complete aeroelastic simulation of a steam turbine bladed disk, propellers, fan blades, aircraft wing etc. The partitioned based coupling approach is used for fluid-structure interaction (FSI). The numerical results are compared with experimental data for different test cases and for the blade cascade test case, experimental data is obtained from in-house lab experiments at IT CAS. Furthermore, the results from the new aeroelastic model will be compared with classical CFD-CSD based aeroelastic models. The proposed methodology for the aeroelastic stability analysis of gas turbine or steam turbine blades, or propellers or fan blades will provide researchers and engineers a fast, cost-effective and efficient tool for aeroelastic (classical flutter) analysis for different design at preliminary design stage where large numbers of design iteration are required in short time frame.

Keywords: aeroelasticity, beam element method (BEM), discrete vortex particle method (DVM), classical flutter, fluid-structure interaction (FSI), panel method, reduce order aeroelastic model (ROAM), turbomachinery, viscous-inviscid coupling

Procedia PDF Downloads 265
1607 Using Eye-Tracking Technology to Understand Consumers’ Comprehension of Multimedia Health Information

Authors: Samiullah Paracha, Sania Jehanzeb, M. H. Gharanai, A. R. Ahmadi, H.Sokout, Toshiro Takahara

Abstract:

The purpose of this study is to examine how health consumers utilize pictures when developing an understanding of multimedia health documents, and whether attentional processes, measured by eye-tracking, relate to differences in health-related cognitive resources and passage comprehension. To investigate these issues, we will present health-related text-picture passages to elders and collect eye movement data to measure readers’ looking behaviors.

Keywords: multimedia, eye-tracking, consumer health informatics, human-computer interaction

Procedia PDF Downloads 337
1606 The Representation of the Medieval Idea of Ugliness in Messiaen's Saint François d’Assise

Authors: Nana Katsia

Abstract:

This paper explores the ways both medieval and medievalist conceptions of ugliness might be linked to the physical and spiritual transformation of the protagonists and how it is realised through specific musical rhythm, such as the dochmiac rhythm in the opera. As Eco and Henderson note, only one kind of ugliness could be represented in conformity with nature in the Middle Ages without destroying all aesthetic pleasure and, in turn, artistic beauty: namely, a form of ugliness which arouses disgust. Moreover, Eco explores the fact that the enemies of Christ who condemn, martyr, and crucify him are represented as wicked inside. In turn, the representation of inner wickedness and hostility toward God brings with it outward ugliness, coarseness, barbarity, and rage. Ultimately these result in the deformation of the figure. In all these regards, the non-beautiful is represented here as a necessary phase, which is not the case with classical (the ancient Greek) concepts of Beauty. As we can see, the understanding of disfigurement and ugliness in the Middle Ages was both varied and complex. In the Middle Ages, the disfigurement caused by leprosy (and other skin and bodily conditions) was interpreted, in a somewhat contradictory manner, as both a curse and a gift from God. Some saints’ lives even have the saint appealing to be inflicted with the disease as part of their mission toward true humility. We shall explore that this ‘different concept’ of ugliness (non-classical beauty) might be represented in Messiaen’s opera. According to Messiaen, the Leper and Saint François are the principal characters of the third scene, as both of them will be transformed, and a double miracle will take place in the process. Messiaen mirrors the idea of the true humility of Saint’s life and positions Le Baiser au Lépreux as the culmination of the first act. The Leper’s character represents his physical and spiritual disfigurement, which are healed after the miracle. So, the scene can be viewed as an encounter between beauty and ugliness, and that much of it is spent in a study of ugliness. Dochmiac rhythm is one of the most important compositional elements in the opera. It plays a crucial role in the process of creating a dramatic musical narrative and structure in the composition. As such, we shall explore how Messiaen represents the medieval idea of ugliness in the opera through particular musical elements linked to the main protagonists’ spiritual or physical ugliness; why Messiaen makes reference to dochmiac rhythm, and how they create the musical and dramatic context in the opera for the medieval aesthetic category of ugliness.

Keywords: ugliness in music, medieval time, saint françois d’assise, messiaen

Procedia PDF Downloads 146
1605 Algorithmic Obligations: Proactive Liability for AI-Generated Content and Copyright Compliance

Authors: Aleksandra Czubek

Abstract:

As AI systems increasingly shape content creation, existing copyright frameworks face significant challenges in determining liability for AI-generated outputs. Current legal discussions largely focus on who bears responsibility for infringing works, be it developers, users, or entities benefiting from AI outputs. This paper introduces a novel concept of algorithmic obligations, proposing that AI developers be subject to proactive duties that ensure their models prevent copyright infringement before it occurs. Building on principles of obligations law traditionally applied to human actors, the paper suggests a shift from reactive enforcement to proactive legal requirements. AI developers would be legally mandated to incorporate copyright-aware mechanisms within their systems, turning optional safeguards into enforceable standards. These obligations could vary in implementation across international, EU, UK, and U.S. legal frameworks, creating a multi-jurisdictional approach to copyright compliance. This paper explores how the EU’s existing copyright framework, exemplified by the Copyright Directive (2019/790), could evolve to impose a duty of foresight on AI developers, compelling them to embed mechanisms that prevent infringing outputs. By drawing parallels to GDPR’s “data protection by design,” a similar principle could be applied to copyright law, where AI models are designed to minimize copyright risks. In the UK, post-Brexit text and data mining exemptions are seen as pro-innovation but pose risks to copyright protections. This paper proposes a balanced approach, introducing algorithmic obligations to complement these exemptions. AI systems benefiting from text and data mining provisions should integrate safeguards that flag potential copyright violations in real time, ensuring both innovation and protection. In the U.S., where copyright law focuses on human-centric works, this paper suggests an evolution toward algorithmic due diligence. AI developers would have a duty similar to product liability, ensuring that their systems do not produce infringing outputs, even if the outputs themselves cannot be copyrighted. This framework introduces a shift from post-infringement remedies to preventive legal structures, where developers actively mitigate risks. The paper also breaks new ground by addressing obligations surrounding the training data of large language models (LLMs). Currently, training data is often treated under exceptions such as the EU’s text and data mining provisions or U.S. fair use. However, this paper proposes a proactive framework where developers are obligated to verify and document the legal status of their training data, ensuring it is licensed or otherwise cleared for use. In conclusion, this paper advocates for an obligations-centered model that shifts AI-related copyright law from reactive litigation to proactive design. By holding AI developers to a heightened standard of care, this approach aims to prevent infringement at its source, addressing both the outputs of AI systems and the training processes that underlie them.

Keywords: ip, technology, copyright, data, infringement, comparative analysis

Procedia PDF Downloads 18
1604 The Modern Significance of Chinese Traditional Gardens for the Development of Modern Eco-Garden Cities

Authors: Liang Zhang

Abstract:

Chinese traditional gardens are the historical and cultural treasures of the whole mankind, among which the excellent parts still have important guiding significance for modern urban design. Based on the background of eco-garden city and reality, through the analysis of various design elements of classical gardens, combined with the needs of today's urban development, starting from the three needs of landscape, energy saving and environmental protection. To explore how Chinese traditional gardens can be revitalized in modern urban planning.

Keywords: Chinese traditional gardens, eco-garden city, modern urban planning, urban development

Procedia PDF Downloads 176
1603 Lexical Bundles in the Alexiad of Anna Comnena: Computational and Discourse Analysis Approach

Authors: Georgios Alexandropoulos

Abstract:

The purpose of this study is to examine the historical text of Alexiad by Anna Comnena using computational tools for the extraction of lexical bundles containing the name of her father, Alexius Comnenus. For this reason, in this research we apply corpus linguistics techniques for the automatic extraction of lexical bundles and through them we will draw conclusions about how these lexical bundles serve her support provided to her father.

Keywords: lexical bundles, computational literature, critical discourse analysis, Alexiad

Procedia PDF Downloads 624
1602 A Novel Approach of Secret Communication Using Douglas-Peucker Algorithm

Authors: R. Kiruthika, A. Kannan

Abstract:

Steganography is the problem of hiding secret messages in 'innocent – looking' public communication so that the presence of the secret message cannot be detected. This paper introduces a steganographic security in terms of computational in-distinguishability from a channel of probability distributions on cover messages. This method first splits the cover image into two separate blocks using Douglas – Peucker algorithm. The text message and the image will be hided in the Least Significant Bit (LSB) of the cover image.

Keywords: steganography, lsb, embedding, Douglas-Peucker algorithm

Procedia PDF Downloads 363
1601 The Crossroad of Identities in Wajdi Mouawad's 'Littoral': A Rhizomatic Approach of Identity Reconstruction through Theatre and Performance

Authors: Mai Hussein

Abstract:

'Littoral' is an original voice in Québécois theatre, spanning the cultural gaps that can exist between the playwrights’ native Lebanon, North America, Quebec, and Europe. Littoral is a 'crossroad' of cultures and themes, a 'bridge' connecting cultures and languages. It represents a new form of theatrical writing that combines the verbal, the vocal and the pantomimic, calling upon the stage to question the real, to engage characters in a quest, in a journey of mourning, of reconstructing identity and a collective memory despite ruins and wars. A theatre of witness, a theatre denouncing irrationality of racism and war, a theatre 'performing' the symptoms of the stress disorders of characters passing from resistance and anger to reconciliation and giving voice to the silenced victims, these are some of the pillars that this play has to offer. In this corrida between life and death, the identity seems like a work-in-progress that is shaped in the presence of the Self and the Other. This trajectory will lead to re-open widely the door to questions, interrogations, and reflections to show how this play is at the nexus of contemporary preoccupations of the 21st century: the importance of memory, the search for meaning, the pursuit of the infinite. It also shows how a play can create bridges between languages, cultures, societies, and movements. To what extent does it mediate between the words and the silence, and how does it burn the bridges or the gaps between the textual and the performative while investigating the power of intermediality to confront racism and segregation. It also underlines the centrality of confrontation between cultures, languages, writing and representation techniques to challenge the characters in their quest to restructure their shattered, but yet intertwined identities. The goal of this theatre would then be to invite everyone involved in the process of a journey of self-discovery away from their comfort zone. Everyone will have to explore the liminal space, to read in between the lines of the written text as well as in between the text and the performance to explore the gaps and the tensions that exist between what is said, and what is played, between the 'parole' and the performative body.

Keywords: identity, memory, performance, testimony, trauma

Procedia PDF Downloads 115
1600 A Geometrical Perspective on the Insulin Evolution

Authors: Yuhei Kunihiro, Sorin V. Sabau, Kazuhiro Shibuya

Abstract:

We study the molecular evolution of insulin from the metric geometry point of view. In mathematics, and particularly in geometry, distances and metrics between objects are of fundamental importance. Using a weaker notion than the classical distance, namely the weighted quasi-metrics, one can study the geometry of biological sequences (DNA, mRNA, or proteins) space. We analyze from the geometrical point of view a family of 60 insulin homologous sequences ranging on a large variety of living organisms from human to the nematode C. elegans. We show that the distances between sequences provide important information about the evolution and function of insulin.

Keywords: metric geometry, evolution, insulin, C. elegans

Procedia PDF Downloads 336
1599 Structural and Morphological Study of Europium Doped ZnO

Authors: Abdelhak Nouri

Abstract:

Europium doped zinc oxide nanocolumns (ZnO:Eu) were deposited on indium tin oxide (ITO) substrate from an aqueous solution of 10⁻³M Zn(NO₃)₂ and 0.5M KNO₃ with different concentration of europium ions. The deposition was performed in a classical three-electrode electrochemical cell. The structural, morphology and optical properties have been characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM). The XRD results show high quality of crystallite with preferential orientation along c-axis. SEM images speculate ZnO: Eu has nanocolumnar form with hexagonal shape. The diameter of nanocolumns is around 230 nm. Furthermore, it was found that tail of crystallite, roughness, and band gap energy is highly influenced with increasing Eu ions concentration. The average grain size is about 102 nm to 125 nm.

Keywords: deterioration lattice, doping, nanostructures, Eu:ZnO

Procedia PDF Downloads 177
1598 Aspects of Diglossia in Arabic Language Learning

Authors: Adil Ishag

Abstract:

Diglossia emerges in a situation where two distinctive varieties of a language are used alongside within a certain community. In this case, one is considered as a high or standard variety and the second one as a low or colloquial variety. Arabic is an extreme example of a highly diglossic language. This diglossity is due to the fact that Arabic is one of the most spoken languages and spread over 22 Countries in two continents as a mother tongue, and it is also widely spoken in many other Islamic countries as a second language or simply the language of Quran. The geographical variation between the countries where the language is spoken and the duality of the classical Arabic and daily spoken dialects in the Arab world on the other hand; makes the Arabic language one of the most diglossic languages. This paper tries to investigate this phenomena and its relation to learning Arabic as a first and second language.

Keywords: Arabic language, diglossia, first and second language, language learning

Procedia PDF Downloads 564
1597 A Comparative Study of Multi-SOM Algorithms for Determining the Optimal Number of Clusters

Authors: Imèn Khanchouch, Malika Charrad, Mohamed Limam

Abstract:

The interpretation of the quality of clusters and the determination of the optimal number of clusters is still a crucial problem in clustering. We focus in this paper on multi-SOM clustering method which overcomes the problem of extracting the number of clusters from the SOM map through the use of a clustering validity index. We then tested multi-SOM using real and artificial data sets with different evaluation criteria not used previously such as Davies Bouldin index, Dunn index and silhouette index. The developed multi-SOM algorithm is compared to k-means and Birch methods. Results show that it is more efficient than classical clustering methods.

Keywords: clustering, SOM, multi-SOM, DB index, Dunn index, silhouette index

Procedia PDF Downloads 599
1596 Prevalence and Risk Factors of Low Back Disorder among Waste Collection Workers: A Systematic Review

Authors: Benedicta Asante, Catherine Trask, Brenna Bath

Abstract:

Background: Waste Collection Workers’ (WCWs) activities contribute greatly to the recycling sector and are an important component of the waste management industry. As the recycling sector evolves, there is the increase in reports of injuries, particularly for common and debilitating musculoskeletal disorders such as low back disorder (LBD). WCWs are likely exposed to diverse work-related hazards that could contribute to LBD. However, there is currently no summary of the state of knowledge on the prevalence and risk factors of LBD within this workforce. Method: A comprehensive search was conducted in Ovid Medline, EMBASE, and Global Health e-publications with search term categories ‘low back disorder’ and ‘waste collection workers’. Two reviewers screened articles at title, abstract, and full-text stages. Data were extracted on study design, sampling strategy, socio-demographics, geographical region, and exposure definition, the definition of LBD, response rate, statistical techniques, LBD prevalence and risk factors. The risk of bias was assessed with a standardized tool. Results: The search of three databases generated 79 studies. Thirty-two studies met the study inclusion criteria for both title and abstract; only thirteen full-text articles met the study criteria and underwent data extraction. The majority of articles reported a 12-month prevalence of LBD between 16-74%. Although none of the included studies quantified relationships between risk factors and LBD, the suggested risk factors for LBD among WCWs included: awkward posture; lifting; pulling; pushing; repetitive motions; work duration; and physical loads. Conclusion: LBD is a major occupational health issue among WCWs. In light of these risks and future growth in this industry, further research should focus on the investigation of risk factors, with more focus on ergonomic exposure assessment, and LBD prevention efforts.

Keywords: low back pain, scavenger, waste pickers, waste collection workers

Procedia PDF Downloads 253
1595 Optimization of Vertical Axis Wind Turbine

Authors: C. Andreu Sabater, D. Drago, C. Key-aberg, W. Moukrim, B. Naccache

Abstract:

Present study concerns the optimization of a new vertical axis wind turbine system associated to a dynamoelectric motor. The system is composed by three Savonius wind turbines, arranged in an equilateral triangle. The idea is to propose a new concept of wind turbines through a technical approach allowing find a specific power never obtained before and therefore, a significant reduction of installation costs. In this work different wind flows across the system have been simulated, as well as precise definition of parameters and relations established between them. It will allow define the optimal rotor specific power for a given volume. Calculations have been developed with classical Savonius dimensions.

Keywords: VAWT, savonius, specific power, optimization, weibull

Procedia PDF Downloads 330
1594 Effect of Rotation on Love Wave Propagation in Piezoelectric Medium with Corrugation

Authors: Soniya Chaudhary

Abstract:

The present study analyses the propagation of Love wave in rotating piezoelectric layer lying over an elastic substrate with corrugated boundaries. The appropriate solutions in the considered medium satisfy the required boundary conditions to obtain the dispersion relation of Love wave for charge free as well as electrically shorted cases. The effects of rotation are shown by graphically on the non-dimensional speed of the Love wave. In addition to classical case, some existing results have been deduced as particular case of the present study. The present study may be useful in rotation sensor and SAW devices.

Keywords: corrugation, dispersion relation, love wave, piezoelectric

Procedia PDF Downloads 225
1593 Sustainable Enterprise Theory: A Starting Point for Reporting Sustainable Business Values

Authors: Arne Fagerstrom, Gary Cunningham, Fredrik Hartwig

Abstract:

In this paper, a theory of sustainable enterprises, sustainable enterprise theory (SET), is developed. The sustainable enterprise theory can only be a valid theory if knowledge about life and nature is complete. Knowledge limitations should not stop enterprises from doing business with a goal of better long-term life on earth. Life demands stewardship of the resources used during one’s lifetime. This paper develops a model influenced by (the classical) enterprise theory and resource theory that includes more than money in the business activities of an enterprise. The sustainable enterprise theory is then used in an analysis of accountability and in discussions about sustainable businesses.

Keywords: sustainable business, sustainability reporting, sustainable values, theory of the firm

Procedia PDF Downloads 580
1592 Path-Spin to Spin-Spin Hybrid Quantum Entanglement: A Conversion Protocol

Authors: Indranil Bayal, Pradipta Panchadhyayee

Abstract:

Path-spin hybrid entanglement generated and confined in a single spin-1/2 particle is converted to spin-spin hybrid interparticle entanglement, which finds its important applications in quantum information processing. This protocol uses beam splitter, spin flipper, spin measurement, classical channel, unitary transformations, etc., and requires no collective operation on the pair of particles whose spin variables share complete entanglement after the accomplishment of the protocol. The specialty of the protocol lies in the fact that the path-spin entanglement is transferred between spin degrees of freedom of two separate particles initially possessed by a single party.

Keywords: entanglement, path-spin entanglement, spin-spin entanglement, CNOT operation

Procedia PDF Downloads 198
1591 Maintenance Optimization for a Multi-Component System Using Factored Partially Observable Markov Decision Processes

Authors: Ipek Kivanc, Demet Ozgur-Unluakin

Abstract:

Over the past years, technological innovations and advancements have played an important role in the industrial world. Due to technological improvements, the degree of complexity of the systems has increased. Hence, all systems are getting more uncertain that emerges from increased complexity, resulting in more cost. It is challenging to cope with this situation. So, implementing efficient planning of maintenance activities in such systems are getting more essential. Partially Observable Markov Decision Processes (POMDPs) are powerful tools for stochastic sequential decision problems under uncertainty. Although maintenance optimization in a dynamic environment can be modeled as such a sequential decision problem, POMDPs are not widely used for tackling maintenance problems. However, they can be well-suited frameworks for obtaining optimal maintenance policies. In the classical representation of the POMDP framework, the system is denoted by a single node which has multiple states. The main drawback of this classical approach is that the state space grows exponentially with the number of state variables. On the other side, factored representation of POMDPs enables to simplify the complexity of the states by taking advantage of the factored structure already available in the nature of the problem. The main idea of factored POMDPs is that they can be compactly modeled through dynamic Bayesian networks (DBNs), which are graphical representations for stochastic processes, by exploiting the structure of this representation. This study aims to demonstrate how maintenance planning of dynamic systems can be modeled with factored POMDPs. An empirical maintenance planning problem of a dynamic system consisting of four partially observable components deteriorating in time is designed. To solve the empirical model, we resort to Symbolic Perseus solver which is one of the state-of-the-art factored POMDP solvers enabling approximate solutions. We generate some more predefined policies based on corrective or proactive maintenance strategies. We execute the policies on the empirical problem for many replications and compare their performances under various scenarios. The results show that the computed policies from the POMDP model are superior to the others. Acknowledgment: This work is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under grant no: 117M587.

Keywords: factored representation, maintenance, multi-component system, partially observable Markov decision processes

Procedia PDF Downloads 134
1590 Nanoporous Metals Reinforced with Fullerenes

Authors: Deni̇z Ezgi̇ Gülmez, Mesut Kirca

Abstract:

Nanoporous (np) metals have attracted considerable attention owing to their cellular morphological features at atomistic scale which yield ultra-high specific surface area awarding a great potential to be employed in diverse applications such as catalytic, electrocatalytic, sensing, mechanical and optical. As one of the carbon based nanostructures, fullerenes are also another type of outstanding nanomaterials that have been extensively investigated due to their remarkable chemical, mechanical and optical properties. In this study, the idea of improving the mechanical behavior of nanoporous metals by inclusion of the fullerenes, which offers a new metal-carbon nanocomposite material, is examined and discussed. With this motivation, tensile mechanical behavior of nanoporous metals reinforced with carbon fullerenes is investigated by classical molecular dynamics (MD) simulations. Atomistic models of the nanoporous metals with ultrathin ligaments are obtained through a stochastic process simply based on the intersection of spherical volumes which has been used previously in literature. According to this technique, the atoms within the ensemble of intersecting spherical volumes is removed from the pristine solid block of the selected metal, which results in porous structures with spherical cells. Following this, fullerene units are added into the cellular voids to obtain final atomistic configurations for the numerical tensile tests. Several numerical specimens are prepared with different number of fullerenes per cell and with varied fullerene sizes. LAMMPS code was used to perform classical MD simulations to conduct uniaxial tension experiments on np models filled by fullerenes. The interactions between the metal atoms are modeled by using embedded atomic method (EAM) while adaptive intermolecular reactive empirical bond order (AIREBO) potential is employed for the interaction of carbon atoms. Furthermore, atomic interactions between the metal and carbon atoms are represented by Lennard-Jones potential with appropriate parameters. In conclusion, the ultimate goal of the study is to present the effects of fullerenes embedded into the cellular structure of np metals on the tensile response of the porous metals. The results are believed to be informative and instructive for the experimentalists to synthesize hybrid nanoporous materials with improved properties and multifunctional characteristics.

Keywords: fullerene, intersecting spheres, molecular dynamic, nanoporous metals

Procedia PDF Downloads 239
1589 The Making of a Yijing (Classic of Changes) Cultural Sphere in Asia

Authors: Ng Wai Ming

Abstract:

The Yijing (Classic of Changes) is one of the most influential Chinese classics, and its text, images and divination have been widely studied and used by different people in the world from past to present. Its impact in Asia has been particularly strong due to cultural and geographical proximity. Based on many years of textual study of the history of the Yijing in the Sinosphere, the author attempts to identify various levels of acceptance and localization of the Yijing in different Asian regions, including Japan, Korea, the Ryukyu Kingdom, Vietnam, Mongolia and Tibet. It will create a new concept of “Yijing cultural sphere” to explain the popularization and indigenization of the Yijing in Asia.

Keywords: classic of changes, asia, sinosphere, localization

Procedia PDF Downloads 62
1588 Economic Neoliberalism: Property Right and Redistribution Policy

Authors: Aleksandar Savanović

Abstract:

In this paper we will analyze the relationship between the neo-liberal concept of property rights and redistribution policy. This issue is back in the focus of interest due to the crisis 2008. The crisis has reaffirmed the influence of the state on the free-market processes. The interference of the state with property relations re-opened a classical question: is it legitimate to redistribute resources of a man in favor of another man with taxes? The dominant view is that the neoliberal philosophy of natural rights is incompatible with redistributive measures. In principle, this view can be accepted. However, when we look into the details of the theory of natural rights proposed by some coryphaei of neoliberal philosophy, such as Hayek, Nozick, Buchanan and Rothbard, we can see that it is not such an unequivocal view.

Keywords: economic neoliberalism, natural law, property, redistribution

Procedia PDF Downloads 376
1587 Computational Linguistic Implications of Gender Bias: Machines Reflect Misogyny in Society

Authors: Irene Yi

Abstract:

Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Computational linguistics is a growing field dealing with such issues of data collection for technological development. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Computational analysis on such linguistic data is used to find patterns of misogyny. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.

Keywords: computational analysis, gendered grammar, misogynistic language, neural networks

Procedia PDF Downloads 119
1586 Optimizing the Use of Google Translate in Translation Teaching: A Case Study at Prince Sultan University

Authors: Saadia Elamin

Abstract:

The quasi-universal use of smart phones with internet connection available all the time makes it a reflex action for translation undergraduates, once they encounter the least translation problem, to turn to the freely available web resource: Google Translate. Like for other translator resources and aids, the use of Google Translate needs to be moderated in such a way that it contributes to developing translation competence. Here, instead of interfering with students’ learning by providing ready-made solutions which might not always fit into the contexts of use, it can help to consolidate the skills of analysis and transfer which students have already acquired. One way to do so is by training students to adhere to the basic principles of translation work. The most important of these is that analyzing the source text for comprehension comes first and foremost before jumping into the search for target language equivalents. Another basic principle is that certain translator aids and tools can be used for comprehension, while others are to be confined to the phase of re-expressing the meaning into the target language. The present paper reports on the experience of making a measured and reasonable use of Google Translate in translation teaching at Prince Sultan University (PSU), Riyadh. First, it traces the development that has taken place in the field of translation in this age of information technology, be it in translation teaching and translator training, or in the real-world practice of the profession. Second, it describes how, with the aim of reflecting this development onto the way translation is taught, senior students, after being trained on post-editing machine translation output, are authorized to use Google Translate in classwork and assignments. Third, the paper elaborates on the findings of this case study which has demonstrated that Google Translate, if used at the appropriate levels of training, can help to enhance students’ ability to perform different translation tasks. This help extends from the search for terms and expressions, to the tasks of drafting the target text, revising its content and finally editing it. In addition, using Google Translate in this way fosters a reflexive and critical attitude towards web resources in general, maximizing thus the benefit gained from them in preparing students to meet the requirements of the modern translation job market.

Keywords: Google Translate, post-editing machine translation output, principles of translation work, translation competence, translation teaching, translator aids and tools

Procedia PDF Downloads 473
1585 Using Textual Pre-Processing and Text Mining to Create Semantic Links

Authors: Ricardo Avila, Gabriel Lopes, Vania Vidal, Jose Macedo

Abstract:

This article offers a approach to the automatic discovery of semantic concepts and links in the domain of Oil Exploration and Production (E&P). Machine learning methods combined with textual pre-processing techniques were used to detect local patterns in texts and, thus, generate new concepts and new semantic links. Even using more specific vocabularies within the oil domain, our approach has achieved satisfactory results, suggesting that the proposal can be applied in other domains and languages, requiring only minor adjustments.

Keywords: semantic links, data mining, linked data, SKOS

Procedia PDF Downloads 179
1584 A Novel Machine Learning Approach to Aid Agrammatism in Non-fluent Aphasia

Authors: Rohan Bhasin

Abstract:

Agrammatism in non-fluent Aphasia Cases can be defined as a language disorder wherein a patient can only use content words ( nouns, verbs and adjectives ) for communication and their speech is devoid of functional word types like conjunctions and articles, generating speech of with extremely rudimentary grammar . Past approaches involve Speech Therapy of some order with conversation analysis used to analyse pre-therapy speech patterns and qualitative changes in conversational behaviour after therapy. We describe this approach as a novel method to generate functional words (prepositions, articles, ) around content words ( nouns, verbs and adjectives ) using a combination of Natural Language Processing and Deep Learning algorithms. The applications of this approach can be used to assist communication. The approach the paper investigates is : LSTMs or Seq2Seq: A sequence2sequence approach (seq2seq) or LSTM would take in a sequence of inputs and output sequence. This approach needs a significant amount of training data, with each training data containing pairs such as (content words, complete sentence). We generate such data by starting with complete sentences from a text source, removing functional words to get just the content words. However, this approach would require a lot of training data to get a coherent input. The assumptions of this approach is that the content words received in the inputs of both text models are to be preserved, i.e, won't alter after the functional grammar is slotted in. This is a potential limit to cases of severe Agrammatism where such order might not be inherently correct. The applications of this approach can be used to assist communication mild Agrammatism in non-fluent Aphasia Cases. Thus by generating these function words around the content words, we can provide meaningful sentence options to the patient for articulate conversations. Thus our project translates the use case of generating sentences from content-specific words into an assistive technology for non-Fluent Aphasia Patients.

Keywords: aphasia, expressive aphasia, assistive algorithms, neurology, machine learning, natural language processing, language disorder, behaviour disorder, sequence to sequence, LSTM

Procedia PDF Downloads 164