Search results for: effectiveness measurements
148 Temporal Profile of T2 MRI and 1H-MRS in the MDX Mouse Model of Duchenne Muscular Dystrophy
Authors: P. J. Sweeney, T. Ahtoniemi, J. Puoliväli, T. Laitinen, K.Lehtimäki, A. Nurmi, D. Wells
Abstract:
Duchenne muscular dystrophy (DMD) is an X-linked, lethal muscle wasting disease for which there are currently no treatment that effectively prevents the muscle necrosis and progressive muscle loss. DMD is among the most common of inherited diseases affecting around 1/3500 live male births. MDX (X-linked muscular dystrophy) mice only partially encapsulate the disease in humans and display weakness in muscles, muscle damage and edema during a period deemed the “critical period” when these mice go through cycles of muscular degeneration and regeneration. Although the MDX mutant mouse model has been extensively studied as a model for DMD, to-date an extensive temporal, non-invasive imaging profile that utilizes magnetic resonance imaging (MRI) and 1H-magnetic resonance spectroscopy (1H-MRS) has not been performed.. In addition, longitudinal imaging characterization has not coincided with attempts to exacerbate the progressive muscle damage by exercise. In this study we employed an 11.7 T small animal MRI in order to characterize the MRI and MRS profile of MDX mice longitudinally during a 12 month period during which MDX mice were subjected to exercise. Male mutant MDX mice (n=15) and male wild-type mice (n=15) were subjected to a chronic exercise regime of treadmill walking (30 min/ session) bi-weekly over the whole 12 month follow-up period. Mouse gastrocnemius and tibialis anterior muscles were profiled with baseline T2-MRI and 1H-MRS at 6 weeks of age. Imaging and spectroscopy was repeated again at 3 months, 6 months, 9 months and 12 months of age. Plasma creatine kinase (CK) level measurements were coincided with time-points for T2-MRI and 1H-MRS, but also after the “critical period” at 10 weeks of age. The results obtained from this study indicate that chronic exercise extends dystrophic phenotype of MDX mice as evidenced by T2-MRI and1H-MRS. T2-MRI revealed extent and location of the muscle damage in gastrocnemius and tibialis anterior muscles as hyperintensities (lesions and edema) in exercised MDX mice over follow-up period.. The magnitude of the muscle damage remained stable over time in exercised mice. No evident fat infiltration or cumulation to the muscle tissues was seen at any time-point in exercised MDX mice. Creatine, choline and taurine levels evaluated by 1H-MRS from the same muscles were found significantly decreased in each time-point, Extramyocellular (EMCL) and intramyocellular lipids (IMCL) did not change in exercised mice supporting the findings from anatomical T2-MRI scans for fat content. Creatine kinase levels were found to be significantly higher in exercised MDX mice during the follow-up period and importantly CK levels remained stable over the whole follow-up period. Taken together, we have described here longitudinal prophile for muscle damage and muscle metabolic changes in MDX mice subjected to chronic exercised. The extent of the muscle damage by T2-MRI was found to be stable through the follow-up period in muscles examined. In addition, metabolic profile, especially creatine, choline and taurine levels in muscles, was found to be sustained between time-points. The anatomical muscle damage evaluated by T2-MRI was supported by plasma CK levels which remained stable over the follow-up period. These findings show that non-invasive imaging and spectroscopy can be used effectively to evaluate chronic muscle pathology. These techniques can be also used to evaluate the effect of various manipulations, like here exercise, on the phenotype of the mice. Many of the findings we present here are translatable to clinical disease, such as decreased creatine, choline and taurine levels in muscles. Imaging by T2-MRI and 1H-MRS also revealed that fat content or extramyocellar and intramyocellular lipids, respectively, are not changed in MDX mice, which is in contrast to clinical manifestation of the Duchenne’s muscle dystrophy. Findings show that non-invasive imaging can be used to characterize the phenotype of a MDX model and its translatability to clinical disease, and to study events that have traditionally been not examined, like here rigorous exercise related sustained muscle damage after the “critical period”. The ability for this model to display sustained damage beyond the spontaneous “critical period“ and in turn to study drug effects on this extended phenotype will increase the value of the MDX mouse model as a tool to study therapies and treatments aimed at DMD and associated diseases.Keywords: 1H-MRS, MRI, muscular dystrophy, mouse model
Procedia PDF Downloads 357147 Evaluating the Accuracy of Biologically Relevant Variables Generated by ClimateAP
Authors: Jing Jiang, Wenhuan XU, Lei Zhang, Shiyi Zhang, Tongli Wang
Abstract:
Climate data quality significantly affects the reliability of ecological modeling. In the Asia Pacific (AP) region, low-quality climate data hinders ecological modeling. ClimateAP, a software developed in 2017, generates high-quality climate data for the AP region, benefiting researchers in forestry and agriculture. However, its adoption remains limited. This study aims to confirm the validity of biologically relevant variable data generated by ClimateAP during the normal climate period through comparison with the currently available gridded data. Climate data from 2,366 weather stations were used to evaluate the prediction accuracy of ClimateAP in comparison with the commonly used gridded data from WorldClim1.4. Univariate regressions were applied to 48 monthly biologically relevant variables, and the relationship between the observational data and the predictions made by ClimateAP and WorldClim was evaluated using Adjusted R-Squared and Root Mean Squared Error (RMSE). Locations were categorized into mountainous and flat landforms, considering elevation, slope, ruggedness, and Topographic Position Index. Univariate regressions were then applied to all biologically relevant variables for each landform category. Random Forest (RF) models were implemented for the climatic niche modeling of Cunninghamia lanceolata. A comparative analysis of the prediction accuracies of RF models constructed with distinct climate data sources was conducted to evaluate their relative effectiveness. Biologically relevant variables were obtained from three unpublished Chinese meteorological datasets. ClimateAPv3.0 and WorldClim predictions were obtained from weather station coordinates and WorldClim1.4 rasters, respectively, for the normal climate period of 1961-1990. Occurrence data for Cunninghamia lanceolata came from integrated biodiversity databases with 3,745 unique points. ClimateAP explains a minimum of 94.74%, 97.77%, 96.89%, and 94.40% of monthly maximum, minimum, average temperature, and precipitation variances, respectively. It outperforms WorldClim in 37 biologically relevant variables with lower RMSE values. ClimateAP achieves higher R-squared values for the 12 monthly minimum temperature variables and consistently higher Adjusted R-squared values across all landforms for precipitation. ClimateAP's temperature data yields lower Adjusted R-squared values than gridded data in high-elevation, rugged, and mountainous areas but achieves higher values in mid-slope drainages, plains, open slopes, and upper slopes. Using ClimateAP improves the prediction accuracy of tree occurrence from 77.90% to 82.77%. The biologically relevant climate data produced by ClimateAP is validated based on evaluations using observations from weather stations. The use of ClimateAP leads to an improvement in data quality, especially in non-mountainous regions. The results also suggest that using biologically relevant variables generated by ClimateAP can slightly enhance climatic niche modeling for tree species, offering a better understanding of tree species adaptation and resilience compared to using gridded data.Keywords: climate data validation, data quality, Asia pacific climate, climatic niche modeling, random forest models, tree species
Procedia PDF Downloads 68146 Comparison of On-Site Stormwater Detention Policies in Australian and Brazilian Cities
Authors: Pedro P. Drumond, James E. Ball, Priscilla M. Moura, Márcia M. L. P. Coelho
Abstract:
In recent decades, On-site Stormwater Detention (OSD) systems have been implemented in many cities around the world. In Brazil, urban drainage source control policies were created in the 1990’s and were mainly based on OSD. The concept of this technique is to promote the detention of additional stormwater runoff caused by impervious areas, in order to maintain pre-urbanization peak flow levels. In Australia OSD, was first adopted in the early 1980’s by the Ku-ring-gai Council in Sydney’s northern suburbs and Wollongong City Council. Many papers on the topic were published at that time. However, source control techniques related to stormwater quality have become to the forefront and OSD has been relegated to the background. In order to evaluate the effectiveness of the current regulations regarding OSD, the existing policies were compared in Australian cities, a country considered experienced in the use of this technique, and in Brazilian cities where OSD adoption has been increasing. The cities selected for analysis were Wollongong and Belo Horizonte, the first municipalities to adopt OSD in their respective countries, and Sydney and Porto Alegre, cities where these policies are local references. The Australian and Brazilian cities are located in Southern Hemisphere of the planet and similar rainfall intensities can be observed, especially in storm bursts greater than 15 minutes. Regarding technical criteria, Brazilian cities have a site-based approach, analyzing only on-site system drainage. This approach is criticized for not evaluating impacts on urban drainage systems and in rare cases may cause the increase of peak flows downstream. The city of Wollongong and most of the Sydney Councils adopted a catchment-based approach, requiring the use of Permissible Site Discharge (PSD) and Site Storage Requirements (SSR) values based on analysis of entire catchments via hydrograph-producing computer models. Based on the premise that OSD should be designed to dampen storms of 100 years Average Recurrence Interval (ARI) storm, the values of PSD and SSR in these four municipalities were compared. In general, Brazilian cities presented low values of PSD and high values of SSR. This can be explained by site-based approach and the low runoff coefficient value adopted for pre-development conditions. The results clearly show the differences between approaches and methodologies adopted in OSD designs among Brazilian and Australian municipalities, especially with regard to PSD values, being on opposite sides of the scale. However, lack of research regarding the real performance of constructed OSD does not allow for determining which is best. It is necessary to investigate OSD performance in a real situation, assessing the damping provided throughout its useful life, maintenance issues, debris blockage problems and the parameters related to rain-flow methods. Acknowledgments: The authors wish to thank CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico (Chamada Universal – MCTI/CNPq Nº 14/2014), FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais, and CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for their financial support.Keywords: on-site stormwater detention, source control, stormwater, urban drainage
Procedia PDF Downloads 180145 Enhancing Seismic Resilience in Colombia's Informal Housing: A Low-cost Retrofit Strategy with Buckling-restrained Braces to Protect Vulnerable Communities in Earthquake-prone Regions
Authors: Luis F. Caballero-castro, Dirsa Feliciano, Daniela Novoa, Orlando Arroyo, Jesús D. Villalba-morales
Abstract:
Colombia faces a critical challenge in seismic resilience due to the prevalence of informal housing, which constitutes approximately 70% of residential structures. More than 10 million Colombians (20% of the population), live in homes susceptible to collapse in the event of an earthquake. This, combined with the fact that 83% of the population is in intermediate and high seismic hazard areas, has brought serious consequences to the country. These consequences became evident during the 1999 Armenia earthquake, which affected nearly 100,000 properties and represented economic losses equivalent to 1.88% of that year's Gross Domestic Product (GDP). Despite previous efforts to reinforce informal housing through methods like externally reinforced masonry walls, alternatives related to seismic protection systems (SPDs), such as Buckling-Restrained Braces (BRB), have not yet been explored in the country. BRBs are reinforcement elements capable of withstanding both compression and tension, making them effective in enhancing the lateral stiffness of structures. In this study, the use of low-cost and easily installable BRBs for the retrofit of informal housing in Colombia was evaluated, considering the economic limitations of the communities. For this purpose, a case study was selected involving an informally constructed dwelling in the country, from which field information on its structural characteristics and construction materials was collected. Based on the gathered information, nonlinear models with and without BRBs were created, and their seismic performance was analyzed and compared through incremental static (pushover) and nonlinear dynamic analyses. In the first analysis, the capacity curve was identified, showcasing the sequence of failure events occurring from initial yielding to structural collapse. In the second case, the model underwent nonlinear dynamic analyses using a set of seismic records consistent with the country's seismic hazard. Based on the results, fragility curves were calculated to evaluate the probability of failure of the informal housings before and after the intervention with BRBs, providing essential information about their effectiveness in reducing seismic vulnerability. The results indicate that low-cost BRBs can significantly increase the capacity of informal housing to withstand earthquakes. The dynamic analysis revealed that retrofit structures experienced lower displacements and deformations, enhancing the safety of residents and the seismic performance of informally constructed houses. In other words, the use of low-cost BRBs in the retrofit of informal housing in Colombia is a promising strategy for improving structural safety in seismic-prone areas. This study emphasizes the importance of seeking affordable and practical solutions to address seismic risk in vulnerable communities in earthquake-prone regions in Colombia and serves as a model for addressing similar challenges of informal housing worldwide.Keywords: buckling-restrained braces, fragility curves, informal housing, incremental dynamic analysis, seismic retrofit
Procedia PDF Downloads 96144 Manual Wheelchair Propulsion Efficiency on Different Slopes
Authors: A. Boonpratatong, J. Pantong, S. Kiattisaksophon, W. Senavongse
Abstract:
In this study, an integrated sensing and modeling system for manual wheelchair propulsion measurement and propulsion efficiency calculation was used to indicate the level of overuse. Seven subjects participated in the measurement. On the level surface, the propulsion efficiencies were not different significantly as the riding speed increased. By contrast, the propulsion efficiencies on the 15-degree incline were restricted to around 0.5. The results are supported by previously reported wheeling resistance and propulsion torque relationships implying margin of the overuse. Upper limb musculoskeletal injuries and syndromes in manual wheelchair riders are common, chronic, and may be caused at different levels by the overuse i.e. repetitive riding on steep incline. The qualitative analysis such as the mechanical effectiveness on manual wheeling to establish the relationship between the riding difficulties, mechanical efforts and propulsion outputs is scarce, possibly due to the challenge of simultaneous measurement of those factors in conventional manual wheelchairs and everyday environments. In this study, the integrated sensing and modeling system were used to measure manual wheelchair propulsion efficiency in conventional manual wheelchairs and everyday environments. The sensing unit is comprised of the contact pressure and inertia sensors which are portable and universal. Four healthy male and three healthy female subjects participated in the measurement on level and 15-degree incline surface. Subjects were asked to perform manual wheelchair ridings with three different self-selected speeds on level surface and only preferred speed on the 15-degree incline. Five trials were performed in each condition. The kinematic data of the subject’s dominant hand and a spoke and the trunk of the wheelchair were collected through the inertia sensors. The compression force applied from the thumb of the dominant hand to the push rim was collected through the contact pressure sensors. The signals from all sensors were recorded synchronously. The subject-selected speeds for slow, preferred and fast riding on level surface and subject-preferred speed on 15-degree incline were recorded. The propulsion efficiency as a ratio between the pushing force in tangential direction to the push rim and the net force as a result of the three-dimensional riding motion were derived by inverse dynamic problem solving in the modeling unit. The intra-subject variability of the riding speed was not different significantly as the self-selected speed increased on the level surface. Since the riding speed on the 15-degree incline was difficult to regulate, the intra-subject variability was not applied. On the level surface, the propulsion efficiencies were not different significantly as the riding speed increased. However, the propulsion efficiencies on the 15-degree incline were restricted to around 0.5 for all subjects on their preferred speed. The results are supported by the previously reported relationship between the wheeling resistance and propulsion torque in which the wheelchair axle torque increased but the muscle activities were not increased when the resistance is high. This implies the margin of dynamic efforts on the relatively high resistance being similar to the margin of the overuse indicated by the restricted propulsion efficiency on the 15-degree incline.Keywords: contact pressure sensor, inertia sensor, integrating sensing and modeling system, manual wheelchair propulsion efficiency, manual wheelchair propulsion measurement, tangential force, resultant force, three-dimensional riding motion
Procedia PDF Downloads 290143 Design, Fabrication and Analysis of Molded and Direct 3D-Printed Soft Pneumatic Actuators
Authors: N. Naz, A. D. Domenico, M. N. Huda
Abstract:
Soft Robotics is a rapidly growing multidisciplinary field where robots are fabricated using highly deformable materials motivated by bioinspired designs. The high dexterity and adaptability to the external environments during contact make soft robots ideal for applications such as gripping delicate objects, locomotion, and biomedical devices. The actuation system of soft robots mainly includes fluidic, tendon-driven, and smart material actuation. Among them, Soft Pneumatic Actuator, also known as SPA, remains the most popular choice due to its flexibility, safety, easy implementation, and cost-effectiveness. However, at present, most of the fabrication of SPA is still based on traditional molding and casting techniques where the mold is 3d printed into which silicone rubber is cast and consolidated. This conventional method is time-consuming and involves intensive manual labour with the limitation of repeatability and accuracy in design. Recent advancements in direct 3d printing of different soft materials can significantly reduce the repetitive manual task with an ability to fabricate complex geometries and multicomponent designs in a single manufacturing step. The aim of this research work is to design and analyse the Soft Pneumatic Actuator (SPA) utilizing both conventional casting and modern direct 3d printing technologies. The mold of the SPA for traditional casting is 3d printed using fused deposition modeling (FDM) with the polylactic acid (PLA) thermoplastic wire. Hyperelastic soft materials such as Ecoflex-0030/0050 are cast into the mold and consolidated using a lab oven. The bending behaviour is observed experimentally with different pressures of air compressor to ensure uniform bending without any failure. For direct 3D-printing of SPA fused deposition modeling (FDM) with thermoplastic polyurethane (TPU) and stereolithography (SLA) with an elastic resin are used. The actuator is modeled using the finite element method (FEM) to analyse the nonlinear bending behaviour, stress concentration and strain distribution of different hyperelastic materials after pressurization. FEM analysis is carried out using Ansys Workbench software with a Yeon-2nd order hyperelastic material model. FEM includes long-shape deformation, contact between surfaces, and gravity influences. For mesh generation, quadratic tetrahedron, hybrid, and constant pressure mesh are used. SPA is connected to a baseplate that is in connection with the air compressor. A fixed boundary is applied on the baseplate, and static pressure is applied orthogonally to all surfaces of the internal chambers and channels with a closed continuum model. The simulated results from FEM are compared with the experimental results. The experiments are performed in a laboratory set-up where the developed SPA is connected to a compressed air source with a pressure gauge. A comparison study based on performance analysis is done between FDM and SLA printed SPA with the molded counterparts. Furthermore, the molded and 3d printed SPA has been used to develop a three-finger soft pneumatic gripper and has been tested for handling delicate objects.Keywords: finite element method, fused deposition modeling, hyperelastic, soft pneumatic actuator
Procedia PDF Downloads 90142 Lentiviral-Based Novel Bicistronic Therapeutic Vaccine against Chronic Hepatitis B Induces Robust Immune Response
Authors: Mohamad F. Jamiluddin, Emeline Sarry, Ana Bejanariu, Cécile Bauche
Abstract:
Introduction: Over 360 million people are chronically infected with hepatitis B virus (HBV), of whom 1 million die each year from HBV-associated liver cirrhosis or hepatocellular carcinoma. Current treatment options for chronic hepatitis B depend on interferon-α (IFNα) or nucleos(t)ide analogs, which control virus replication but rarely eliminate the virus. Treatment with PEG-IFNα leads to a sustained antiviral response in only one third of patients. After withdrawal of the drugs, the rebound of viremia is observed in the majority of patients. Furthermore, the long-term treatment is subsequently associated with the appearance of drug resistant HBV strains that is often the cause of the therapy failure. Among the new therapeutic avenues being developed, therapeutic vaccine aimed at inducing immune responses similar to those found in resolvers is of growing interest. The high prevalence of chronic hepatitis B necessitates the design of better vaccination strategies capable of eliciting broad-spectrum of cell-mediated immunity(CMI) and humoral immune response that can control chronic hepatitis B. Induction of HBV-specific T cells and B cells by therapeutic vaccination may be an innovative strategy to overcome virus persistence. Lentiviral vectors developed and optimized by THERAVECTYS, due to their ability to transduce non-dividing cells, including dendritic cells, and induce CMI response, have demonstrated their effectiveness as vaccination tools. Method: To develop a HBV therapeutic vaccine that can induce a broad but specific immune response, we generated recombinant lentiviral vector carrying IRES(Internal Ribosome Entry Site)-containing bicistronic constructs which allow the coexpression of two vaccine products, namely HBV T- cell epitope vaccine and HBV virus like particle (VLP) vaccine. HBV T-cell epitope vaccine consists of immunodominant cluster of CD4 and CD8 epitopes with spacer in between them and epitopes are derived from HBV surface protein, HBV core, HBV X and polymerase. While HBV VLP vaccine is a HBV core protein based chimeric VLP with surface protein B-cell epitopes displayed. In order to evaluate the immunogenicity, mice were immunized with lentiviral constructs by intramuscular injection. The T cell and antibody immune responses of the two vaccine products were analyzed using IFN-γ ELISpot assay and ELISA respectively to quantify the adaptive response to HBV antigens. Results: Following a single administration in mice, lentiviral construct elicited robust antigen-specific IFN-γ responses to the encoded antigens. The HBV T- cell epitope vaccine demonstrated significantly higher T cell immunogenicity than HBV VLP vaccine. Importantly, we demonstrated by ELISA that antibodies are induced against both HBV surface protein and HBV core protein when mice injected with vaccine construct (p < 0.05). Conclusion: Our results highlight that THERAVECTYS lentiviral vectors may represent a powerful platform for immunization strategy against chronic hepatitis B. Our data suggests the likely importance of Lentiviral vector based novel bicistronic construct for further study, in combination with drugs or as standalone antigens, as a therapeutic lentiviral based HBV vaccines. THERAVECTYS bicistronic HBV vaccine will be further evaluated in animal efficacy studies.Keywords: chronic hepatitis B, lentiviral vectors, therapeutic vaccine, virus-like particle
Procedia PDF Downloads 334141 Delivering User Context-Sensitive Service in M-Commerce: An Empirical Assessment of the Impact of Urgency on Mobile Service Design for Transactional Apps
Authors: Daniela Stephanie Kuenstle
Abstract:
Complex industries such as banking or insurance experience slow growth in mobile sales. While today’s mobile applications are sophisticated and enable location based and personalized services, consumers prefer online or even face-to-face services to complete complex transactions. A possible reason for this reluctance is that the provided service within transactional mobile applications (apps) does not adequately correspond to users’ needs. Therefore, this paper examines the impact of the user context on mobile service (m-service) in m-commerce. Motivated by the potential which context-sensitive m-services hold for the future, the impact of temporal variations as a dimension of user context, on m-service design is examined. In particular, the research question asks: Does consumer urgency function as a determinant of m-service composition in transactional apps by moderating the relation between m-service type and m-service success? Thus, the aim is to explore the moderating influence of urgency on m-service types, which includes Technology Mediated Service and Technology Generated Service. While mobile applications generally comprise features of both service types, this thesis discusses whether unexpected urgency changes customer preferences for m-service types and how this consequently impacts the overall m-service success, represented by purchase intention, loyalty intention and service quality. An online experiment with a random sample of N=1311 participants was conducted. Participants were divided into four treatment groups varying in m-service types and urgency level. They were exposed to two different urgency scenarios (high/ low) and two different app versions conveying either technology mediated or technology generated service. Subsequently, participants completed a questionnaire to measure the effectiveness of the manipulation as well as the dependent variables. The research model was tested for direct and moderating effects of m-service type and urgency on m-service success. Three two-way analyses of variance confirmed the significance of main effects, but demonstrated no significant moderation of urgency on m-service types. The analysis of the gathered data did not confirm a moderating effect of urgency between m-service type and service success. Yet, the findings propose an additive effects model with the highest purchase and loyalty intention for Technology Generated Service and high urgency, while Technology Mediated Service and low urgency demonstrate the strongest effect for service quality. The results also indicate an antagonistic relation between service quality and purchase intention depending on the level of urgency. Although a confirmation of the significance of this finding is required, it suggests that only service convenience, as one dimension of mobile service quality, delivers conditional value under high urgency. This suggests a curvilinear pattern of service quality in e-commerce. Overall, the paper illustrates the complex interplay of technology, user variables, and service design. With this, it contributes to a finer-grained understanding of the relation between m-service design and situation dependency. Moreover, the importance of delivering situational value with apps depending on user context is emphasized. Finally, the present study raises the demand to continue researching the impact of situational variables on m-service design in order to develop more sophisticated m-services.Keywords: mobile consumer behavior, mobile service design, mobile service success, self-service technology, situation dependency, user-context sensitivity
Procedia PDF Downloads 268140 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 94139 Academic Major, Gender, and Perceived Helpfulness Predict Help-Seeking Stigma
Authors: Tran Tran
Abstract:
Mental health issues are prevalent among Vietnamese undergraduate students, and they are greatly exacerbated during the COVID-19 pandemic for this population. While there is empirical evidence supporting the effectiveness and efficiency of therapy on mental health issues among college students, the rates of Vietnamese college students seeking professional mental health services were alarmingly low. Multiple factors can prevent those in need from finding support. The Internalized Stigma Model posits that public stigma directly affects intentions to seek psychological help via self-stigma and attitudes toward seeking help. However, little research has focused on what factors can predict public stigma toward seeking professional psychological support, especially among this population. A potential predictor is academic majors since academic majors can influence undergraduate students' perceptions, attitudes, and intentions. A study suggested that students who have completed two or more psychology courses have a more positive attitude toward seeking care for mental health issues and reduced stigma, which might be attributed to increased mental health literacy. In addition, research has shown that women are more likely to utilize mental health services and have lower stigma than men. Finally, studies have also suggested that experience of mental health services can increase endorsement of perceived need and lower stigma. Thus, it is expected that perceived helpfulness from past service uses can reduce stigma. This study aims to address this gap in the literature and investigate which factors can predict public stigma, specifically academic major, gender, and perceived helpfulness, potentially suggesting an avenue of prevention and ultimately improving the well-being of Vietnamese college students. The sample includes 408 undergraduate students (Mage = 20.44; 80.88% female) Hanoi city, Vietnam. Participants completed a pen-and-paper questionnaire. Students completed the Stigma Scale for Receiving Psychological Help, which yielded a mean public stigma score. Participants also completed a measurement assessing their perceived helpfulness of their university’s counseling center, which included eight subscales: future self-development, learning issues, career counseling, medical and health issues, mental health issues, conflicts between teachers and students, conflicts between parents and students, and interpersonal relationships. Items were summed to create a composite perceived helpfulness score. Finally, participants provided demographic information. This included gender, which was dichotomized between female and other. Additionally, it included academic major, which was also similarly dichotomized between psychology and other (e.g., natural science, social science, and pedagogy & social work). Linear relationships between public stigma and gender, academic major, and perceived helpfulness were analyzed individually with a regression model. Findings suggested that academic major, gender, and perceived counseling center's helpfulness predicted stigma against seeking professional psychological help. Specifically, being a psychology major predicted lower levels of public stigma (β = -.25, p < .001). Additionally, gender female predicted lower levels of public stigma (β = -.11, p < .05). Lastly, higher levels of perceived helpfulness of the counseling center also predicted lower levels of public stigma (β = -.16, p < .01). The study’s results offer potential intervention avenues to help reduce stigma and increase well-being for Vietnamese college students.Keywords: stigma, vietnamese college students, counseling services, help-seeking
Procedia PDF Downloads 88138 The Importance of School Culture in Supporting Student Mental Health Following the COVID-19 Pandemic: Insights from a Qualitative Study
Authors: Rhiannon Barker, Gregory Hartwell, Matt Egan, Karen Lock
Abstract:
Background: Evidence suggests that mental health (MH) issues in children and young people (CYP) in the UK are on the rise. Of particular concern is data that indicates that the pandemic, together with the impact of school closures, have accentuated already pronounced inequalities; children from families on low incomes or from black and minority ethnic groups are reportedly more likely to have been adversely impacted. This study aimed to help identify specific support which may facilitate the building of a positive school climate and protect student mental health, particularly in the wake of school closures following the pandemic. It has important implications for integrated working between schools and statutory health services. Methods: The research comprised of three parts; scoping, case studies, and a stakeholder workshop to explore and consolidate results. The scoping phase included a literature review alongside interviews with a range of stakeholders from government, academia, and the third sector. Case studies were then conducted in two London state schools. Results: Our research identified how student MH was being impacted by a range of factors located at different system levels, both internal to the school and in the wider community. School climate, relating both to a shared system of beliefs and values, as well as broader factors including style of leadership, teaching, discipline, safety, and relationships -all played a role in the experience of school life and, consequently, the MH of both students and staff. Participants highlighted the importance of a whole school approach and ensuring that support for student MH was not separated from academic achievement, as well as the importance of identifying and applying universal measuring systems to establish levels of MH need. Our findings suggest that a school’s climate is influenced by the style and strength of its leadership, while this school climate - together with mechanisms put in place to respond to MH needs (both statutory and non-statutory) - plays a key role in supporting student MH. Implications: Schools in England have a responsibility to decide on the nature of MH support provided for their students, and there is no requirement for them to report centrally on the form this provision takes. The reality on the ground, as our study suggests, is that MH provision varies significantly between schools, particularly in relation to ‘lower’ levels of need which are not covered by statutory requirements. A valid concern may be that in the huge raft of possible options schools have to support CYP wellbeing, too much is left to chance. Work to support schools in rebuilding their cultures post-lockdowns must include the means to identify and promote appropriate tools and techniques to facilitate regular measurement of student MH. This will help establish both the scale of the problem and monitor the effectiveness of the response. A strong vision from a school’s leadership team that emphasises the importance of student wellbeing, running alongside (but not overshadowed by) academic attainment, should help shape a school climate to promote beneficial MH outcomes. The sector should also be provided with support to improve the consistency and efficacy of MH provision in schools across the country.Keywords: mental health, schools, young people, whole-school culture
Procedia PDF Downloads 63137 A Randomized, Controlled Trial to Test Behavior Change Techniques to Improve Low Intensity Physical Activity in Older Adults
Authors: Ciaran Friel, Jerry Suls, Mark Butler, Patrick Robles, Samantha Gordon, Frank Vicari, Karina W. Davidson
Abstract:
Physical activity guidelines focus on increasing moderate-intensity activity for older adults, but adherence to recommendations remains low. This is despite the fact that scientific evidence supports that any increase in physical activity is positively correlated with health benefits. Behavior change techniques (BCTs) have demonstrated effectiveness in reducing sedentary behavior and promoting physical activity. This pilot study uses a Personalized Trials (N-of-1) design to evaluate the efficacy of using four BCTs to promote an increase in low-intensity physical activity (2,000 steps of walking per day) in adults aged 45-75 years old. The 4 BCTs tested were goal setting, action planning, feedback, and self-monitoring. BCTs were tested in random order and delivered by text message prompts requiring participant engagement. The study recruited health system employees in the target age range, without mobility restrictions and demonstrating interest in increasing their daily activity by a minimum of 2,000 steps per day for a minimum of five days per week. Participants were sent a Fitbit® fitness tracker with an established study account and password. Participants were recommended to wear the Fitbit device 24/7 but were required to wear it for a minimum of ten hours per day. Baseline physical activity was measured by Fitbit for two weeks. In the 8-week intervention phase of the study, participants received each of the four BCTs, in random order, for a two-week period. Text message prompts were delivered daily each morning at a consistent time. All prompts required participant engagement to acknowledge receipt of the BCT message. Engagement is dependent upon the BCT message and may have included recording that a detailed plan for walking has been made or confirmed a daily step goal (action planning, goal setting). Additionally, participants may have been directed to a study dashboard to view their step counts or compare themselves to their baseline average step count (self-monitoring, feedback). At the end of each two-week testing interval, participants were asked to complete the Self-Efficacy for Walking Scale (SEW_Dur), a validated measure that assesses the participant’s confidence in walking incremental distances, and a survey measuring their satisfaction with the individual BCT that they tested. At the end of their trial, participants received a personalized summary of their step data in response to each individual BCT. The analysis will examine the novel individual-level heterogeneity of treatment effect made possible by N-of-1 design and pool results across participants to efficiently estimate the overall efficacy of the selected behavioral change techniques in increasing low-intensity walking by 2,000 steps, five days per week. Self-efficacy will be explored as the likely mechanism of action prompting behavior change. This study will inform the providers and demonstrate the feasibility of an N-of-1 study design to effectively promote physical activity as a component of healthy aging.Keywords: aging, exercise, habit, walking
Procedia PDF Downloads 92136 Improving Preconception Health and Lifestyle Behaviours through Digital Health Intervention: The OptimalMe Program
Authors: Bonnie R. Brammall, Rhonda M. Garad, Helena J. Teede, Cheryce L. Harrison
Abstract:
Introduction: Reproductive aged women are at high-risk for accelerated weight gain and obesity development, with pregnancy recognised as a critical contributory life phase. Healthy lifestyle interventions during the preconception and antenatal period improve maternal and infant health outcomes. Yet, interventions from preconception through to postpartum and translation and implementation into real-world healthcare settings remain limited. OptimalMe is a randomised, hybrid implementation effectiveness study of evidence-based healthy lifestyle intervention. Here, we report engagement, acceptability of the intervention during preconception, and self-reported behaviour change outcomes as a result of the preconception phase of the intervention. Methods: Reproductive aged women who upgraded their private health insurance to include pregnancy and birth cover, signalling a pregnancy intention, were invited to participate. Women received access to an online portal with preconception health and lifestyle modules, goal-setting and behaviour change tools, monthly SMS messages, and two coaching sessions (randomised to video or phone) prior to pregnancy. Results: Overall n=527 expressed interest in participating. Of these, n=33 did not meet inclusion criteria, n=8 were not contactable for eligibility screening, and n=177 failed to engage after the screening, leaving n=309 who were enrolled in OptimalMe and randomised to intervention delivery method. Engagement with coaching sessions dropped by 25% for session two, with no difference between intervention groups. Women had a mean (SD) age of 31.7 (4.3) years and, at baseline, a self-reported mean BMI of 25.7 (6.1) kg/m², with 55.8% (n=172) of a healthy BMI. Behaviour was sub-optimal with infrequent self-weighing (38.1%), alcohol consumption prevalent (57.1%), sub-optimal pre-pregnancy supplementation (61.5%), and incomplete medical screening. Post-intervention 73.2% of women reported engagement with a GP for preconception care and improved lifestyle behaviour (85.5%), since starting OptimalMe. Direct pre-and-post comparison of individual participant data showed that of 322 points of potential change (up-to-date cervical screening, elimination of high-risk behaviours [alcohol, drugs, smoking], uptake of preconception supplements and improved weighing habits) 158 (49.1%) points of change were achieved. Health coaching sessions were found to improve accountability and confidence, yet further personalisation and support were desired. Engagement with video and phone sessions was comparable, having similar impacts on behaviour change, and both methods were well accepted and increased women's accountability. Conclusion: A low-intensity digital health and lifestyle program with embedded health coaching can improve the uptake of preconception care and lead to self-reported behaviour change. This is the first program of its kind to reach an otherwise healthy population of women planning a pregnancy. Women who were otherwise healthy showed divergence from preconception health and lifestyle objectives and benefited from the intervention. OptimalMe shows promising results for population-based behaviour change interventions that can improve preconception lifestyle habits and increase engagement with clinical health care for pregnancy preparation.Keywords: preconception, pregnancy, preventative health, weight gain prevention, self-management, behaviour change, digital health, telehealth, intervention, women's health
Procedia PDF Downloads 91135 Concept Mapping to Reach Consensus on an Antibiotic Smart Use Strategy Model to Promote and Support Appropriate Antibiotic Prescribing in a Hospital, Thailand
Authors: Phenphak Horadee, Rodchares Hanrinth, Saithip Suttiruksa
Abstract:
Inappropriate use of antibiotics has happened in several hospitals, Thailand. Drug use evaluation (DUE) is one strategy to overcome this difficulty. However, most community hospitals still encounter incomplete evaluation resulting overuse of antibiotics with high cost. Consequently, drug-resistant bacteria have been rising due to inappropriate antibiotic use. The aim of this study was to involve stakeholders in conceptualizing, developing, and prioritizing a feasible intervention strategy to promote and support appropriate antibiotic prescribing in a community hospital, Thailand. Study antibiotics included four antibiotics such as Meropenem, Piperacillin/tazobactam, Amoxicillin/clavulanic acid, and Vancomycin. The study was conducted for the 1-year period between March 1, 2018, and March 31, 2019, in a community hospital in the northeastern part of Thailand. Concept mapping was used in a purposive sample, including doctors (one was an administrator), pharmacists, and nurses who involving drug use evaluation of antibiotics. In-depth interviews for each participant and survey research were conducted to seek the problems for inappropriate use of antibiotics based on drug use evaluation system. Seventy-seven percent of DUE reported appropriate antibiotic prescribing, which still did not reach the goal of 80 percent appropriateness. Meropenem led other antibiotics for inappropriate prescribing. The causes of the unsuccessful DUE program were classified into three themes such as personnel, lack of public relation and communication, and unsupported policy and impractical regulations. During the first meeting, stakeholders (n = 21) expressed the generation of interventions. During the second meeting, participants who were almost the same group of people in the first meeting (n = 21) were requested to independently rate the feasibility and importance of each idea and to categorize them into relevant clusters to facilitate multidimensional scaling and hierarchical cluster analysis. The outputs of analysis included the idealist, cluster list, point map, point rating map, cluster map, and cluster rating map. All of these were distributed to participants (n = 21) during the third meeting to reach consensus on an intervention model. The final proposed intervention strategy included 29 feasible and crucial interventions in seven clusters: development of information technology system, establishing policy and taking it into the action plan, proactive public relations of the policy, action plan and workflow, in cooperation of multidisciplinary teams in drug use evaluation, work review and evaluation with performance reporting, promoting and developing professional and clinical skill for staff with training programs, and developing practical drug use evaluation guideline for antibiotics. These interventions are relevant and fit to several intervention strategies for antibiotic stewardship program in many international organizations such as participation of the multidisciplinary team, developing information technology to support antibiotic smart use, and communication. These interventions were prioritized for implementation over a 1-year period. Once the possibility of each activity or plan is set up, the proposed program could be applied and integrated into hospital policy after evaluating plans. Effectiveness of each intervention could be promoted to other community hospitals to promote and support antibiotic smart use.Keywords: antibiotic, concept mapping, drug use evaluation, multidisciplinary teams
Procedia PDF Downloads 118134 Development of Knowledge Discovery Based Interactive Decision Support System on Web Platform for Maternal and Child Health System Strengthening
Authors: Partha Saha, Uttam Kumar Banerjee
Abstract:
Maternal and Child Healthcare (MCH) has always been regarded as one of the important issues globally. Reduction of maternal and child mortality rates and increase of healthcare service coverage were declared as one of the targets in Millennium Development Goals till 2015 and thereafter as an important component of the Sustainable Development Goals. Over the last decade, worldwide MCH indicators have improved but could not match the expected levels. Progress of both maternal and child mortality rates have been monitored by several researchers. Each of the studies has stated that only less than 26% of low-income and middle income countries (LMICs) were on track to achieve targets as prescribed by MDG4. Average worldwide annual rate of reduction of under-five mortality rate and maternal mortality rate were 2.2% and 1.9% as on 2011 respectively whereas rates should be minimum 4.4% and 5.5% annually to achieve targets. In spite of having proven healthcare interventions for both mothers and children, those could not be scaled up to the required volume due to fragmented health systems, especially in the developing and under-developed countries. In this research, a knowledge discovery based interactive Decision Support System (DSS) has been developed on web platform which would assist healthcare policy makers to develop evidence-based policies. To achieve desirable results in MCH, efficient resource planning is very much required. In maximum LMICs, resources are big constraint. Knowledge, generated through this system, would help healthcare managers to develop strategic resource planning for combatting with issues like huge inequity and less coverage in MCH. This system would help healthcare managers to accomplish following four tasks. Those are a) comprehending region wise conditions of variables related with MCH, b) identifying relationships within variables, c) segmenting regions based on variables status, and d) finding out segment wise key influential variables which have major impact on healthcare indicators. Whole system development process has been divided into three phases. Those were i) identifying contemporary issues related with MCH services and policy making; ii) development of the system; and iii) verification and validation of the system. More than 90 variables under three categories, such as a) educational, social, and economic parameters; b) MCH interventions; and c) health system building blocks have been included into this web-based DSS and five separate modules have been developed under the system. First module has been designed for analysing current healthcare scenario. Second module would help healthcare managers to understand correlations among variables. Third module would reveal frequently-occurring incidents along with different MCH interventions. Fourth module would segment regions based on previously mentioned three categories and in fifth module, segment-wise key influential interventions will be identified. India has been considered as case study area in this research. Data of 601 districts of India has been used for inspecting effectiveness of those developed modules. This system has been developed by importing different statistical and data mining techniques on Web platform. Policy makers would be able to generate different scenarios from the system before drawing any inference, aided by its interactive capability.Keywords: maternal and child heathcare, decision support systems, data mining techniques, low and middle income countries
Procedia PDF Downloads 258133 Health Reforms in Central and Eastern European Countries: Results, Dynamics, and Outcomes Measure
Authors: Piotr Romaniuk, Krzysztof Kaczmarek, Adam Szromek
Abstract:
Background: A number of approaches to assess the performance of health system have been proposed so far. Nonetheless, they lack a consensus regarding the key components of assessment procedure and criteria of evaluation. The WHO and OECD have developed methods of assessing health system to counteract the underlying issues, but they are not free of controversies and did not manage to produce a commonly accepted consensus. The aim of the study: On the basis of WHO and OECD approaches we decided to develop own methodology to assess the performance of health systems in Central and Eastern European countries. We have applied the method to compare the effects of health systems reforms in 20 countries of the region, in order to evaluate the dynamic of changes in terms of health system outcomes.Methods: Data was collected from a 25-year time period after the fall of communism, subsetted into different post-reform stages. Datasets collected from individual countries underwent one-, two- or multi-dimensional statistical analyses, and the Synthetic Measure of health system Outcomes (SMO) was calculated, on the basis of the method of zeroed unitarization. A map of dynamics of changes over time across the region was constructed. Results: When making a comparative analysis of the tested group in terms of the average SMO value throughout the analyzed period, we noticed some differences, although the gaps between individual countries were small. The countries with the highest SMO were the Czech Republic, Estonia, Poland, Hungary and Slovenia, while the lowest was in Ukraine, Russia, Moldova, Georgia, Albania, and Armenia. Countries differ in terms of the range of SMO value changes throughout the analyzed period. The dynamics of change is high in the case of Estonia and Latvia, moderate in the case of Poland, Hungary, Czech Republic, Croatia, Russia and Moldova, and small when it comes to Belarus, Ukraine, Macedonia, Lithuania, and Georgia. This information reveals fluctuation dynamics of the measured value in time, yet it does not necessarily mean that in such a dynamic range an improvement appears in a given country. In reality, some of the countries moved from on the scale with different effects. Albania decreased the level of health system outcomes while Armenia and Georgia made progress, but lost distance to leaders in the region. On the other hand, Latvia and Estonia showed the most dynamic progress in improving the outcomes. Conclusions: Countries that have decided to implement comprehensive health reform have achieved a positive result in terms of further improvements in health system efficiency levels. Besides, a higher level of efficiency during the initial transition period generally positively determined the subsequent value of the efficiency index value, but not the dynamics of change. The paths of health system outcomes improvement are highly diverse between different countries. The instrument we propose constitutes a useful tool to evaluate the effectiveness of reform processes in post-communist countries, but more studies are needed to identify factors that may determine results obtained by individual countries, as well as to eliminate the limitations of methodology we applied.Keywords: health system outcomes, health reforms, health system assessment, health system evaluation
Procedia PDF Downloads 290132 Closing the Gap: Efficient Voxelization with Equidistant Scanlines and Gap Detection
Authors: S. Delgado, C. Cerrada, R. S. Gómez
Abstract:
This research introduces an approach to voxelizing the surfaces of triangular meshes with efficiency and accuracy. Our method leverages parallel equidistant scan-lines and introduces a Gap Detection technique to address the limitations of existing approaches. We present a comprehensive study showcasing the method's effectiveness, scalability, and versatility in different scenarios. Voxelization is a fundamental process in computer graphics and simulations, playing a pivotal role in applications ranging from scientific visualization to virtual reality. Our algorithm focuses on enhancing the voxelization process, especially for complex models and high resolutions. One of the major challenges in voxelization in the Graphics Processing Unit (GPU) is the high cost of discovering the same voxels multiple times. These repeated voxels incur in costly memory operations with no useful information. Our scan-line-based method ensures that each voxel is detected exactly once when processing the triangle, enhancing performance without compromising the quality of the voxelization. The heart of our approach lies in the use of parallel, equidistant scan-lines to traverse the interiors of triangles. This minimizes redundant memory operations and avoids revisiting the same voxels, resulting in a significant performance boost. Moreover, our method's computational efficiency is complemented by its simplicity and portability. Written as a single compute shader in Graphics Library Shader Language (GLSL), it is highly adaptable to various rendering pipelines and hardware configurations. To validate our method, we conducted extensive experiments on a diverse set of models from the Stanford repository. Our results demonstrate not only the algorithm's efficiency, but also its ability to produce 26 tunnel free accurate voxelizations. The Gap Detection technique successfully identifies and addresses gaps, ensuring consistent and visually pleasing voxelized surfaces. Furthermore, we introduce the Slope Consistency Value metric, quantifying the alignment of each triangle with its primary axis. This metric provides insights into the impact of triangle orientation on scan-line based voxelization methods. It also aids in understanding how the Gap Detection technique effectively improves results by targeting specific areas where simple scan-line-based methods might fail. Our research contributes to the field of voxelization by offering a robust and efficient approach that overcomes the limitations of existing methods. The Gap Detection technique fills a critical gap in the voxelization process. By addressing these gaps, our algorithm enhances the visual quality and accuracy of voxelized models, making it valuable for a wide range of applications. In conclusion, "Closing the Gap: Efficient Voxelization with Equidistant Scan-lines and Gap Detection" presents an effective solution to the challenges of voxelization. Our research combines computational efficiency, accuracy, and innovative techniques to elevate the quality of voxelized surfaces. With its adaptable nature and valuable innovations, this technique could have a positive influence on computer graphics and visualization.Keywords: voxelization, GPU acceleration, computer graphics, compute shaders
Procedia PDF Downloads 72131 Fuzzy Time Series- Markov Chain Method for Corn and Soybean Price Forecasting in North Carolina Markets
Authors: Selin Guney, Andres Riquelme
Abstract:
Among the main purposes of optimal and efficient forecasts of agricultural commodity prices is to guide the firms to advance the economic decision making process such as planning business operations and marketing decisions. Governments are also the beneficiaries and suppliers of agricultural price forecasts. They use this information to establish a proper agricultural policy, and hence, the forecasts affect social welfare and systematic errors in forecasts could lead to a misallocation of scarce resources. Various empirical approaches have been applied to forecast commodity prices that have used different methodologies. Most commonly-used approaches to forecast commodity sectors depend on classical time series models that assume values of the response variables are precise which is quite often not true in reality. Recently, this literature has mostly evolved to a consideration of fuzzy time series models that provide more flexibility in terms of the classical time series models assumptions such as stationarity, and large sample size requirement. Besides, fuzzy modeling approach allows decision making with estimated values under incomplete information or uncertainty. A number of fuzzy time series models have been developed and implemented over the last decades; however, most of them are not appropriate for forecasting repeated and nonconsecutive transitions in the data. The modeling scheme used in this paper eliminates this problem by introducing Markov modeling approach that takes into account both the repeated and nonconsecutive transitions. Also, the determination of length of interval is crucial in terms of the accuracy of forecasts. The problem of determining the length of interval arbitrarily is overcome and a methodology to determine the proper length of interval based on the distribution or mean of the first differences of series to improve forecast accuracy is proposed. The specific purpose of this paper is to propose and investigate the potential of a new forecasting model that integrates methodologies for determining the proper length of interval based on the distribution or mean of the first differences of series and Fuzzy Time Series- Markov Chain model. Moreover, the accuracy of the forecasting performance of proposed integrated model is compared to different univariate time series models and the superiority of proposed method over competing methods in respect of modelling and forecasting on the basis of forecast evaluation criteria is demonstrated. The application is to daily corn and soybean prices observed at three commercially important North Carolina markets; Candor, Cofield and Roaring River for corn and Fayetteville, Cofield and Greenville City for soybeans respectively. One main conclusion from this paper is that using fuzzy logic improves the forecast performance and accuracy; the effectiveness and potential benefits of the proposed model is confirmed with small selection criteria value such MAPE. The paper concludes with a discussion of the implications of integrating fuzzy logic and nonarbitrary determination of length of interval for the reliability and accuracy of price forecasts. The empirical results represent a significant contribution to our understanding of the applicability of fuzzy modeling in commodity price forecasts.Keywords: commodity, forecast, fuzzy, Markov
Procedia PDF Downloads 217130 Wastewater Treatment Using Ternary Hybrid Advanced Oxidation Processes Through Heterogeneous Fenton
Authors: komal verma, V. S. Moholkar
Abstract:
In this current study, the challenge of effectively treating and mineralizing industrial wastewater prior to its discharge into natural water bodies, such as rivers and lakes, is being addressed. Particularly, the focus is on the wastewater produced by chemical process industries, including refineries, petrochemicals, fertilizer, pharmaceuticals, pesticides, and dyestuff industries. These wastewaters often contain stubborn organic pollutants that conventional techniques, such as microbial processes cannot efficiently degrade. To tackle this issue, a ternary hybrid technique comprising of adsorption, heterogeneous Fenton process, and sonication has been employed. The study aims to evaluate the effectiveness of this approach for treating and mineralizing wastewater from a fertilizer industry located in Northeast India. The study comprises several key components, starting with the synthesis of the Fe3O4@AC nanocomposite using the co-precipitation method. The nanocomposite is then subjected to comprehensive characterization through various standard techniques, including FTIR, FE-SEM, EDX, TEM, BET surface area analysis, XRD, and magnetic property determination using VSM. Next, the process parameters of wastewater treatment are statistically optimized, focusing on achieving a high level of COD (Chemical Oxygen Demand) removal as the response variable. The Fe3O4@AC nanocomposite's adsorption characteristics and kinetics are also assessed in detail. The remarkable outcome of this study is the successful application of the ternary hybrid technique, combining adsorption, Fenton process, and sonication. This approach proves highly effective, leading to nearly complete mineralization (or TOC removal) of the fertilizer industry wastewater. The results highlight the potential of the Fe3O4@AC nanocomposite and the ternary hybrid technique as a promising solution for tackling challenging wastewater pollutants from various chemical process industries. This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result results from synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Micro-convection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe3O4@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater. The Fe3O4@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.Keywords: chemical oxygen demand (cod), fe3o4@ac nanocomposite, kinetics, lc-ms, rsm, toxicity
Procedia PDF Downloads 72129 Exploring the Ethics and Impact of Slum Tourism in Kenya: A Critical Examination on the Ethical Implications, Legalities and Beneficiaries of This Trade and Long-Term Implications to the Slum Communities
Authors: Joanne Ndirangu
Abstract:
Delving into the intricate landscape of slum tourism in Kenya, this study critically evaluates its ethical implications, legal frameworks, and beneficiaries. By examining the complex interplay between tourism operators, visitors, and slum residents, it seeks to uncover the long-term consequences for the communities involved. Through an exploration of ethical considerations, legal parameters, and the distribution of benefits, this examination aims to shed light on the broader socio-economic impacts of slum tourism in Kenya, particularly on the lives of those residing in these marginalized communities. Assessing the ethical considerations surrounding slum tourism in Kenya, including the potential exploitation of residents and cultural sensitivities and examine the legal frameworks governing slum tourism in Kenya and evaluate their effectiveness in protecting the rights and well-being of slum dwellers. Identifying the primary beneficiaries of slum tourism in Kenya, including tour operators, local businesses, and residents, and analysing the distribution of economic benefits. Exploring the long-term socio-economic impacts of slum tourism on the lives of residents, including changes in living conditions, access to resources, and community development. Understanding the motivations and perceptions of tourists participating in slum tourism in Kenya and assess their role in shaping the industry's dynamics and investigate the potential for sustainable and responsible forms of slum tourism that prioritize community empowerment, cultural exchange, and mutual respect. Providing recommendations for policymakers, tourism stakeholders, and community organizations to promote ethical and sustainable practices in slum tourism in Kenya. The main contributions of researching slum tourism in Kenya would include; Ethical Awareness: By critically examining the ethical implications of slum tourism, the research can raise awareness among tourists, operators, and policymakers about the potential exploitation of marginalized communities. Beneficiary Analysis: By identifying the primary beneficiaries of slum tourism, the research can inform discussions on fair distribution of economic benefits and potential strategies for ensuring that local communities derive meaningful advantages from tourism activities. Socio-Economic Understanding: By exploring the long-term socio-economic impacts of slum tourism, the research can deepen understanding of how tourism activities affect the lives of slum residents, potentially informing policies and initiatives aimed at improving living conditions and promoting community development. Tourist Perspectives: Understanding the motivations and perceptions of tourists participating in slum tourism can provide valuable insights into consumer behaviour and preferences, informing the development of responsible tourism practices and marketing strategies. Promotion of Responsible Tourism: By providing recommendations for promoting ethical and sustainable practices in slum tourism, the research can contribute to the development of guidelines and initiatives aimed at fostering responsible tourism and minimizing negative impacts on host communities. Overall, the research can contribute to a more comprehensive understanding of slum tourism in Kenya and its broader implications, while also offering practical recommendations for promoting ethical and sustainable tourism practices.Keywords: slum tourism, dark tourism, ethical tourism, responsible tourism
Procedia PDF Downloads 68128 The Development of Congeneric Elicited Writing Tasks to Capture Language Decline in Alzheimer Patients
Authors: Lise Paesen, Marielle Leijten
Abstract:
People diagnosed with probable Alzheimer disease suffer from an impairment of their language capacities; a gradual impairment which affects both their spoken and written communication. Our study aims at characterising the language decline in DAT patients with the use of congeneric elicited writing tasks. Within these tasks, a descriptive text has to be written based upon images with which the participants are confronted. A randomised set of images allows us to present the participants with a different task on every encounter, thus allowing us to avoid a recognition effect in this iterative study. This method is a revision from previous studies, in which participants were presented with a larger picture depicting an entire scene. In order to create the randomised set of images, existing pictures were adapted following strict criteria (e.g. frequency, AoA, colour, ...). The resulting data set contained 50 images, belonging to several categories (vehicles, animals, humans, and objects). A pre-test was constructed to validate the created picture set; most images had been used before in spoken picture naming tasks. Hence the same reaction times ought to be triggered in the typed picture naming task. Once validated, the effectiveness of the descriptive tasks was assessed. First, the participants (n=60 students, n=40 healthy elderly) performed a typing task, which provided information about the typing speed of each individual. Secondly, two descriptive writing tasks were carried out, one simple and one complex. The simple task contains 4 images (1 animal, 2 objects, 1 vehicle) and only contains elements with high frequency, a young AoA (<6 years), and fast reaction times. Slow reaction times, a later AoA (≥ 6 years) and low frequency were criteria for the complex task. This task uses 6 images (2 animals, 1 human, 2 objects and 1 vehicle). The data were collected with the keystroke logging programme Inputlog. Keystroke logging tools log and time stamp keystroke activity to reconstruct and describe text production processes. The data were analysed using a selection of writing process and product variables, such as general writing process measures, detailed pause analysis, linguistic analysis, and text length. As a covariate, the intrapersonal interkey transition times from the typing task were taken into account. The pre-test indicated that the new images lead to similar or even faster reaction times compared to the original images. All the images were therefore used in the main study. The produced texts of the description tasks were significantly longer compared to previous studies, providing sufficient text and process data for analyses. Preliminary analysis shows that the amount of words produced differed significantly between the healthy elderly and the students, as did the mean length of production bursts, even though both groups needed the same time to produce their texts. However, the elderly took significantly more time to produce the complex task than the simple task. Nevertheless, the amount of words per minute remained comparable between simple and complex. The pauses within and before words varied, even when taking personal typing abilities (obtained by the typing task) into account.Keywords: Alzheimer's disease, experimental design, language decline, writing process
Procedia PDF Downloads 274127 Promotion of Healthy Food Choices in School Children through Nutrition Education
Authors: Vinti Davar
Abstract:
Introduction: Childhood overweight increases the risk for certain medical and psychological conditions. Millions of school-age children worldwide are affected by serious yet easily treatable and preventable illnesses that inhibit their ability to learn. Healthier children stay in school longer, attend more regularly, learn more and become healthier and more productive adults. Schools are an important setting for nutrition education because one can reach most children, teachers and parents. These years offer a key window for shaping their lifetime habits, which have an impact on their health throughout life. Against this background, an attempt was made to impart nutrition education to school children in Haryana state of India to promote healthy food choices and assess the effectiveness of this program. Methodology: This study was completed in two phases. During the first phase, pre-intervention anthropometric and dietary survey was conducted; the teaching materials for nutrition intervention program were developed and tested; and the questionnaire was validated. In the second phase, an intervention was implemented in two schools of Kurukshetra, Haryana for six months by personal visits once a week. A total of 350 children in the age group of 6-12 years were selected. Out of these, 279 children, 153 boys and 126 girls completed the study. The subjects were divided into four groups namely: underweight, normal, overweight and obese based on body mass index-for-age categories. A power point colorful presentation to improve the quality of tiffin, snacks and meals emphasizing inclusion of all food groups especially vegetables every day and fruits at least 3-4 days per week was used. An extra 20 minutes of aerobic exercise daily was likewise organized and a healthy school environment created. Provision of clean drinking water by school authorities was ensured. Selling of soft drinks and energy-dense snacks in the school canteen as well as advertisements about soft drink and snacks on the school walls were banned. Post intervention, anthropometric indices and food selections were reassessed. Results: The results of this study reiterate the critical role of nutrition education and promotion in improving the healthier food choices by school children. It was observed that normal, overweight and obese children participating in nutrition education intervention program significantly (p≤0.05) increased their daily seasonal fruit and vegetable consumption. Fat and oil consumption was significantly reduced by overweight and obese subjects. Fast food intake was controlled by obese children. The nutrition knowledge of school children significantly improved (p≤0.05) from pre to post intervention. A highly significant increase (p≤0.00) was noted in the nutrition attitude score after intervention in all four groups. Conclusion: This study has shown that a well-planned nutrition education program could improve nutrition knowledge and promote positive changes in healthy food choices. A nutrition program inculcates wholesome eating and active life style habits in children and adolescents that could not only prevent them from chronic diseases and early death but also reduce healthcare cost and enhance the quality of life of citizens and thereby nations.Keywords: children, eating habits healthy food, obesity, school going, fast foods
Procedia PDF Downloads 204126 Efficacy of a Social-Emotional Learning Curriculum for Kindergarten and First Grade Students to Improve Social Adjustment within the School Culture
Authors: Ann P. Daunic, Nancy Corbett
Abstract:
Background and Significance: Researchers emphasize the role that motivation, self-esteem, and self-regulation play in children’s early adjustment to the school culture, including skills such as identifying their own feelings and understanding the feelings of others. As social-emotional growth, academic learning, and successful integration within culture and society are inextricably connected, the Social-Emotional Learning Foundations (SELF) curriculum was designed to integrate social-emotional learning (SEL) instruction within early literacy instruction (specifically, reading) for Kindergarten and first-grade students at risk for emotional and behavioral difficulties. Storybook reading is a typically occurring activity in the primary grades; thus SELF provides an intervention that is both theoretically and practically sound. Methodology: The researchers will report on findings from the first two years of a three-year study funded by the US Department of Education’s Institute of Education Sciences to evaluate the effects of the SELF curriculum versus “business as usual” (BAU). SELF promotes the development of self-regulation by incorporating instructional strategies that support children’s use of SEL related vocabulary, self-talk, and critical thinking. The curriculum consists of a carefully coordinated set of materials and pedagogy designed specifically for primary grade children at early risk for emotional and behavioral difficulties. SELF lessons (approximately 50 at each grade level) are organized around 17 SEL topics within five critical competencies. SELF combines whole-group (the first in each topic) and small-group lessons (the 2nd and 3rd in each topic) to maximize opportunities for teacher modeling and language interactions. The researchers hypothesize that SELF offers a feasible and substantial opportunity within the classroom setting to provide a small-group social-emotional learning intervention integrated with K-1 literacy-related instruction. Participating target students (N = 876) were identified by their teachers as potentially at risk for emotional or behavioral issues. These students were selected from 122 Kindergarten and 100 first grade classrooms across diverse school districts in a southern state in the US. To measure the effectiveness of the SELF intervention, the researchers asked teachers to complete assessments related to social-emotional learning and adjustment to the school culture. A social-emotional learning related vocabulary assessment was administered directly to target students receiving small-group instruction. Data were analyzed using a 3-level MANOVA model with full information maximum likelihood to estimate coefficients and test hypotheses. Major Findings: SELF had significant positive effects on vocabulary, knowledge, and skills associated with social-emotional competencies, as evidenced by results from the measures administered. Effect sizes ranged from 0.41 for group (SELF vs. BAU) differences in vocabulary development to 0.68 for group differences in SEL related knowledge. Conclusion: Findings from two years of data collection indicate that SELF improved outcomes related to social-emotional learning and adjustment to the school culture. This study thus supports the integration of SEL with literacy instruction as a feasible and effective strategy to improve outcomes for K-1 students at risk for emotional and behavioral difficulties.Keywords: Socio-cultural context for learning, social-emotional learning, social skills, vocabulary development
Procedia PDF Downloads 125125 Blended Learning Instructional Approach to Teach Pharmaceutical Calculations
Authors: Sini George
Abstract:
Active learning pedagogies are valued for their success in increasing 21st-century learners’ engagement, developing transferable skills like critical thinking or quantitative reasoning, and creating deeper and more lasting educational gains. 'Blended learning' is an active learning pedagogical approach in which direct instruction moves from the group learning space to the individual learning space, and the resulting group space is transformed into a dynamic, interactive learning environment where the educator guides students as they apply concepts and engage creatively in the subject matter. This project aimed to develop a blended learning instructional approach to teaching concepts around pharmaceutical calculations to year 1 pharmacy students. The wrong dose, strength or frequency of a medication accounts for almost a third of medication errors in the NHS therefore, progression to year 2 requires a 70% pass in this calculation test, in addition to the standard progression requirements. Many students were struggling to achieve this requirement in the past. It was also challenging to teach these concepts to students of a large class (> 130) with mixed mathematical abilities, especially within a traditional didactic lecture format. Therefore, short screencasts with voice-over of the lecturer were provided in advance of a total of four teaching sessions (two hours/session), incorporating core content of each session and talking through how they approached the calculations to model metacognition. Links to the screencasts were posted on the learning management. Viewership counts were used to determine that the students were indeed accessing and watching the screencasts on schedule. In the classroom, students had to apply the knowledge learned beforehand to a series of increasingly difficult set of questions. Students were then asked to create a question in group settings (two students/group) and to discuss the questions created by their peers in their groups to promote deep conceptual learning. Students were also given time for question-and-answer period to seek clarifications on the concepts covered. Student response to this instructional approach and their test grades were collected. After collecting and organizing the data, statistical analysis was carried out to calculate binomial statistics for the two data sets: the test grade for students who received blended learning instruction and the test grades for students who received instruction in a standard lecture format in class, to compare the effectiveness of each type of instruction. Student response and their performance data on the assessment indicate that the learning of content in the blended learning instructional approach led to higher levels of student engagement, satisfaction, and more substantial learning gains. The blended learning approach enabled each student to learn how to do calculations at their own pace freeing class time for interactive application of this knowledge. Although time-consuming for an instructor to implement, the findings of this research demonstrate that the blended learning instructional approach improves student academic outcomes and represents a valuable method to incorporate active learning methodologies while still maintaining broad content coverage. Satisfaction with this approach was high, and we are currently developing more pharmacy content for delivery in this format.Keywords: active learning, blended learning, deep conceptual learning, instructional approach, metacognition, pharmaceutical calculations
Procedia PDF Downloads 172124 Accurate Energy Assessment Technique for Mine-Water District Heat Network
Authors: B. Philip, J. Littlewood, R. Radford, N. Evans, T. Whyman, D. P. Jones
Abstract:
UK buildings and energy infrastructures are heavily dependent on natural gas, a large proportion of which is used for domestic space heating. However, approximately half of the gas consumed in the UK is imported. Improving energy security and reducing carbon emissions are major government drivers for reducing gas dependency. In order to do so there needs to be a wholesale shift in the energy provision to householders without impacting on thermal comfort levels, convenience or cost of supply to the end user. Heat pumps are seen as a potential alternative in modern well insulated homes, however, can the same be said of older homes? A large proportion of housing stock in Britain was built prior to 1919. The age of the buildings bears testimony to the quality of construction; however, their thermal performance falls far below the minimum currently set by UK building standards. In recent years significant sums of money have been invested to improve energy efficiency and combat fuel poverty in some of the most deprived areas of Wales. Increasing energy efficiency of older properties remains a significant challenge, which cannot be achieved through insulation and air-tightness interventions alone, particularly when alterations to historically important architectural features of the building are not permitted. This paper investigates the energy demand of pre-1919 dwellings in a former Welsh mining village, the feasibility of meeting that demand using water from the disused mine workings to supply a district heat network and potential barriers to success of the scheme. The use of renewable solar energy generation and storage technologies, both thermal and electrical, to reduce the load and offset increased electricity demand, are considered. A wholistic surveying approach to provide a more accurate assessment of total household heat demand is proposed. Several surveying techniques, including condition surveys, air permeability, heat loss calculations, and thermography were employed to provide a clear picture of energy demand. Additional insulation can bring unforeseen consequences which are detrimental to the fabric of the building, potentially leading to accelerated dilapidation of the asset being ‘protected’. Increasing ventilation should be considered in parallel, to compensate for the associated reduction in uncontrolled infiltration. The effectiveness of thermal performance improvements are demonstrated and the detrimental effects of incorrect material choice and poor installation are highlighted. The findings show estimated heat demand to be in close correlation to household energy bills. Major areas of heat loss were identified such that improvements to building thermal performance could be targeted. The findings demonstrate that the use of heat pumps in older buildings is viable, provided sufficient improvement to thermal performance is possible. Addition of passive solar thermal and photovoltaic generation can help reduce the load and running cost for the householder. The results were used to predict future heat demand following energy efficiency improvements, thereby informing the size of heat pumps required.Keywords: heat demand, heat pump, renewable energy, retrofit
Procedia PDF Downloads 92123 Management of the Experts in the Research Evaluation System of the University: Based on National Research University Higher School of Economics Example
Authors: Alena Nesterenko, Svetlana Petrikova
Abstract:
Research evaluation is one of the most important elements of self-regulation and development of researchers as it is impartial and independent process of assessment. The method of expert evaluations as a scientific instrument solving complicated non-formalized problems is firstly a scientifically sound way to conduct the assessment which maximum effectiveness of work at every step and secondly the usage of quantitative methods for evaluation, assessment of expert opinion and collective processing of the results. These two features distinguish the method of expert evaluations from long-known expertise widespread in many areas of knowledge. Different typical problems require different types of expert evaluations methods. Several issues which arise with these methods are experts’ selection, management of assessment procedure, proceeding of the results and remuneration for the experts. To address these issues an on-line system was created with the primary purpose of development of a versatile application for many workgroups with matching approaches to scientific work management. Online documentation assessment and statistics system allows: - To realize within one platform independent activities of different workgroups (e.g. expert officers, managers). - To establish different workspaces for corresponding workgroups where custom users database can be created according to particular needs. - To form for each workgroup required output documents. - To configure information gathering for each workgroup (forms of assessment, tests, inventories). - To create and operate personal databases of remote users. - To set up automatic notification through e-mail. The next stage is development of quantitative and qualitative criteria to form a database of experts. The inventory was made so that the experts may not only submit their personal data, place of work and scientific degree but also keywords according to their expertise, academic interests, ORCID, Researcher ID, SPIN-code RSCI, Scopus AuthorID, knowledge of languages, primary scientific publications. For each project, competition assessments are processed in accordance to ordering party demands in forms of apprised inventories, commentaries (50-250 characters) and overall review (1500 characters) in which expert states the absence of conflict of interest. Evaluation is conducted as follows: as applications are added to database expert officer selects experts, generally, two persons per application. Experts are selected according to the keywords; this method proved to be good unlike the OECD classifier. The last stage: the choice of the experts is approved by the supervisor, the e-mails are sent to the experts with invitation to assess the project. An expert supervisor is controlling experts writing reports for all formalities to be in place (time-frame, propriety, correspondence). If the difference in assessment exceeds four points, the third evaluation is appointed. As the expert finishes work on his expert opinion, system shows contract marked ‘new’, managers commence with the contract and the expert gets e-mail that the contract is formed and ready to be signed. All formalities are concluded and the expert gets remuneration for his work. The specificity of interaction of the examination officer with other experts will be presented in the report.Keywords: expertise, management of research evaluation, method of expert evaluations, research evaluation
Procedia PDF Downloads 205122 Simulation-based Decision Making on Intra-hospital Patient Referral in a Collaborative Medical Alliance
Authors: Yuguang Gao, Mingtao Deng
Abstract:
The integration of independently operating hospitals into a unified healthcare service system has become a strategic imperative in the pursuit of hospitals’ high-quality development. Central to the concept of group governance over such transformation, exemplified by a collaborative medical alliance, is the delineation of shared value, vision, and goals. Given the inherent disparity in capabilities among hospitals within the alliance, particularly in the treatment of different diseases characterized by Disease Related Groups (DRG) in terms of effectiveness, efficiency and resource utilization, this study aims to address the centralized decision-making of intra-hospital patient referral within the medical alliance to enhance the overall production and quality of service provided. We first introduce the notion of production utility, where a higher production utility for a hospital implies better performance in treating patients diagnosed with that specific DRG group of diseases. Then, a Discrete-Event Simulation (DES) framework is established for patient referral among hospitals, where patient flow modeling incorporates a queueing system with fixed capacities for each hospital. The simulation study begins with a two-member alliance. The pivotal strategy examined is a "whether-to-refer" decision triggered when the bed usage rate surpasses a predefined threshold for either hospital. Then, the decision encompasses referring patients to the other hospital based on DRG groups’ production utility differentials as well as bed availability. The objective is to maximize the total production utility of the alliance while minimizing patients’ average length of stay and turnover rate. Thus the parameter under scrutiny is the bed usage rate threshold, influencing the efficacy of the referral strategy. Extending the study to a three-member alliance, which could readily be generalized to multi-member alliances, we maintain the core setup while introducing an additional “which-to-refer" decision that involves referring patients with specific DRG groups to the member hospital according to their respective production utility rankings. The overarching goal remains consistent, for which the bed usage rate threshold is once again a focal point for analysis. For the two-member alliance scenario, our simulation results indicate that the optimal bed usage rate threshold hinges on the discrepancy in the number of beds between member hospitals, the distribution of DRG groups among incoming patients, and variations in production utilities across hospitals. Transitioning to the three-member alliance, we observe similar dependencies on these parameters. Additionally, it becomes evident that an imbalanced distribution of DRG diagnoses and further disparity in production utilities among member hospitals may lead to an increase in the turnover rate. In general, it was found that the intra-hospital referral mechanism enhances the overall production utility of the medical alliance compared to individual hospitals without partnership. Patients’ average length of stay is also reduced, showcasing the positive impact of the collaborative approach. However, the turnover rate exhibits variability based on parameter setups, particularly when patients are redirected within the alliance. In conclusion, the re-structuring of diagnostic disease groups within the medical alliance proves instrumental in improving overall healthcare service outcomes, providing a compelling rationale for the government's promotion of patient referrals within collaborative medical alliances.Keywords: collaborative medical alliance, disease related group, patient referral, simulation
Procedia PDF Downloads 58121 Teachers Engagement to Teaching: Exploring Australian Teachers’ Attribute Constructs of Resilience, Adaptability, Commitment, Self/Collective Efficacy Beliefs
Authors: Lynn Sheridan, Dennis Alonzo, Hoa Nguyen, Andy Gao, Tracy Durksen
Abstract:
Disruptions to teaching (e.g., COVID-related) have increased work demands for teachers. There is an opportunity for research to explore evidence-informed steps to support teachers. Collective evidence informs data on teachers’ personal attributes (e.g., self-efficacy beliefs) in the workplace are seen to promote success in teaching and support teacher engagement. Teacher engagement plays a role in students’ learning and teachers’ effectiveness. Engaged teachers are better at overcoming work-related stress, burnout and are more likely to take on active roles. Teachers’ commitment is influenced by a host of personal (e.g., teacher well-being) and environmental factors (e.g., job stresses). The job demands-resources model provided a conceptual basis for examining how teachers’ well-being, and is influenced by job demands and job resources. Job demands potentially evoke strain and exceed the employee’s capability to adapt. Job resources entail what the job offers to individual teachers (e.g., organisational support), helping to reduce job demands. The application of the job demands-resources model involves gathering an evidence-base of and connection to personal attributes (job resources). The study explored the association between constructs (resilience, adaptability, commitment, self/collective efficacy) and a teacher’s engagement with the job. The paper sought to elaborate on the model and determine the associations between key constructs of well-being (resilience, adaptability), commitment, and motivation (self and collective-efficacy beliefs) to teachers’ engagement in teaching. Data collection involved online a multi-dimensional instrument using validated items distributed from 2020-2022. The instrument was designed to identify construct relationships. The participant number was 170. Data Analysis: The reliability coefficients, means, standard deviations, skewness, and kurtosis statistics for the six variables were completed. All scales have good reliability coefficients (.72-.96). A confirmatory factor analysis (CFA) and structural equation model (SEM) were performed to provide measurement support and to obtain latent correlations among factors. The final analysis was performed using structural equation modelling. Several fit indices were used to evaluate the model fit, including chi-square statistics and root mean square error of approximation. The CFA and SEM analysis was performed. The correlations of constructs indicated positive correlations exist, with the highest found between teacher engagement and resilience (r=.80) and the lowest between teacher adaptability and collective teacher efficacy (r=.22). Given the associations; we proceeded with CFA. The CFA yielded adequate fit: CFA fit: X (270, 1019) = 1836.79, p < .001, RMSEA = .04, and CFI = .94, TLI = .93 and SRMR = .04. All values were within the threshold values, indicating a good model fit. Results indicate that increasing teacher self-efficacy beliefs will increase a teacher’s level of engagement; that teacher ‘adaptability and resilience are positively associated with self-efficacy beliefs, as are collective teacher efficacy beliefs. Implications for school leaders and school systems: 1. investing in increasing teachers’ sense of efficacy beliefs to manage work demands; 2. leadership approaches can enhance teachers' adaptability and resilience; and 3. a culture of collective efficacy support. Preparing teachers for now and in the future offers an important reminder to policymakers and school leaders on the importance of supporting teachers’ personal attributes when faced with the challenging demands of the job.Keywords: collective teacher efficacy, teacher self-efficacy, job demands, teacher engagement
Procedia PDF Downloads 124120 Absenteeism in Polytechnical University Studies: Quantification and Identification of the Causes at Universitat Politècnica de Catalunya
Authors: E. Mas de les Valls, M. Castells-Sanabra, R. Capdevila, N. Pla, Rosa M. Fernandez-Canti, V. de Medina, A. Mujal, C. Barahona, E. Velo, M. Vigo, M. A. Santos, T. Soto
Abstract:
Absenteeism in universities, including polytechnical universities, is influenced by a variety of factors. Some factors overlap with those causing absenteeism in schools, while others are specific to the university and work-related environments. Indeed, these factors may stem from various sources, including students, educators, the institution itself, or even the alignment of degree curricula with professional requirements. In Spain, there has been an increase in absenteeism in polytechnical university studies, especially after the Covid crisis, posing a significant challenge for institutions to address. This study focuses on Universitat Politècnica de Catalunya• BarcelonaTech (UPC) and aims to quantify the current level of absenteeism and identify its main causes. The study is part of the teaching innovation project ASAP-UPC, which aims to minimize absenteeism through the redesign of teaching methodologies. By understanding the factors contributing to absenteeism, the study seeks to inform the subsequent phases of the ASAP-UPC project, which involve implementing methodologies to minimize absenteeism and evaluating their effectiveness. The study utilizes surveys conducted among students and polytechnical companies. Students' perspectives are gathered through both online surveys and in-person interviews. The surveys inquire about students' interest in attending classes, skill development throughout their UPC experience, and their perception of the skills required for a career in a polytechnical field. Additionally, polytechnical companies are surveyed regarding the skills they seek in prospective employees. The collected data is then analyzed to identify patterns and trends. This analysis involves organizing and categorizing the data, identifying common themes, and drawing conclusions based on the findings. This mixed-method approach has revealed that higher levels of absenteeism are observed in large student groups at both the Bachelor's and Master's degree levels. However, the main causes of absenteeism differ between these two levels. At the Bachelor's level, many students express dissatisfaction with in-person classes, perceiving them as overly theoretical and lacking a balance between theory, experimental practice, and problem-solving components. They also find a lack of relevance to professional needs. Consequently, they resort to using online available materials developed during the Covid crisis and attending private academies for exam preparation instead. On the other hand, at the Master's level, absenteeism primarily arises from schedule incompatibility between university and professional work. There is a discrepancy between the skills highly valued by companies and the skills emphasized during the studies, aligning partially with students' perceptions. These findings are of theoretical importance as they shed light on areas that can be improved to offer a more beneficial educational experience to students at UPC. The study also has potential applicability to other polytechnic universities, allowing them to adapt the surveys and apply the findings to their specific contexts. By addressing the identified causes of absenteeism, universities can enhance the educational experience and better prepare students for successful careers in polytechnical fields.Keywords: absenteeism, polytechnical studies, professional skills, university challenges
Procedia PDF Downloads 68119 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques
Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu
Abstract:
Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare
Procedia PDF Downloads 64