Search results for: Gagne’s learning model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22273

Search results for: Gagne’s learning model

15613 Peer-Assisted Learning of Ebm in, a UK Medical School: Evaluation of the NICE Evidence Search Student Champion Scheme

Authors: Emily Jin, Harry Sharples, Anne Weist

Abstract:

Introduction: NICE Evidence Search Student Champion Scheme is a peer-assisted learning scheme that aims to improve the routine use of evidence-based information by future health and social care staff. The focus is on the NICE evidence search portal that provides selected information from more than 800 reliable health, social care, and medicines sources, including up-to-date guidelines and information for the public. This paper aims to evaluate the effectiveness of the scheme when implemented in Liverpool School of Medicine and to understand the experiences of those attending. Methods: Twelve student champions were recruited and trained in February 2020 as peer tutors during a workshop facilitated by NICE. Cascade sessions were then organised and delivered on an optional basis for students, in small groups of < 10 to approximately 70 attendees. Surveys were acquired immediately before and 8-12 weeks after cascade sessions (n=47 and 45 respectively). Data from these surveys facilitated the analysis of the scheme. Results: Surveys demonstrated 74% of all attendees frequently searched for health and social care information online as a part of their studies. However, only 15% of attendees reported having prior formal training on searching for health information, despite receiving such training earlier on in the curriculum. After attending cascade sessions, students reported a 58% increase in confidence when searching for information using evidence search, from a pre-session a baseline of 36%. Conclusion: NICE Evidence Search Student Champion Scheme provided clear benefits for attending students, increasing confidence in searching for peer-reviewed, mainly secondary sources of health information. The lack of reported training represents the unmet need that the champion scheme satisfies, and this likely benefits student champions as well as attendees. Increasing confidence in searching for healthcare information online may support future evidence-based decision-making.

Keywords: evidence-based medicine, NICE, medical education, medical school, peer-assisted learning

Procedia PDF Downloads 136
15612 Newly-Rediscovered Manuscripts Talking about Seventeenth-Century French Harpsichord Pedagogy

Authors: David Chung

Abstract:

The development of seventeenth-century French harpsichord music is enigmatic in several respects. Although little is known about the formation of this style before 1650 (we have names of composers, but no surviving music), the style has attained a high degree of refinement and sophistication in the music of the earliest known masters (e.g. Chambonnières, Louis Couperin and D’Anglebert). In fact, how the seventeenth-century musicians acquired the skills of their art remains largely steeped in mystery, as the earliest major treatise on French keyboard pedagogy was not published until 1702 by Saint Lambert. This study fills this lacuna by surveying some twenty recently-rediscovered manuscripts, which offer ample materials for revisiting key issues pertaining to seventeenth-century harpsichord pedagogy. By analyzing the musical contents, the verbal information and explicit notation (such as written-out ornaments and rhythmic effects), this study provides a rich picture of the process of learning at the time, with engaging details of performance nuances often lacking in tutors and treatises. Of even greater significance, that creative skills (such as continuo and ornamentation) were taught alongside fundamental knowledge (solfèges, note values, etc.) at the earliest stage of learning offers fresh challenge for modern pedagogues to rethink how harpsichord pedagogy can be revamped to cater for our own pedagogical and aesthetic needs.

Keywords: French, harpsichord, pedagogy, seventeenth century

Procedia PDF Downloads 261
15611 Inclusive Practices in Health Sciences: Equity Proofing Higher Education Programs

Authors: Mitzi S. Brammer

Abstract:

Given that the cultural make-up of programs of study in institutions of higher learning is becoming increasingly diverse, much has been written about cultural diversity from a university-level perspective. However, there are little data in the way of specific programs and how they address inclusive practices when teaching and working with marginalized populations. This research study aimed to discover baseline knowledge and attitudes of health sciences faculty, instructional staff, and students related to inclusive teaching/learning and interactions. Quantitative data were collected via an anonymous online survey (one designed for students and another designed for faculty/instructional staff) using a web-based program called Qualtrics. Quantitative data were analyzed amongst the faculty/instructional staff and students, respectively, using descriptive and comparative statistics (t-tests). Additionally, some participants voluntarily engaged in a focus group discussion in which qualitative data were collected around these same variables. Collecting qualitative data to triangulate the quantitative data added trustworthiness to the overall data. The research team analyzed collected data and compared identified categories and trends, comparing those data between faculty/staff and students, and reported results as well as implications for future study and professional practice.

Keywords: inclusion, higher education, pedagogy, equity, diversity

Procedia PDF Downloads 69
15610 Evaluating Hourly Sulphur Dioxide and Ground Ozone Simulated with the Air Quality Model in Lima, Peru

Authors: Odón R. Sánchez-Ccoyllo, Elizabeth Ayma-Choque, Alan Llacza

Abstract:

Sulphur dioxide (SO₂) and surface-ozone (O₃) concentrations are associated with diseases. The objective of this research is to evaluate the effectiveness of the air-quality-WRF-Chem model with a horizontal resolution of 5 km x 5 km. For this purpose, the measurements of the hourly SO₂ and O₃ concentrations available in three air quality monitoring stations in Lima, Peru were used for the purpose of validating the simulations of the SO₂ and O₃ concentrations obtained with the WRF-Chem model in February 2018. For the quantitative evaluation of the simulations of these gases, statistical techniques were implemented, such as the average of the simulations; the average of the measurements; the Mean Bias (MeB); the Mean Error (MeE); and the Root Mean Square Error (RMSE). The results of these statistical metrics indicated that the simulated SO₂ and O₃ values over-predicted the SO₂ and O₃ measurements. For the SO₂ concentration, the MeB values varied from 0.58 to 26.35 µg/m³; the MeE values varied from 8.75 to 26.5 µg/m³; the RMSE values varied from 13.3 to 31.79 µg/m³; while for O₃ concentrations the statistical values of the MeB varied from 37.52 to 56.29 µg/m³; the MeE values varied from 37.54 to 56.70 µg/m³; the RMSE values varied from 43.05 to 69.56 µg/m³.

Keywords: ground-ozone, lima, sulphur dioxide, WRF-chem

Procedia PDF Downloads 140
15609 Experiences and Views of Foundation Phase Teachers When Teaching English First Additional Language in Rural Schools

Authors: Rendani Mercy Makhwathana

Abstract:

This paper intends to explore the experiences and views of Foundation Phase teachers when teaching English First Additional Language in rural public schools. Teachers all over the world are pillars of any education system. Consequently, any education transformation should start with teachers as critical role players in the education system. As a result, teachers’ experiences and views are worth consideration, for they impact on learners learning and the wellbeing of education in general. An exploratory qualitative approach with the use of phenomenological research design was used in this paper. The population for this paper comprised all Foundation Phase teachers in the district. Purposive sampling technique was used to select a sample of 15 Foundation Phase teachers from five rural-based schools. Data was collected through classroom observation and individual face-to-face interviews. Data were categorised, analysed and interpreted. The findings revealed that from time-to-time teachers experiences one or more challenging situations, learners’ low participation in the classroom to lack of resources. This paper recommends that teachers should be provided with relevant resources and support to effectively teach English First Additional Language.

Keywords: the education system, first additional language, foundation phase, intermediate phase, language of learning and teaching, medium of instruction, teacher professional development

Procedia PDF Downloads 98
15608 Abandoning 'One-Time' Optional Information Literacy Workshops for Year 1 Medical Students and Gearing towards an 'Embedded Librarianship' Approach

Authors: R. L. David, E. C. P. Tan, M. A. Ferenczi

Abstract:

This study aimed to investigate the effect of a 'one-time' optional Information Literacy (IL) workshop to enhance Year 1 medical students' literature search, writing, and citation management skills as directed by a customized five-year IL framework developed for LKC Medicine students. At the end of the IL workshop, the overall rated 'somewhat difficult' when finding, citing, and using information from sources. The study method is experimental using a standardized IL test to study the cohort effect of a 'one-time' optional IL workshop on Year 1 students; experimental group in comparison to Year 2 students; control group. Test scores from both groups were compared and analyzed using mean scores and one-way analysis of variance (ANOVA). Unexpectedly, there were no statistically significant differences between group means as determined by One-Way ANOVA (F₁,₁₉₃ = 3.37, p = 0.068, ηp² = 0.017). Challenges and shortfalls posed by 'one-time' interventions raised a rich discussion to adopt an 'embedded librarianship' approach, which shifts the medial librarians' role into the curriculum and uses Team Based Learning to teach IL skills to medical students. The customized five-year IL framework developed for LKC Medicine students becomes a useful librarian-faculty model for embedding and bringing IL into the classroom.

Keywords: information literacy, 'one-time' interventions, medical students, standardized tests, embedded librarianship, curriculum, medical librarians

Procedia PDF Downloads 115
15607 The Effects of Consistently Reading Whole Novels on the Reading Comprehension of Adolescents with Developmental Disabilities

Authors: Pierre Brocas, Konstantinos Rizos

Abstract:

This study was conducted to test the effects of introducing a consistent pace and volume of reading whole narratives on adolescents' reading comprehension with a diagnosis of autism spectrum disorder (ASD). The study was inspired by previous studies conducted on poorer adolescent readers in English schools. The setting was a Free Special Education Needs school in England. Nine male and one female student, between 11-13 years old, across two classrooms participated in the study. All students had a diagnosis of ASD, and all were classified as advanced learners. The classroom teachers introduced reading a whole challenging novel in 12 weeks with consistency as the independent variable. The study used a before-and-after design of testing the participants’ reading comprehension using standardised tests. The participants made a remarkable 1.8 years’ mean progress on the standardised tests of reading comprehension, with three participants making 4+ years progress. The researchers hypothesise that reading novels aloud and at a fast pace in each lesson, that are challenging but appropriate to the participants’ learning level, may have a beneficial effect on the reading comprehension of adolescents with learning difficulties, giving them a more engaged uninterrupted reading experience over a sustained period. However, more studies need to be conducted to test the independent variable across a bigger and more diverse population with a stronger design.

Keywords: autism, reading comprehension, developmental disabilities, narratives

Procedia PDF Downloads 203
15606 Stability Analysis of Rock Tunnel Subjected to Internal Blast Loading

Authors: Mohammad Zaid, Md. Rehan Sadique

Abstract:

Underground structures are an integral part of urban infrastructures. Tunnels are being used for the transportation of humans and goods from distance to distance. Terrorist attacks on underground structures such as tunnels have resulted in the improvement of design methodologies of tunnels. The design of underground tunnels must include anti-terror design parameters. The study has been carried out to analyse the rock tunnel when subjected to internal blast loading. The finite element analysis has been carried out for 30m by 30m of the cross-section of the tunnel and 35m length of extrusion of the rock tunnel model. The effect of tunnel diameter and overburden depth of tunnel has been studied under internal blast loading. Four different diameters of tunnel considered are 5m, 6m, 7m, and 8m, and four different overburden depth of tunnel considered are 5m, 7.5m, 10m, and 12.5m. The mohr-coulomb constitutive material model has been considered for the Quartzite rock. A concrete damage plasticity model has been adopted for concrete tunnel lining. For the trinitrotoluene (TNT) Jones-Wilkens-Lee (JWL) material model has been considered. Coupled-Eulerian-Lagrangian (CEL) approach for blast analysis has been considered in the present study. The present study concludes that a shallow tunnel having smaller diameter needs more attention in comparison to blast resistant design of deep tunnel having a larger diameter. Further, in the case of shallow tunnels, more bulging has been observed, and a more substantial zone of rock has been affected by internal blast loading.

Keywords: finite element method, blast, rock, tunnel, CEL, JWL

Procedia PDF Downloads 152
15605 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry

Authors: Dhanuj M. Gandikota

Abstract:

Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.

Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry

Procedia PDF Downloads 106
15604 Sensitivity Analysis of Principal Stresses in Concrete Slab of Rigid Pavement Made From Recycled Materials

Authors: Aleš Florian, Lenka Ševelová

Abstract:

Complex sensitivity analysis of stresses in a concrete slab of the real type of rigid pavement made from recycled materials is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangements of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with the help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional structural layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used. For sensitivity analysis the sensitivity coefficient based on the Spearman rank correlation coefficient is utilized. As a result, the estimates of influence of random variability of individual input variables on the random variability of principal stresses s1 and s3 in 53 points on the upper and lower surface of the concrete slabs are obtained.

Keywords: concrete, FEM, pavement, sensitivity, simulation

Procedia PDF Downloads 332
15603 Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings

Authors: Gaelle Candel, David Naccache

Abstract:

t-SNE is an embedding method that the data science community has widely used. It helps two main tasks: to display results by coloring items according to the item class or feature value; and for forensic, giving a first overview of the dataset distribution. Two interesting characteristics of t-SNE are the structure preservation property and the answer to the crowding problem, where all neighbors in high dimensional space cannot be represented correctly in low dimensional space. t-SNE preserves the local neighborhood, and similar items are nicely spaced by adjusting to the local density. These two characteristics produce a meaningful representation, where the cluster area is proportional to its size in number, and relationships between clusters are materialized by closeness on the embedding. This algorithm is non-parametric. The transformation from a high to low dimensional space is described but not learned. Two initializations of the algorithm would lead to two different embeddings. In a forensic approach, analysts would like to compare two or more datasets using their embedding. A naive approach would be to embed all datasets together. However, this process is costly as the complexity of t-SNE is quadratic and would be infeasible for too many datasets. Another approach would be to learn a parametric model over an embedding built with a subset of data. While this approach is highly scalable, points could be mapped at the same exact position, making them indistinguishable. This type of model would be unable to adapt to new outliers nor concept drift. This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved. The optimization process minimizes two costs, one relative to the embedding shape and the second relative to the support embedding’ match. The embedding with the support process can be repeated more than once, with the newly obtained embedding. The successive embedding can be used to study the impact of one variable over the dataset distribution or monitor changes over time. This method has the same complexity as t-SNE per embedding, and memory requirements are only doubled. For a dataset of n elements sorted and split into k subsets, the total embedding complexity would be reduced from O(n²) to O(n²=k), and the memory requirement from n² to 2(n=k)², which enables computation on recent laptops. The method showed promising results on a real-world dataset, allowing to observe the birth, evolution, and death of clusters. The proposed approach facilitates identifying significant trends and changes, which empowers the monitoring high dimensional datasets’ dynamics.

Keywords: concept drift, data visualization, dimension reduction, embedding, monitoring, reusability, t-SNE, unsupervised learning

Procedia PDF Downloads 145
15602 Automated Process Quality Monitoring and Diagnostics for Large-Scale Measurement Data

Authors: Hyun-Woo Cho

Abstract:

Continuous monitoring of industrial plants is one of necessary tasks when it comes to ensuring high-quality final products. In terms of monitoring and diagnosis, it is quite critical and important to detect some incipient abnormal events of manufacturing processes in order to improve safety and reliability of operations involved and to reduce related losses. In this work a new multivariate statistical online diagnostic method is presented using a case study. For building some reference models an empirical discriminant model is constructed based on various past operation runs. When a fault is detected on-line, an on-line diagnostic module is initiated. Finally, the status of the current operating conditions is compared with the reference model to make a diagnostic decision. The performance of the presented framework is evaluated using a dataset from complex industrial processes. It has been shown that the proposed diagnostic method outperforms other techniques especially in terms of incipient detection of any faults occurred.

Keywords: data mining, empirical model, on-line diagnostics, process fault, process monitoring

Procedia PDF Downloads 404
15601 Early Childhood Teacher Turnover in an Early Head Start Setting: A Qualitative Examination

Authors: Jennifer Sturgeon

Abstract:

Stable relationships provide a predictable and trusting environment and are essential for early development, but high teacher turnover rates in childcare settings make it challenging for infants and toddlers to form stable relationships with their teachers. This can have an adverse effect on development and learning. The qualitative study discussed in this article draws from the experiences of early Head Start teachers and administrators to describe both the impact of teacher turnover and the motivational factors that contribute to teacher retention. A case study approach was used and included classroom observations, a review of exit interviews, and perceptions from focus groups of early Head Start staff in an urban early Head Start childcare center. Emerging from the case study was the discovery that teacher turnover has an impact on the social-emotional development of toddlers, particularly in self-regulation. Additional key findings that emerged include teacher turnover leading to negative effects on learning, a decrease in preschool preparation, and increased chaos in the classroom and center. Motivational factors that contributed to teacher retention included positive leadership, the mission to make a difference, and fair compensation.

Keywords: early childhood, teacher turnover, continuity of care, early head start

Procedia PDF Downloads 73
15600 Embedded Visual Perception for Autonomous Agricultural Machines Using Lightweight Convolutional Neural Networks

Authors: René A. Sørensen, Søren Skovsen, Peter Christiansen, Henrik Karstoft

Abstract:

Autonomous agricultural machines act in stochastic surroundings and therefore, must be able to perceive the surroundings in real time. This perception can be achieved using image sensors combined with advanced machine learning, in particular Deep Learning. Deep convolutional neural networks excel in labeling and perceiving color images and since the cost of high-quality RGB-cameras is low, the hardware cost of good perception depends heavily on memory and computation power. This paper investigates the possibility of designing lightweight convolutional neural networks for semantic segmentation (pixel wise classification) with reduced hardware requirements, to allow for embedded usage in autonomous agricultural machines. Using compression techniques, a lightweight convolutional neural network is designed to perform real-time semantic segmentation on an embedded platform. The network is trained on two large datasets, ImageNet and Pascal Context, to recognize up to 400 individual classes. The 400 classes are remapped into agricultural superclasses (e.g. human, animal, sky, road, field, shelterbelt and obstacle) and the ability to provide accurate real-time perception of agricultural surroundings is studied. The network is applied to the case of autonomous grass mowing using the NVIDIA Tegra X1 embedded platform. Feeding case-specific images to the network results in a fully segmented map of the superclasses in the image. As the network is still being designed and optimized, only a qualitative analysis of the method is complete at the abstract submission deadline. Proceeding this deadline, the finalized design is quantitatively evaluated on 20 annotated grass mowing images. Lightweight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show competitive performance with regards to accuracy and speed. It is feasible to provide cost-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.

Keywords: autonomous agricultural machines, deep learning, safety, visual perception

Procedia PDF Downloads 401
15599 Empowering Tomorrow's Educators: A Transformative Journey through Education for Sustainable Development

Authors: Helga Mayr

Abstract:

In our ongoing effort to address urgent global challenges related to sustainability, higher education institutions play a central role in raising a generation of informed and empowered citizens committed to sustainable development. This paper presents the preliminary results of the so far realized evaluation of a compulsory module on education for sustainable development (ESD) offered to students in the bachelor's program in elementary education at the University College of Teacher Education Tyrol (PH Tirol), Austria. The module includes a lecture on sustainability and education as well as a project-based seminar that aims to foster a deep understanding of ESD and its application in pedagogical practice. The study examines various dimensions related to the module's impact on participating students, focusing on prevalent sustainability concepts, intentions, actions, general and sustainability-related self-efficacy, perceived competence related to ESD, and ESD-related self-efficacy. In addition, the research addresses assessment of the learning process. To obtain a comprehensive overview of the effectiveness of the module, a mixed methods approach was/is used in the evaluation. Quantitative data was/is collected through surveys and self-assessment instruments, while qualitative findings were/will be obtained through focus group interviews and reflective analysis. The PH Tirol is collaborating with another University College of Teacher Education (Styria) and a university of applied sciences in Switzerland (UAS of the Grisons) to broaden the scope of the analysis and allow for comparative findings. Preliminary results indicate that students have a relatively rudimentary understanding of sustainability. The extent to which completion of the module influences understanding of sustainability, awareness, intentions, and actions, as well as self-efficacy, is currently under investigation. The results will be available at the time of the conference and will be presented there. In terms of learning, the project-based seminar, which promotes hands-on engagement with ESD, was evaluated for its effectiveness in fostering key sustainability competencies as well as sustainability-related and ESD-related self-efficacy. The research not only provides insights into the effectiveness of the compulsory module ESD at the PH Tirol but also contributes to the broader discourse on integrating ESD into teacher education.

Keywords: education for sustainable development, teacher education, project-based learning, effectiveness measurements

Procedia PDF Downloads 76
15598 Task-Based Teaching for Developing Communication Skills in Second Language Learners

Authors: Geeta Goyal

Abstract:

Teaching-learning of English as a second language is a challenge for the learner as well as the teacher. Whereas a student may find it hard and get demotivated while communicating in a language other than mother tongue, a teacher, too, finds it difficult to integrate necessary teaching material in lesson plans to maximize the outcome. Studies reveal that task-based teaching can be useful in diverse contexts in a second language classroom as it helps in creating opportunities for language exposure as per learners' interest and capability levels, which boosts their confidence and learning efficiency. The present study has analysed the impact of various activities carried out in a heterogenous group of second language learners at tertiary level in a semi-urban area in Haryana state of India. Language tasks were specifically planned with a focus on engaging groups of twenty-five students for a period of three weeks. These included language games such as spell-well, cross-naught besides other communicative and interactive tasks like mock-interviews, role plays, sharing experiences, storytelling, simulations, scene-enact, video-clipping, etc. Tools in form of handouts and cue cards were also used as per requirement. This experiment was conducted for ten groups of students taking bachelor’s courses in different streams of humanities, commerce, and sciences. Participants were continuously supervised, monitored, and guided by the respective teacher. Feedback was collected from the students through classroom observations, interviews, and questionnaires. Students' responses revealed that they felt comfortable and got plenty of opportunities to communicate freely without being afraid of making mistakes. It was observed that even slow/timid/shy learners got involved by getting an experience of English language usage in friendly environment. Moreover, it helped the teacher in establishing a trusting relationship with students and encouraged them to do the same with their classmates. The analysis of the data revealed that majority of students demonstrated improvement in their interest and enthusiasm in the class. The study revealed that task-based teaching was an effective method to improve the teaching-learning process under the given conditions.

Keywords: communication skills, English, second language, task-based teaching

Procedia PDF Downloads 92
15597 Evaluation of the Weight-Based and Fat-Based Indices in Relation to Basal Metabolic Rate-to-Weight Ratio

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Basal metabolic rate is questioned as a risk factor for weight gain. The relations between basal metabolic rate and body composition have not been cleared yet. The impact of fat mass on basal metabolic rate is also uncertain. Within this context, indices based upon total body mass as well as total body fat mass are available. In this study, the aim is to investigate the potential clinical utility of these indices in the adult population. 287 individuals, aged from 18 to 79 years, were included into the scope of the study. Based upon body mass index values, 10 underweight, 88 normal, 88 overweight, 81 obese, and 20 morbid obese individuals participated. Anthropometric measurements including height (m), and weight (kg) were performed. Body mass index, diagnostic obesity notation model assessment index I, diagnostic obesity notation model assessment index II, basal metabolic rate-to-weight ratio were calculated. Total body fat mass (kg), fat percent (%), basal metabolic rate, metabolic age, visceral adiposity, fat mass of upper as well as lower extremities and trunk, obesity degree were measured by TANITA body composition monitor using bioelectrical impedance analysis technology. Statistical evaluations were performed by statistical package (SPSS) for Windows Version 16.0. Scatterplots of individual measurements for the parameters concerning correlations were drawn. Linear regression lines were displayed. The statistical significance degree was accepted as p < 0.05. The strong correlations between body mass index and diagnostic obesity notation model assessment index I as well as diagnostic obesity notation model assessment index II were obtained (p < 0.001). A much stronger correlation was detected between basal metabolic rate and diagnostic obesity notation model assessment index I in comparison with that calculated for basal metabolic rate and body mass index (p < 0.001). Upon consideration of the associations between basal metabolic rate-to-weight ratio and these three indices, the best association was observed between basal metabolic rate-to-weight and diagnostic obesity notation model assessment index II. In a similar manner, this index was highly correlated with fat percent (p < 0.001). Being independent of the indices, a strong correlation was found between fat percent and basal metabolic rate-to-weight ratio (p < 0.001). Visceral adiposity was much strongly correlated with metabolic age when compared to that with chronological age (p < 0.001). In conclusion, all three indices were associated with metabolic age, but not with chronological age. Diagnostic obesity notation model assessment index II values were highly correlated with body mass index values throughout all ranges starting with underweight going towards morbid obesity. This index is the best in terms of its association with basal metabolic rate-to-weight ratio, which can be interpreted as basal metabolic rate unit.

Keywords: basal metabolic rate, body mass index, children, diagnostic obesity notation model assessment index, obesity

Procedia PDF Downloads 153
15596 The Sustainability of Public Debt in Taiwan

Authors: Chiung-Ju Huang

Abstract:

This study examines whether the Taiwan’s public debt is sustainable utilizing an unrestricted two-regime threshold autoregressive (TAR) model with an autoregressive unit root. The empirical results show that Taiwan’s public debt appears as a nonlinear series and is stationary in regime 1 but not in regime 2. This result implies that while Taiwan’s public debt was mostly sustainable over the 1996 to 2013 period examined in the study, it may no longer be sustainable in the most recent two years as the public debt ratio has increased cumulatively to 3.618%.

Keywords: nonlinearity, public debt, sustainability, threshold autoregressive model

Procedia PDF Downloads 457
15595 Performance Investigation of UAV Attitude Control Based on Modified PI-D and Nonlinear Dynamic Inversion

Authors: Ebrahim Hassan Kapeel, Ahmed Mohsen Kamel, Hossan Hendy, Yehia Z. Elhalwagy

Abstract:

Interest in autopilot design has been raised intensely as a result of recent advancements in Unmanned Aerial vehicles (UAVs). Due to the enormous number of applications that UAVs can achieve, the number of applied control theories used for them has increased in recent years. These small fixed-wing UAVs are suffering high non-linearity, sensitivity to disturbances, and coupling effects between their channels. In this work, the nonlinear dynamic inversion (NDI) control lawisdesigned for a nonlinear small fixed-wing UAV model. The NDI is preferable for varied operating conditions, there is no need for a scheduling controller. Moreover, it’s applicable for high angles of attack. For the designed flight controller validation, a nonlinear Modified PI-D controller is performed with our model. A comparative study between both controllers is achieved to evaluate the NDI performance. Simulation results and analysis are proposed to illustrate the effectiveness of the designed controller based on NDI.

Keywords: UAV dynamic model, attitude control, nonlinear PID, dynamic inversion

Procedia PDF Downloads 115
15594 Effect of Geometry on the Aerodynamic Performance of Darrieus H Yype Vertical Axis Wind Turbine

Authors: Belkheir Noura, Rabah Kerfah, Boumehani Abdellah

Abstract:

The influence of solidity variations on the aerodynamic performance of H type vertical axis wind turbine is studied in this paper. The wind turbine model used in this paper is the three-blade wind turbine with the symmetrical airfoil, NACA0021. The length of the chord is 0.265m. Numerical investigations were implemented for the different solidity by changing the radius and blade number. A two-dimensional model of the wind turbine is employed. The approach a Reynolds-Averaged Navier–Stokes equations, completed by the K- ώ SST turbulence model, is used. Motion mesh model capability of a computational fluid dynamics (CFD) solver is used. For each value of the solidity, the aerodynamics performances and the characteristics of the flow field are studied at several values of the tip speed ratio, λ = 0.5 to λ = 3, with an incoming wind speed of 8 m/s. The results show that increasing the number of blades will reduce the maximum value of the power coefficient of the wind turbine. Also, for the VAWT with a lower solidity can obtain the maximum Cp at a high tip speed ratio. The effects of changing the radius and blade number on aerodynamic performance are almost the same. Finally, for the validation, experimental data from the literature and computational results were compared. In conclusion, to study the influence of the solidity in the performances of the wind turbine is to provide the reference for the design of H type vertical axis wind turbines.

Keywords: wind energy, darrieus h type vertical axis wind turbine, computational fluid dynamic, solidity

Procedia PDF Downloads 100
15593 Rethinking Africa's 'Great Runner': Authoritarianism and Development in Post-Cold War Ethiopia

Authors: Frew Yirgalem Mane

Abstract:

This study has examined Africa’s experiment with authoritarian model of development drawing from the experience of Ethiopia. With the tectonic crisis of neoliberal ideology, the dominant policy agenda in Africa pertains to bringing the state back to development. More concretely, countries epitomized by Ethiopia, Rwanda and Uganda have been constructing a highly interventionist state with authoritarian character. The central motive appears to facilitate development and salvage people out of appalling and grinding poverty. Each country warrants closer inspection. However, this study focuses on Ethiopia- a country often applauded as ‘Africa’s Great Run’ for delivering socio-economic success over the past two decades. In fact, inspired by East Asia’s including Chinese model of authoritarian development, Ethiopia orchestrated a vanguard party, centralized rent control system with politicized bureaucracy and militaristic mobilization resources for development. This arrangement may explain Ethiopia economic success story as one the fastest growing countries in the world. However, this paper detected, Ethiopia’s attempt to bring the state back in development has precipitated institutionalization of a new breed of authoritarianism and informalization of public institutions. Ethiopia’s model of state-led development may constitute a noticeable shift away from the vengeful adherence to neoliberal policies. However, the manner the model has been practiced proved to be neither smooth nor appears to address Ethiopia’s aspiration for political and economic transformation. Partly, this can be illustrated by recent widespread grievances that fed into the popular uprising and animated opposition against the state. Sources of the grievance are complex, but they are highly ingrained with the way the authoritarian model of development is functioning and also the model’s dis-functioning in terms of benefiting people. In light of these findings, the study has arrived at the following conclusion. Africa’s attempt to emulate development models from other countries is not such a ‘bad’ thing. However, emulation makes sense if it is contextualized and sensitive to complex local socio-economic interests.

Keywords: Africa, authoritarianism, development, Ethiopia, neoliberalism

Procedia PDF Downloads 212
15592 Performing Diagnosis in Building with Partially Valid Heterogeneous Tests

Authors: Houda Najeh, Mahendra Pratap Singh, Stéphane Ploix, Antoine Caucheteux, Karim Chabir, Mohamed Naceur Abdelkrim

Abstract:

Building system is highly vulnerable to different kinds of faults and human misbehaviors. Energy efficiency and user comfort are directly targeted due to abnormalities in building operation. The available fault diagnosis tools and methodologies particularly rely on rules or pure model-based approaches. It is assumed that model or rule-based test could be applied to any situation without taking into account actual testing contexts. Contextual tests with validity domain could reduce a lot of the design of detection tests. The main objective of this paper is to consider fault validity when validate the test model considering the non-modeled events such as occupancy, weather conditions, door and window openings and the integration of the knowledge of the expert on the state of the system. The concept of heterogeneous tests is combined with test validity to generate fault diagnoses. A combination of rules, range and model-based tests known as heterogeneous tests are proposed to reduce the modeling complexity. Calculation of logical diagnoses coming from artificial intelligence provides a global explanation consistent with the test result. An application example shows the efficiency of the proposed technique: an office setting at Grenoble Institute of Technology.

Keywords: heterogeneous tests, validity, building system, sensor grids, sensor fault, diagnosis, fault detection and isolation

Procedia PDF Downloads 300
15591 How Teachers Comprehend and Support Children's Needs to Be Scientists

Authors: Anita Yus

Abstract:

Several Elementary Schools (SD) ‘favored’ by parents, especially those live in big cities in Indonesia, implicitly demand each child enrolled in the first grade of SD to be able to read, write and calculate. This condition urges the parents to push the teachers in PAUD (Kindergarten) to train their children to read, write, and calculate so they have a set of knowledge. According to Piaget, each child is capable of acquiring knowledge when he is given the opportunity to interact with his environment (things, people, and atmosphere). Teachers can make the interaction occur. There are several learning approaches suitable for the characteristics and needs of child’s growth. This paper talks about a research result conducted to investigate how twelve teachers of early childhood program comprehend the constructivist theory of Piaget, and how they inquire, how the children acquire and construct a number of knowledge through occurred interactions. This is a qualitative research with an observation method followed up by a focus group discussion (FGD). The research result shows that there is a reciprocal interaction between the behaviors of teachers and children affected by the size of the classroom and learning source, teaching experiences, education background, teachers’ attitude and motivation, as well as the way the teachers interpret and support the children’s needs. The teachers involved in this research came up with varied perspective on how knowledge acquired by children at first and how they construct it. This research brings a new perspective in understanding children as scientists.

Keywords: constructivist approach, young children as a scientist, teacher practice, teacher education

Procedia PDF Downloads 252
15590 Using Water Erosion Prediction Project Simulation Model for Studying Some Soil Properties in Egypt

Authors: H. A. Mansour

Abstract:

The objective of this research work is studying the water use prediction, prediction technology for water use by action agencies, and others involved in conservation, planning, and environmental assessment of the Water Erosion Prediction Project (WEPP) simulation model. Models the important physical, processes governing erosion in Egypt (climate, infiltration, runoff, ET, detachment by raindrops, detachment by flowing water, deposition, etc.). Simulation of the non-uniform slope, soils, cropping/management., and Egyptian databases for climate, soils, and crops. The study included important parameters in Egyptian conditions as follows: Water Balance & Percolation, Soil Component (Tillage impacts), Plant Growth & Residue Decomposition, Overland Flow Hydraulics. It could be concluded that we can adapt the WEPP simulation model to determining the previous important parameters under Egyptian conditions.

Keywords: WEPP, adaptation, soil properties, tillage impacts, water balance, soil percolation

Procedia PDF Downloads 302
15589 Effect of Viscous Dissipation and Axial Conduction in Thermally Developing Region of the Channel Partially Filled with a Porous Material Subjected to Constant Wall Heat Flux

Authors: D Bhargavi, J. Sharath Kumar Reddy

Abstract:

The present investigation has been undertaken to assess the effect of viscous dissipation and axial conduction on forced convection heat transfer in the entrance region of a parallel plate channel with the porous insert attached to both walls of the channel. The flow field is unidirectional. Flow in the porous region corresponds to Darcy-Brinkman model and the clear fluid region to that of plane Poiseuille flow. The effects of the parameters Darcy number, Da, Peclet number, Pe, Brinkman number, Br and a porous fraction γp on the local heat transfer coefficient are analyzed graphically. Effects of viscous dissipation employing the Darcy model and the clear fluid compatible model have been studied.

Keywords: porous material, channel partially filled with a porous material, axial conduction, viscous dissipation

Procedia PDF Downloads 164
15588 A New Reliability based Channel Allocation Model in Mobile Networks

Authors: Anujendra, Parag Kumar Guha Thakurta

Abstract:

The data transmission between mobile hosts and base stations (BSs) in Mobile networks are often vulnerable to failure. Thus, efficient link connectivity, in terms of the services of both base stations and communication channels of the network, is required in wireless mobile networks to achieve highly reliable data transmission. In addition, it is observed that the number of blocked hosts is increased due to insufficient number of channels during heavy load in the network. Under such scenario, the channels are allocated accordingly to offer a reliable communication at any given time. Therefore, a reliability-based channel allocation model with acceptable system performance is proposed as a MOO problem in this paper. Two conflicting parameters known as Resource Reuse factor (RRF) and the number of blocked calls are optimized under reliability constraint in this problem. The solution to such MOO problem is obtained through NSGA-II (Non-dominated Sorting Genetic Algorithm). The effectiveness of the proposed model in this work is shown with a set of experimental results.

Keywords: base station, channel, GA, pareto-optimal, reliability

Procedia PDF Downloads 412
15587 A Multi-Objective Decision Making Model for Biodiversity Conservation and Planning: Exploring the Concept of Interdependency

Authors: M. Mohan, J. P. Roise, G. P. Catts

Abstract:

Despite living in an era where conservation zones are de-facto the central element in any sustainable wildlife management strategy, we still find ourselves grappling with several pareto-optimal situations regarding resource allocation and area distribution for the same. In this paper, a multi-objective decision making (MODM) model is presented to answer the question of whether or not we can establish mutual relationships between these contradicting objectives. For our study, we considered a Red-cockaded woodpecker (Picoides borealis) habitat conservation scenario in the coastal plain of North Carolina, USA. Red-cockaded woodpecker (RCW) is a non-migratory territorial bird that excavates cavities in living pine trees for roosting and nesting. The RCW groups nest in an aggregation of cavity trees called ‘cluster’ and for our model we use the number of clusters to be established as a measure of evaluating the size of conservation zone required. The case study is formulated as a linear programming problem and the objective function optimises the Red-cockaded woodpecker clusters, carbon retention rate, biofuel, public safety and Net Present Value (NPV) of the forest. We studied the variation of individual objectives with respect to the amount of area available and plotted a two dimensional dynamic graph after establishing interrelations between the objectives. We further explore the concept of interdependency by integrating the MODM model with GIS, and derive a raster file representing carbon distribution from the existing forest dataset. Model results demonstrate the applicability of interdependency from both linear and spatial perspectives, and suggest that this approach holds immense potential for enhancing environmental investment decision making in future.

Keywords: conservation, interdependency, multi-objective decision making, red-cockaded woodpecker

Procedia PDF Downloads 341
15586 Uni-Mode Uniqueness Conditions for Candecomp/Parafac of N-Way Arrays with Linearly Dependent Loadings

Authors: Ling Zhang, Weikai Li

Abstract:

Recently three sufficient conditions for the three-way Candecomp/Parafac (CP) model which ensure uniqueness in one of the three modes(“uni-mode uniqueness”) are given. In this paper, we generalize these uniqueness conditions to n ≤ 3 and give a sufficient conditions for the n-way Candecomp/Parafac (CP) model, which ensure uniqueness in one of the n modes.

Keywords: uni-mode uniqueness, candecomp/parafac, n-way arrays, decomposition, tensor

Procedia PDF Downloads 348
15585 AI Predictive Modeling of Excited State Dynamics in OPV Materials

Authors: Pranav Gunhal., Krish Jhurani

Abstract:

This study tackles the significant computational challenge of predicting excited state dynamics in organic photovoltaic (OPV) materials—a pivotal factor in the performance of solar energy solutions. Time-dependent density functional theory (TDDFT), though effective, is computationally prohibitive for larger and more complex molecules. As a solution, the research explores the application of transformer neural networks, a type of artificial intelligence (AI) model known for its superior performance in natural language processing, to predict excited state dynamics in OPV materials. The methodology involves a two-fold process. First, the transformer model is trained on an extensive dataset comprising over 10,000 TDDFT calculations of excited state dynamics from a diverse set of OPV materials. Each training example includes a molecular structure and the corresponding TDDFT-calculated excited state lifetimes and key electronic transitions. Second, the trained model is tested on a separate set of molecules, and its predictions are rigorously compared to independent TDDFT calculations. The results indicate a remarkable degree of predictive accuracy. Specifically, for a test set of 1,000 OPV materials, the transformer model predicted excited state lifetimes with a mean absolute error of 0.15 picoseconds, a negligible deviation from TDDFT-calculated values. The model also correctly identified key electronic transitions contributing to the excited state dynamics in 92% of the test cases, signifying a substantial concordance with the results obtained via conventional quantum chemistry calculations. The practical integration of the transformer model with existing quantum chemistry software was also realized, demonstrating its potential as a powerful tool in the arsenal of materials scientists and chemists. The implementation of this AI model is estimated to reduce the computational cost of predicting excited state dynamics by two orders of magnitude compared to conventional TDDFT calculations. The successful utilization of transformer neural networks to accurately predict excited state dynamics provides an efficient computational pathway for the accelerated discovery and design of new OPV materials, potentially catalyzing advancements in the realm of sustainable energy solutions.

Keywords: transformer neural networks, organic photovoltaic materials, excited state dynamics, time-dependent density functional theory, predictive modeling

Procedia PDF Downloads 125
15584 A Multicriteria Model for Sustainable Management in Agriculture

Authors: Basil Manos, Thomas Bournaris, Christina Moulogianni

Abstract:

The European agricultural policy supports all member states to apply agricultural development plans for the development of their agricultural sectors. A specific measure of the agricultural development plans refers to young people in order to enter into the agricultural sector. This measure helps the participating young farmers in achieving maximum efficiency, using methods and environmentally friendly practices, by altering their farm plans. This study applies a Multicriteria Mathematical Programming (MCDA) model for the young farmers to find farm plans that achieve the maximum gross margin and the minimum environmental impacts (less use of fertilizers and irrigation water). The analysis was made in the region of Central Macedonia, Greece, among young farmers who have participated in the “Setting up Young Farmers” measure during 2007-2010. The analysis includes the implementation of the MCDA model for the farm plans optimization and the comparison of selected environmental indicators with those of the existent situation.

Keywords: multicriteria, optimum farm plans, environmental impacts, sustainable management

Procedia PDF Downloads 344