Search results for: Multiple Factorial Correspondence Analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31092

Search results for: Multiple Factorial Correspondence Analysis

30432 The Impact of Tax Policies on Small Business Growth in Developing Countries: A Case Study of Montserrado Mount County, Republic of Liberia

Authors: Lemuel David

Abstract:

This study aims to investigate The Impact of Tax Policies on Small Business Growth in Developing Countries: A Case Study of Montserrado Mount County, Republic of Liberia. Businesses in Liberia are crucial for job creation and the economic empowerment of its citizens, especially in Grand Cape Mount County where they provide 95% of all jobs and support local capital formation. However, many businesses face challenges that lead to premature closure, including tax-related issues such as multiple taxations and high tax burdens. This research aims to examine the effects of various taxation on business survival in Grand Cape Mount County. The study employed a survey research design with a population of 50 and a sample size of 74. Data was collected using a self-administered questionnaire and analyzed quantitatively with simple percentages, and the research hypotheses were tested with ANOVA. The study findings revealed that multiple taxations hurts business survival, and the relationship between business size and its ability to pay taxes is significant. Therefore, the study recommends that the government of Liberia should create uniform tax policies that support business development in Grand Cape Mount County, and consider the size of businesses when formulating tax policies.

Keywords: multiple taxations, businesses, mortality, growth

Procedia PDF Downloads 74
30431 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis

Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu

Abstract:

Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.

Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing

Procedia PDF Downloads 138
30430 Properties of Biodiesel Produced by Enzymatic Transesterification of Lipids Extracted from Microalgae in Supercritical Carbon Dioxide Medium

Authors: Hanifa Taher, Sulaiman Al-Zuhair, Ali H. Al-Marzouqi, Yousef Haik, Mohammed Farid

Abstract:

Biodiesel, as an alternative renewable fuel, has been receiving increasing attention due to the limited supply of fossil fuels and the increasing need for energy. Microalgae is a promising source for lipids, which can be converted to biodiesel. The biodiesel production from microalgae lipids using lipase catalyzed reaction in supercritical CO2 medium has several advantages over conventional production processes. However, identifying the optimum microalgae lipid extraction and transesterification conditions is still a challenge. In this study, the lipids extracted from Scenedesmus sp. and their enzymatic transesterification using supercritical carbon dioxide have been investigated. The effect of extraction variables (temperature, pressure and solvent flow rate) and reaction variables (enzyme loading, incubation time, methanol to lipids molar ratio and temperature) were considered. Process parameters and their effects were studied using a full factorial analysis of both. Response Surface Methodology (RSM) and was used to determine the optimum conditions for the extraction and reaction steps. For extraction, the optimum conditions were 53 °C and 500 bar, whereas for the reaction the optimum conditions were 35% enzyme loading, 4 h reaction, 9:1 molar ratio and 50 oC. At these optimum conditions, the highest biodiesel production yield was found to be 82 %. The fuel properties of the produced biodiesel, at optimum reaction condition, were determined and compared to ASTM standards. The properties were found to comply with the limits, and showed a low glycerol content, without any separation step.

Keywords: biodiesel, lipase, supercritical CO2, standards

Procedia PDF Downloads 490
30429 A Web-Based Systems Immunology Toolkit Allowing the Visualization and Comparative Analysis of Publically Available Collective Data to Decipher Immune Regulation in Early Life

Authors: Mahbuba Rahman, Sabri Boughorbel, Scott Presnell, Charlie Quinn, Darawan Rinchai, Damien Chaussabel, Nico Marr

Abstract:

Collections of large-scale datasets made available in public repositories can be used to identify and fill gaps in biomedical knowledge. But first, these data need to be made readily accessible to researchers for analysis and interpretation. Here a collection of transcriptome datasets was made available to investigate the functional programming of human hematopoietic cells in early life. Thirty two datasets were retrieved from the NCBI Gene Expression Omnibus (GEO) and loaded in a custom, interactive web application called the Gene Expression browser (GXB), designed for visualization and query of integrated large-scale data. Multiple sample groupings and gene rank lists were created based on the study design and variables in each dataset. Web links to customized graphical views can be generated by users and subsequently be used to graphically present data in manuscripts for publication. The GXB tool also enables browsing of a single gene across datasets, which can provide information on the role of a given molecule across biological systems. The dataset collection is available online. As a proof-of-principle, one of the datasets (GSE25087) was re-analyzed to identify genes that are differentially expressed by regulatory T cells in early life. Re-analysis of this dataset and a cross-study comparison using multiple other datasets in the above mentioned collection revealed that PMCH, a gene encoding a precursor of melanin-concentrating hormone (MCH), a cyclic neuropeptide, is highly expressed in a variety of other hematopoietic cell types, including neonatal erythroid cells as well as plasmacytoid dendritic cells upon viral infection. Our findings suggest an as yet unrecognized role of MCH in immune regulation, thereby highlighting the unique potential of the curated dataset collection and systems biology approach to generate new hypotheses which can be tested in future mechanistic studies.

Keywords: early-life, GEO datasets, PMCH, interactive query, systems biology

Procedia PDF Downloads 296
30428 Conflict of the Thai-Malaysian Gas Pipeline Project

Authors: Nopadol Burananuth

Abstract:

This research was aimed to investigate (1) the relationship among local social movements, non-governmental Organization activities and state measures deployment; and (2) the effects of local social movements, non-governmental Organization activities, and state measures deployment on conflict of local people towards the Thai-Malaysian gas pipeline project. These people included 1,000 residents of the four districts in Songkhla province. The methods of data analysis consist of multiple regression analysis. The results of the analysis showed that: (1) local social movements depended on information, and mass communication; deployment of state measures depended on compromise, coordination, and mass communication; and (2) the conflict of local people depended on mobilization, negotiation, and campaigning for participation of people in the project. Thus, it is recommended that to successfully implement any government policy, consideration must be paid to the conflict of local people, mobilization, negotiation, and campaigning for people’s participation in the project.

Keywords: conflict, NGO activities, social movements, state measures

Procedia PDF Downloads 322
30427 Eye Tracking: Biometric Evaluations of Instructional Materials for Improved Learning

Authors: Janet Holland

Abstract:

Eye tracking is a great way to triangulate multiple data sources for deeper, more complete knowledge of how instructional materials are really being used and emotional connections made. Using sensor based biometrics provides a detailed local analysis in real time expanding our ability to collect science based data for a more comprehensive level of understanding, not previously possible, for teaching and learning. The knowledge gained will be used to make future improvements to instructional materials, tools, and interactions. The literature has been examined and a preliminary pilot test was implemented to develop a methodology for research in Instructional Design and Technology. Eye tracking now offers the addition of objective metrics obtained from eye tracking and other biometric data collection with analysis for a fresh perspective.

Keywords: area of interest, eye tracking, biometrics, fixation, fixation count, fixation sequence, fixation time, gaze points, heat map, saccades, time to first fixation

Procedia PDF Downloads 131
30426 The Impact of the Use of Some Multiple Intelligence-Based Teaching Strategies on Developing Moral Intelligence and Inferential Jurisprudential Thinking among Secondary School Female Students in Saudi Arabia

Authors: Sameerah A. Al-Hariri Al-Zahrani

Abstract:

The current study aims at getting acquainted with the impact of the use of some multiple intelligence-based teaching strategies on developing moral intelligence and inferential jurisprudential thinking among secondary school female students. The study has endeavored to answer the following questions: What is the impact of the use of some multiple intelligence-based teaching strategies on developing inferential jurisprudential thinking and moral intelligence among first-year secondary school female students? In the frame of this main research question, the study seeks to answer the following sub-questions: (i) What are the inferential jurisprudential thinking skills among first-year secondary school female students? (ii) What are the components of moral intelligence among first year secondary school female students? (iii) What is the impact of the use of some multiple intelligence‐based teaching strategies (such as the strategies of analyzing values, modeling, Socratic discussion, collaborative learning, peer collaboration, collective stories, building emotional moments, role play, one-minute observation) on moral intelligence among first-year secondary school female students? (iv) What is the impact of the use of some multiple intelligence‐based teaching strategies (such as the strategies of analyzing values, modeling, Socratic discussion, collaborative learning, peer collaboration, collective stories, building emotional moments, role play, one-minute observation) on developing the capacity for inferential jurisprudential thinking of juristic rules among first-year secondary school female students? The study has used the descriptive-analytical methodology in surveying, analyzing, and reviewing the literature on previous studies in order to benefit from them in building the tools of the study and the materials of experimental treatment. The study has also used the experimental method to study the impact of the independent variable (multiple intelligence strategies) on the two dependent variables (moral intelligence and inferential jurisprudential thinking) in first-year secondary school female students’ learning. The sample of the study is made up of 70 female students that have been divided into two groups: an experimental group consisting of 35 students who have been taught through multiple intelligence strategies, and a control group consisting of the other 35 students who have been taught normally. The two tools of the study (inferential jurisprudential thinking test and moral intelligence scale) have been implemented on the two groups as a pre-test. The female researcher taught the experimental group and implemented the two tools of the study. After the experiment, which lasted eight weeks, was over, the study showed the following results: (i) The existence of significant statistical differences (0.05) between the mean average of the control group and that of the experimental group in the inferential jurisprudential thinking test (recognition of the evidence of jurisprudential rule, recognition of the motive for the jurisprudential rule, jurisprudential inferencing, analogical jurisprudence) in favor of the experimental group. (ii) The existence of significant statistical differences (0.05) between the mean average of the control group and that of the experimental group in the components of the moral intelligence scale (sympathy, conscience, moral wisdom, tolerance, justice, respect) in favor of the experimental group. The study has, thus, demonstrated the impact of the use of some multiple intelligence-based teaching strategies on developing moral intelligence and inferential jurisprudential thinking.

Keywords: moral intelligence, teaching, inferential jurisprudential thinking, secondary school

Procedia PDF Downloads 159
30425 Optimization of Gastro-Retentive Matrix Formulation and Its Gamma Scintigraphic Evaluation

Authors: Swapnila V. Shinde, Hemant P. Joshi, Sumit R. Dhas, Dhananjaysingh B. Rajput

Abstract:

The objective of the present study is to develop hydro-dynamically balanced system for atenolol, β-blocker as a single unit floating tablet. Atenolol shows pH dependent solubility resulting into a bioavailability of 36%. Thus, site specific oral controlled release floating drug delivery system was developed. Formulation includes novice use of rate controlling polymer such as locust bean gum (LBG) in combination of HPMC K4M and gas generating agent sodium bicarbonate. Tablet was prepared by direct compression method and evaluated for physico-mechanical properties. The statistical method was utilized to optimize the effect of independent variables, namely amount of HPMC K4M, LBG and three dependent responses such as cumulative drug release, floating lag time, floating time. Graphical and mathematical analysis of the results allowed the identification and quantification of the formulation variables influencing the selected responses. To study the gastrointestinal transit of the optimized gastro-retentive formulation, in vivo gamma scintigraphy was carried out in six healthy rabbits, after radio labeling the formulation with 99mTc. The transit profiles demonstrated that the dosage form was retained in the stomach for more than 5 hrs. The study signifies the potential of the developed system for stomach targeted delivery of atenolol with improved bioavailability.

Keywords: floating tablet, factorial design, gamma scintigraphy, antihypertensive model drug, HPMC, locust bean gum

Procedia PDF Downloads 275
30424 Synthesis and Characterization of New Thermotropic Monomers – Containing Phosphorus

Authors: Diana Serbezeanu, Ionela-Daniela Carja, Tachita Vlad-Bubulac, Sergiu Sova

Abstract:

New phosphorus-containing monomers having methoxy end functional groups were prepared from methyl 4-hydroxybenzoate and two different dichlorides with phosphorus, namely phenyl phosphonic dichloride and phenyl dichlorophosphate. The structures of the monomers were confirmed by FTIR and NMR spectroscopy. The assignments for the 1H, 13C and 31P chemical shifts are based on 1D and 2D NMR homo- and heteronuclear correlations (H,H-COSY (Correlation Spectroscopy), H,C-HMQC (Heteronuclear Multiple Quantum Correlation and H,C-HMBC (Heteronuclear Multiple Bond Correlation)) and 31P-13C couplings. The monomers exhibited good solubility in common organic solvents. Dimethyl sulfoxide was to be a good solvent to grow crystals of considerable size which were investigated by X-ray analysis. One of these two new monomers presented thermotropic liquid crystalline behaviour, as revealed by differential scanning calorimetry (DSC), polarized light microscopy (PLM) and X-ray diffraction (XRD). The transition temperature from crystal to liquid crystalline state (K→LC) was 143°C and from the LC to isotropic state (LC→I) was 167°C. Upon heating, bis(4-(methoxycarbonyl)phenyl formed fine textures, difficult to be ascribed to smectic or nematic phases. Upon cooling from the isotropic state, bis(4-(methoxycarbonyl)phenyl exhibited a mosaic-type texture. X-ray diffraction measurements at small angles (SAXS) of bis(4-(methoxycarbonyl)phenyl showed two peaks at 1.8 Å and 3.5 Å, respectively suggesting organization at supramolecular level.

Keywords: phosphorus-containing monomers, polarized light microscopy, structure investigation, thermotropic liquid crystalline properties

Procedia PDF Downloads 299
30423 Secure Text Steganography for Microsoft Word Document

Authors: Khan Farhan Rafat, M. Junaid Hussain

Abstract:

Seamless modification of an entity for the purpose of hiding a message of significance inside its substance in a manner that the embedding remains oblivious to an observer is known as steganography. Together with today's pervasive registering frameworks, steganography has developed into a science that offers an assortment of strategies for stealth correspondence over the globe that must, however, need a critical appraisal from security breach standpoint. Microsoft Word is amongst the preferably used word processing software, which comes as a part of the Microsoft Office suite. With a user-friendly graphical interface, the richness of text editing, and formatting topographies, the documents produced through this software are also most suitable for stealth communication. This research aimed not only to epitomize the fundamental concepts of steganography but also to expound on the utilization of Microsoft Word document as a carrier for furtive message exchange. The exertion is to examine contemporary message hiding schemes from security aspect so as to present the explorative discoveries and suggest enhancements which may serve a wellspring of information to encourage such futuristic research endeavors.

Keywords: hiding information in plain sight, stealth communication, oblivious information exchange, conceal, steganography

Procedia PDF Downloads 241
30422 A Study of the Depression Status of Asian American Adolescents

Authors: Selina Lin, Justin M Fan, Vincent Zhang, Cindy Chen, Daniel Lam, Jason Yan, Ning Zhang

Abstract:

Depression is one of the most common mental disorders in the United States, and past studies have shown a concerning increase in the rates of depression in youth populations over time. Furthermore, depression is an especially important issue for Asian Americans because of the anti-Asian violence taking place during the COVID-19 pandemic. While Asian American adolescents are reluctant to seek help for mental health issues, past research has found a prevalence of depressive symptoms in them that have yet to be fully investigated. There have been studies conducted to understand and observe the impacts of multifarious factors influencing the mental well-being of Asian American adolescents; however, they have been generally limited to qualitative investigation, and very few have attempted to quantitatively evaluate the relationship between depression levels and a comprehensive list of factors for those levels at the same time. To better quantify these relationships, this project investigated the prevalence of depression in Asian American teenagers mainly from the Greater Philadelphia Region, aged 12 to 19, and, with an anonymous survey, asked participants 48 multiple-choice questions pertaining to demographic information, daily behaviors, school life, family life, depression levels (quantified by the PHQ-9 assessment), school and family support against depression. Each multiple-choice question was assigned as a factor and variable for statistical and dominance analysis to determine the most influential factors on depression levels of Asian American adolescents. The results were validated via Bootstrap analysis and t-tests. While certain influential factors identified in this survey are consistent with the literature, such as parent-child relationship and peer pressure, several dominant factors were relatively overlooked in the past. These factors include the parents’ relationship with each other, the satisfaction with body image, sex identity, support from the family and support from the school. More than 25% of participants desired more support from their families and schools in handling depression issues. This study implied that it is beneficial for Asian American parents and adolescents to take programs on parents’ relationships with each other, parent-child communication, mental health, and sexual identity. A culturally inclusive school environment and more accessible mental health services would be helpful for Asian American adolescents to combat depression. This survey-based study paved the way for further investigation of effective approaches for helping Asian American adolescents against depression.

Keywords: Asian American adolescents, depression, dominance analysis, t-test, bootstrap analysis

Procedia PDF Downloads 137
30421 Automated Detection of Related Software Changes by Probabilistic Neural Networks Model

Authors: Yuan Huang, Xiangping Chen, Xiaonan Luo

Abstract:

Current software are continuously updating. The change between two versions usually involves multiple program entities (e.g., packages, classes, methods, attributes) with multiple purposes (e.g., changed requirements, bug fixing). It is hard for developers to understand which changes are made for the same purpose. Whether two changes are related is not decided by the relationship between this two entities in the program. In this paper, we summarized 4 coupling rules(16 instances) and 4 state-combination types at the class, method and attribute levels for software change. Related Change Vector (RCV) are defined based on coupling rules and state-combination types, and applied to classify related software changes by using Probabilistic Neural Network during a software updating.

Keywords: PNN, related change, state-combination, logical coupling, software entity

Procedia PDF Downloads 437
30420 'Sea Power: Concept, Influence and Securitization'; the Nigerian Navy's Role in a Developing State like Nigeria

Authors: William Abiodun Duyile

Abstract:

It is common knowledge that marine food has always been found from the sea, energy can also be found underneath and, to a growing extent; other mineral resources have come from the sea spaces. It is the importance of the sea and the sea lines of communication to littoral nations that has made concepts such as sea power, naval power, etc., significant to them. The study relied on documentary data. The documentary data were sourced from government annual departmental reports, newspapers and correspondence. The secondary sources used were subjected to internal and external criticism for authentication, and then to textual and contextual analyses. The study found that the differential level of seamanship amongst states defined their relationship. It was sea power that gave some states an edge over the others. The study proves that over the ages sea power has been core to the development of States or Empires. The study found that the Nigerian Navy was centre to Nigeria’s conquest of the littoral areas of Biafra, like Bonny, Port-Harcourt, and Calabar; it was also an important turning point of the Nigerian civil war since by it Biafra became landlocked. The research was able to identify succinctly the Nigerian Navy’s contribution to the security and development of the Nigerian State.

Keywords: sea power, naval power, land locked states, warship

Procedia PDF Downloads 138
30419 A Model to Assist Military Mission Planners in Identifying and Assessing Variables Impacting Food Security

Authors: Lynndee Kemmet

Abstract:

The U.S. military plays an increasing role in supporting political stability efforts, and this includes efforts to prevent the food insecurity that can trigger political and social instability. This paper presents a model that assists military commanders in identifying variables that impact food production and distribution in their areas of operation (AO), in identifying connections between variables and in assessing the impacts of those variables on food production and distribution. Through use of the model, military units can better target their data collection efforts and can categorize and analyze data within the data categorization framework most widely-used by military forces—PMESII-PT (Political, Military, Economic, Infrastructure, Information, Physical Environment and Time). The model provides flexibility of analysis in that commanders can target analysis to be highly focused on a specific PMESII-PT domain or variable or conduct analysis across multiple PMESII-PT domains. The model is also designed to assist commanders in mapping food systems in their AOs and then identifying components of those systems that must be strengthened or protected.

Keywords: food security, food system model, political stability, US Military

Procedia PDF Downloads 195
30418 Applying Multiplicative Weight Update to Skin Cancer Classifiers

Authors: Animish Jain

Abstract:

This study deals with using Multiplicative Weight Update within artificial intelligence and machine learning to create models that can diagnose skin cancer using microscopic images of cancer samples. In this study, the multiplicative weight update method is used to take the predictions of multiple models to try and acquire more accurate results. Logistic Regression, Convolutional Neural Network (CNN), and Support Vector Machine Classifier (SVMC) models are employed within the Multiplicative Weight Update system. These models are trained on pictures of skin cancer from the ISIC-Archive, to look for patterns to label unseen scans as either benign or malignant. These models are utilized in a multiplicative weight update algorithm which takes into account the precision and accuracy of each model through each successive guess to apply weights to their guess. These guesses and weights are then analyzed together to try and obtain the correct predictions. The research hypothesis for this study stated that there would be a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The SVMC model had an accuracy of 77.88%. The CNN model had an accuracy of 85.30%. The Logistic Regression model had an accuracy of 79.09%. Using Multiplicative Weight Update, the algorithm received an accuracy of 72.27%. The final conclusion that was drawn was that there was a significant difference in the accuracy of the three models and the Multiplicative Weight Update system. The conclusion was made that using a CNN model would be the best option for this problem rather than a Multiplicative Weight Update system. This is due to the possibility that Multiplicative Weight Update is not effective in a binary setting where there are only two possible classifications. In a categorical setting with multiple classes and groupings, a Multiplicative Weight Update system might become more proficient as it takes into account the strengths of multiple different models to classify images into multiple categories rather than only two categories, as shown in this study. This experimentation and computer science project can help to create better algorithms and models for the future of artificial intelligence in the medical imaging field.

Keywords: artificial intelligence, machine learning, multiplicative weight update, skin cancer

Procedia PDF Downloads 79
30417 Analyzing the Efficiency of Several Gum Extraction Tapping Systems for Wood Apple Trees

Authors: K. M. K. D Weerasekara, R. M. K. M Rathnayake, R. U. Halwatura, G. Y. Jayasinghe

Abstract:

Wood apple (Limonia acidissima L.) trees are native to Sri Lanka and India. Wood apple gum is widely used in the food, coating, and pharmaceutical industries. Wood apple gum was a major component in ancient Sri Lankan coating technology as well. It is also used as a suspending agent in liquid syrups and food ingredients such as sauces, emulsifiers, and stabilizers. Industrial applications include adhesives for labeling and packaging, as well as paint binder. It is also used in the production of paper and cosmetics. Extraction of wood apple gum is an important step in ensuring maximum benefits for various uses. It is apparent that an abundance of untapped potential lies in wood apple gum if people are able to mass produce them. Hence, the current study uses a two-factor factorial design with two major variables and four replications to investigate the best gum-extracting tapping system for Wood apple gum. This study's findings will be useful to Wood apple cultivators, researchers, and gum-based industries alike.

Keywords: wood apple gum, limonia acidissima l., tapping, tapping cuts

Procedia PDF Downloads 74
30416 A New Approach for PE100 Characterization; An in-Reactor HDPE Alloy with Semi Hard and Soft Segments

Authors: Sasan Talebnezhad, Parviz Hamidia

Abstract:

GPC and RMS analysis showed no distinct difference between PE 100 On, Off, and Reference grade. But FTIR spectra and multiple endothermic peaks obtained from SSA analysis, attributed to heterogeneity of ethylene sequence length, lamellar thickness and also the non-uniformity of short chain branching, showed sharp discrepancy and proposed a blend structure of high-density polyethylenes in PE 100 grade. Catalysis along with process parameters dictates poly blend PE 100 structure. This in-reactor blend is a mixture of compatible co-crystallized phases with different crystalinity, forming a physical semi hard and soft segment network responsible for improved impact properties in PE 100 pipe grade. We propose a new approach for PE100 evaluation that is more efficient than normal microstructure characterization.

Keywords: HDPE, pipe grade, in-reactor blend, hard and soft segments

Procedia PDF Downloads 446
30415 Understanding Mathematics Achievements among U. S. Middle School Students: A Bayesian Multilevel Modeling Analysis with Informative Priors

Authors: Jing Yuan, Hongwei Yang

Abstract:

This paper aims to understand U.S. middle school students’ mathematics achievements by examining relevant student and school-level predictors. Through a variance component analysis, the study first identifies evidence supporting the use of multilevel modeling. Then, a multilevel analysis is performed under Bayesian statistical inference where prior information is incorporated into the modeling process. During the analysis, independent variables are entered sequentially in the order of theoretical importance to create a hierarchy of models. By evaluating each model using Bayesian fit indices, a best-fit and most parsimonious model is selected where Bayesian statistical inference is performed for the purpose of result interpretation and discussion. The primary dataset for Bayesian modeling is derived from the Program for International Student Assessment (PISA) in 2012 with a secondary PISA dataset from 2003 analyzed under the traditional ordinary least squares method to provide the information needed to specify informative priors for a subset of the model parameters. The dependent variable is a composite measure of mathematics literacy, calculated from an exploratory factor analysis of all five PISA 2012 mathematics achievement plausible values for which multiple evidences are found supporting data unidimensionality. The independent variables include demographics variables and content-specific variables: mathematics efficacy, teacher-student ratio, proportion of girls in the school, etc. Finally, the entire analysis is performed using the MCMCpack and MCMCglmm packages in R.

Keywords: Bayesian multilevel modeling, mathematics education, PISA, multilevel

Procedia PDF Downloads 336
30414 The Importance of Artificial Intelligence in Various Healthcare Applications

Authors: Joshna Rani S., Ahmadi Banu

Abstract:

Artificial Intelligence (AI) has a significant task to carry out in the medical care contributions of things to come. As AI, it is the essential capacity behind the advancement of accuracy medication, generally consented to be a painfully required development in care. Albeit early endeavors at giving analysis and treatment proposals have demonstrated testing, we anticipate that AI will at last dominate that area too. Given the quick propels in AI for imaging examination, it appears to be likely that most radiology, what's more, pathology pictures will be inspected eventually by a machine. Discourse and text acknowledgment are now utilized for assignments like patient correspondence and catch of clinical notes, and their utilization will increment. The best test to AI in these medical services areas isn't regardless of whether the innovations will be sufficiently skilled to be valuable, but instead guaranteeing their appropriation in day by day clinical practice. For far reaching selection to happen, AI frameworks should be affirmed by controllers, coordinated with EHR frameworks, normalized to an adequate degree that comparative items work likewise, instructed to clinicians, paid for by open or private payer associations, and refreshed over the long haul in the field. These difficulties will, at last, be survived, yet they will take any longer to do as such than it will take for the actual innovations to develop. Therefore, we hope to see restricted utilization of AI in clinical practice inside 5 years and more broad use inside 10 years. It likewise appears to be progressively evident that AI frameworks won't supplant human clinicians for a huge scope, yet rather will increase their endeavors to really focus on patients. Over the long haul, human clinicians may advance toward errands and work plans that draw on remarkably human abilities like sympathy, influence, and higher perspective mix. Maybe the lone medical services suppliers who will chance their professions over the long run might be the individuals who will not work close by AI

Keywords: artificial intellogence, health care, breast cancer, AI applications

Procedia PDF Downloads 181
30413 Quality by Design in the Optimization of a Fast HPLC Method for Quantification of Hydroxychloroquine Sulfate

Authors: Pedro J. Rolim-Neto, Leslie R. M. Ferraz, Fabiana L. A. Santos, Pablo A. Ferreira, Ricardo T. L. Maia-Jr., Magaly A. M. Lyra, Danilo A F. Fonte, Salvana P. M. Costa, Amanda C. Q. M. Vieira, Larissa A. Rolim

Abstract:

Initially developed as an antimalarial agent, hydroxychloroquine (HCQ) sulfate is often used as a slow-acting antirheumatic drug in the treatment of disorders of connective tissue. The United States Pharmacopeia (USP) 37 provides a reversed-phase HPLC method for quantification of HCQ. However, this method was not reproducible, producing asymmetric peaks in a long analysis time. The asymmetry of the peak may cause an incorrect calculation of the concentration of the sample. Furthermore, the analysis time is unacceptable, especially regarding the routine of a pharmaceutical industry. The aiming of this study was to develop a fast, easy and efficient method for quantification of HCQ sulfate by High Performance Liquid Chromatography (HPLC) based on the Quality by Design (QbD) methodology. This method was optimized in terms of peak symmetry using the surface area graphic as the Design of Experiments (DoE) and the tailing factor (TF) as an indicator to the Design Space (DS). The reference method used was that described at USP 37 to the quantification of the drug. For the optimized method, was proposed a 33 factorial design, based on the QbD concepts. The DS was created with the TF (in a range between 0.98 and 1.2) in order to demonstrate the ideal analytical conditions. Changes were made in the composition of the USP mobile-phase (USP-MP): USP-MP: Methanol (90:10 v/v, 80:20 v/v and 70:30 v/v), in the flow (0.8, 1.0 and 1.2 mL) and in the oven temperature (30, 35, and 40ºC). The USP method allowed the quantification of drug in a long time (40-50 minutes). In addition, the method uses a high flow rate (1,5 mL.min-1) which increases the consumption of expensive solvents HPLC grade. The main problem observed was the TF value (1,8) that would be accepted if the drug was not a racemic mixture, since the co-elution of the isomers can become an unreliable peak integration. Therefore, the optimization was suggested in order to reduce the analysis time, aiming a better peak resolution and TF. For the optimization method, by the analysis of the surface-response plot it was possible to confirm the ideal setting analytical condition: 45 °C, 0,8 mL.min-1 and 80:20 USP-MP: Methanol. The optimized HPLC method enabled the quantification of HCQ sulfate, with a peak of high resolution, showing a TF value of 1,17. This promotes good co-elution of isomers of the HCQ, ensuring an accurate quantification of the raw material as racemic mixture. This method also proved to be 18 times faster, approximately, compared to the reference method, using a lower flow rate, reducing even more the consumption of the solvents and, consequently, the analysis cost. Thus, an analytical method for the quantification of HCQ sulfate was optimized using QbD methodology. This method proved to be faster and more efficient than the USP method, regarding the retention time and, especially, the peak resolution. The higher resolution in the chromatogram peaks supports the implementation of the method for quantification of the drug as racemic mixture, not requiring the separation of isomers.

Keywords: analytical method, hydroxychloroquine sulfate, quality by design, surface area graphic

Procedia PDF Downloads 639
30412 Recycling in Bogotá: A SWOT Analysis of Three Associations to Evaluate the Integrating the Informal Sector into Solid Waste Management

Authors: Clara Inés Pardo Martínez

Abstract:

In emerging economies, recycling is an opportunity for the cities to increase the lifespan of sanitary landfills, reduce the costs of the solid waste management, decrease the environmental problems of the waste treatment through reincorporate waste in the productive cycle and protect and develop people’s livelihoods of informal waste pickers. However, few studies have analysed the possibilities and strategies to integrate formal and informal sectors in the solid waste management for the benefit of both. This study seek to make a strength, weakness, opportunity, and threat (SWOT) analysis in three recycling associations of Bogotá with the aim to understand and determine the situation of recycling from perspective of informal sector in its transition to enter as authorized waste providers. Data used in the analysis are derived from multiple strategies such as literature review, the Bogota’s recycling database, focus group meetings, governmental reports, national laws and regulations and specific interviews with key stakeholders. Results of this study show as the main stakeholders of formal and informal sector of waste management can identify the internal and internal conditions of recycling in Bogotá. Several strategies were designed based on the SWOTs determined, could be useful for Bogotá to advance and promote recycling as a key strategy for integrated sustainable waste management in the city.

Keywords: Bogotá, recycling, solid waste management, SWOT analysis

Procedia PDF Downloads 403
30411 Leveraging Multimodal Neuroimaging Techniques to in vivo Address Compensatory and Disintegration Patterns in Neurodegenerative Disorders: Evidence from Cortico-Cerebellar Connections in Multiple Sclerosis

Authors: Efstratios Karavasilis, Foteini Christidi, Georgios Velonakis, Agapi Plousi, Kalliopi Platoni, Nikolaos Kelekis, Ioannis Evdokimidis, Efstathios Efstathopoulos

Abstract:

Introduction: Advanced structural and functional neuroimaging techniques contribute to the study of anatomical and functional brain connectivity and its role in the pathophysiology and symptoms’ heterogeneity in several neurodegenerative disorders, including multiple sclerosis (MS). Aim: In the present study, we applied multiparametric neuroimaging techniques to investigate the structural and functional cortico-cerebellar changes in MS patients. Material: We included 51 MS patients (28 with clinically isolated syndrome [CIS], 31 with relapsing-remitting MS [RRMS]) and 51 age- and gender-matched healthy controls (HC) who underwent MRI in a 3.0T MRI scanner. Methodology: The acquisition protocol included high-resolution 3D T1 weighted, diffusion-weighted imaging and echo planar imaging sequences for the analysis of volumetric, tractography and functional resting state data, respectively. We performed between-group comparisons (CIS, RRMS, HC) using CAT12 and CONN16 MATLAB toolboxes for the analysis of volumetric (cerebellar gray matter density) and functional (cortico-cerebellar resting-state functional connectivity) data, respectively. Brainance suite was used for the analysis of tractography data (cortico-cerebellar white matter integrity; fractional anisotropy [FA]; axial and radial diffusivity [AD; RD]) to reconstruct the cerebellum tracts. Results: Patients with CIS did not show significant gray matter (GM) density differences compared with HC. However, they showed decreased FA and increased diffusivity measures in cortico-cerebellar tracts, and increased cortico-cerebellar functional connectivity. Patients with RRMS showed decreased GM density in cerebellar regions, decreased FA and increased diffusivity measures in cortico-cerebellar WM tracts, as well as a pattern of increased and mostly decreased functional cortico-cerebellar connectivity compared to HC. The comparison between CIS and RRMS patients revealed significant GM density difference, reduced FA and increased diffusivity measures in WM cortico-cerebellar tracts and increased/decreased functional connectivity. The identification of decreased WM integrity and increased functional cortico-cerebellar connectivity without GM changes in CIS and the pattern of decreased GM density decreased WM integrity and mostly decreased functional connectivity in RRMS patients emphasizes the role of compensatory mechanisms in early disease stages and the disintegration of structural and functional networks with disease progression. Conclusions: In conclusion, our study highlights the added value of multimodal neuroimaging techniques for the in vivo investigation of cortico-cerebellar brain changes in neurodegenerative disorders. An extension and future opportunity to leverage multimodal neuroimaging data inevitably remain the integration of such data in the recently-applied mathematical approaches of machine learning algorithms to more accurately classify and predict patients’ disease course.

Keywords: advanced neuroimaging techniques, cerebellum, MRI, multiple sclerosis

Procedia PDF Downloads 140
30410 Achievements of Healthcare Services Vis-À-Vis the Millennium Development Goals Targets: Evidence from Pakistan

Authors: Saeeda Batool, Ather Maqsood Ahmed

Abstract:

This study investigates the impact of public healthcare facilities and socio-economic circumstances on the status of child health in Pakistan. The complete analysis is carried out in correspondence with fourth and sixth millennium development goals. Further, the health variables chosen are also inherited from targeted indicators of the mentioned goals (MDGs). Trends in the Human Opportunity Index (HOI) for both health inequalities and coverage are analyzed using the Pakistan Social and Living Standards Measurement (PLSM) data set for 2001-02 to 2012-13 at the national and provincial level. To reveal the relative importance of each circumstance in achieving the targeted values for child health, Shorrocks decomposition is applied on HOI. The annual point average growth rate of HOI is used to simulate the time period for the achievement of target set by MDGs and universal access also. The results indicate an improvement in HOI for a reduction in child mortality rates from 52.1% in 2001-02 to 67.3% in 2012-13, which confirms the availability of healthcare opportunities to a larger segment of society. Similarly, immunization against measles and other diseases such as Diphtheria, Polio, Bacillus Calmette-Guerin (BCG), and Hepatitis has also registered an improvement from 51.6% to 69.9% during the period of study at the national level. On a positive note, no gender disparity has been found for child health indicators and that health outcome is mostly affected by the parental and geographical features and availability of health infrastructure. However, the study finds that this achievement has been uneven across provinces. Pakistan is not only lagging behind in achieving its health goals, disappointingly with the current rate of health care provision, but it will take many additional years to achieve its targets.

Keywords: socio-economic circumstances, unmet MDGs, public healthcare services, child and infant mortality

Procedia PDF Downloads 229
30409 A Study of Social Media Users’ Switching Behavior

Authors: Chiao-Chen Chang, Yang-Chieh Chin

Abstract:

Social media has created a change in the way the network community is clustered, especially from the location of the community, from the original virtual space to the intertwined network, and thus the communication between people will change from face to face communication to social media-based communication model. However, social media users who have had a fixed engagement may have an intention to switch to another service provider because of the emergence of new forms of social media. For example, some of Facebook or Twitter users switched to Instagram in 2014 because of social media messages or image overloads, and users may seek simpler and instant social media to become their main social networking tool. This study explores the impact of system features overload, information overload, social monitoring concerns, problematic use and privacy concerns as the antecedents on social media fatigue, dissatisfaction, and alternative attractiveness; further influence social media switching. This study also uses the online questionnaire survey method to recover the sample data, and then confirm the factor analysis, path analysis, model fit analysis and mediating analysis with the structural equation model (SEM). Research findings demonstrated that there were significant effects on multiple paths. Based on the research findings, this study puts forward the implications of theory and practice.

Keywords: social media, switching, social media fatigue, alternative attractiveness

Procedia PDF Downloads 140
30408 Author Name Disambiguation for Biomedical Literature

Authors: Parthiban Srinivasan

Abstract:

PubMed provides online access to the National Library of Medicine database (MEDLINE) and other publications, which contain close to 25 million scientific citations from 1865 to the present. There are close to 80 million author name instances in those close to 25 million citations. For any work of literature, a fundamental issue is to identify the individual(s) who wrote it, and conversely, to identify all of the works that belong to a given individual. Due to the lack of universal standards for name information, there are two aspects of name ambiguity: name synonymy (a single author with multiple name representations), and name homonymy (multiple authors sharing the same name representation). In this talk, we present some results from our extensive work in author name disambiguation for PubMed citations. Information will be presented on the effectiveness and shortcomings of different aspects of successful name disambiguation such as parsing, validation, standardization and normalization.

Keywords: disambiguation, normalization, parsing, PubMed

Procedia PDF Downloads 300
30407 Resource Sharing Issues of Distributed Systems Influences on Healthcare Sector Concurrent Environment

Authors: Soo Hong Da, Ng Zheng Yao, Burra Venkata Durga Kumar

Abstract:

The Healthcare sector is a business that consists of providing medical services, manufacturing medical equipment and drugs as well as providing medical insurance to the public. Most of the time, the data stored in the healthcare database is to be related to patient’s information which is required to be accurate when it is accessed by authorized stakeholders. In distributed systems, one important issue is concurrency in the system as it ensures the shared resources to be synchronized and remains consistent through multiple read and write operations by multiple clients. The problems of concurrency in the healthcare sector are who gets the access and how the shared data is synchronized and remains consistent when there are two or more stakeholders attempting to the shared data simultaneously. In this paper, a framework that is beneficial to distributed healthcare sector concurrent environment is proposed. In the proposed framework, four different level nodes of the database, which are national center, regional center, referral center, and local center are explained. Moreover, the frame synchronization is not symmetrical. There are two synchronization techniques, which are complete and partial synchronization operation are explained. Furthermore, when there are multiple clients accessed at the same time, synchronization types are also discussed with cases at different levels and priorities to ensure data is synchronized throughout the processes.

Keywords: resources, healthcare, concurrency, synchronization, stakeholders, database

Procedia PDF Downloads 149
30406 Aperiodic and Asymmetric Fibonacci Quasicrystals: Next Big Future in Quantum Computation

Authors: Jatindranath Gain, Madhumita DasSarkar, Sudakshina Kundu

Abstract:

Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. Topological quantum computation is concerned with two-dimensional many body systems that support excitations. Anyons are elementary building block of quantum computations. When anyons tunneling in a double-layer system can transition to an exotic non-Abelian state and produce Fibonacci anyons, which are powerful enough for universal topological quantum computation (TQC).Here the exotic behavior of Fibonacci Superlattice is studied by using analytical transfer matrix methods and hence Fibonacci anyons. This Fibonacci anyons can build a quantum computer which is very emerging and exciting field today’s in Nanophotonics and quantum computation.

Keywords: quantum computing, quasicrystals, Multiple Quantum wells (MQWs), transfer matrix method, fibonacci anyons, quantum hall effect, nanophotonics

Procedia PDF Downloads 390
30405 Multiple Organ Manifestation in Neonatal Lupus Erythematous: Report of Two Cases

Authors: A. Lubis, R. Widayanti, Z. Hikmah, A. Endaryanto, A. Harsono, A. Harianto, R. Etika, D. K. Handayani, M. Sampurna

Abstract:

Neonatal lupus erythematous (NLE) is a rare disease marked by clinical characteristic and specific maternal autoantibody. Many cutaneous, cardiac, liver, and hematological manifestations could happen with affect of one organ or multiple. In this case, both babies were premature, low birth weight (LBW), small for gestational age (SGA) and born through caesarean section from a systemic lupus erythematous (SLE) mother. In the first case, we found a baby girl with dyspnea and grunting. Chest X ray showed respiratory distress syndrome (RDS) great I and echocardiography showed small atrial septal defect (ASD) and ventricular septal defect (VSD). She also developed anemia, thrombocytopenia, elevated C-reactive protein, hypoalbuminemia, increasing coagulation factors, hyperbilirubinemia, and positive blood culture of Klebsiella pneumonia. Anti-Ro/SSA and Anti-nRNP/sm were positive. Intravenous fluid, antibiotic, transfusion of blood, thrombocyte concentrate, and fresh frozen plasma were given. The second baby, male presented with necrotic tissue on the left ear and skin rashes, erythematous macula, athropic scarring, hyperpigmentation on all of his body with various size and facial haemorrhage. He also suffered from thrombocytopenia, mild elevated transaminase enzyme, hyperbilirubinemia, anti-Ro/SSA was positive. Intravenous fluid, methyprednisolone, intravenous immunoglobulin (IVIG), blood, and thrombocyte concentrate transfution were given. Two cases of neonatal lupus erythematous had been presented. Diagnosis based on clinical presentation and maternal auto antibody on neonate. Organ involvement in NLE can occur as single or multiple manifestations.

Keywords: neonatus lupus erythematous, maternal autoantibody, clinical characteristic, multiple organ manifestation

Procedia PDF Downloads 424
30404 Automated End-to-End Pipeline Processing Solution for Autonomous Driving

Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi

Abstract:

Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.

Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing

Procedia PDF Downloads 123
30403 AI-Assisted Business Chinese Writing: Comparing the Textual Performances Between Independent Writing and Collaborative Writing

Authors: Stephanie Liu Lu

Abstract:

With the proliferation of artificial intelligence tools in the field of education, it is crucial to explore their impact on language learning outcomes. This paper examines the use of AI tools, such as ChatGPT, in practical writing within business Chinese teaching to investigate how AI can enhance practical writing skills and teaching effectiveness. The study involved third and fourth-year university students majoring in accounting and finance from a university in Hong Kong within the context of a business correspondence writing class. Students were randomly assigned to a control group, who completed business letter writing independently, and an experimental group, who completed the writing with the assistance of AI. In the latter, the AI-assisted business letters were initially drafted by the students issuing commands and interacting with the AI tool, followed by the students' revisions of the draft. The paper assesses the performance of both groups in terms of grammatical expression, communicative effect, and situational awareness. Additionally, the study collected dialogue texts from interactions between students and the AI tool to explore factors that affect text generation and the potential impact of AI on enhancing students' communicative and identity awareness. By collecting and comparing textual performances, it was found that students assisted by AI showed better situational awareness, as well as more skilled organization and grammar. However, the research also revealed that AI-generated articles frequently lacked a proper balance of identity and writing purpose due to limitations in students' communicative awareness and expression during the instruction and interaction process. Furthermore, the revision of drafts also tested the students' linguistic foundation, logical thinking abilities, and practical workplace experience. Therefore, integrating AI tools and related teaching into the curriculum is key to the future of business Chinese teaching.

Keywords: AI-assistance, business Chinese, textual analysis, language education

Procedia PDF Downloads 57