Search results for: pre-trained language models
3604 Analysis of the Diffusion Behavior of an Information and Communication Technology Platform for City Logistics
Authors: Giulio Mangano, Alberto De Marco, Giovanni Zenezini
Abstract:
The concept of City Logistics (CL) has emerged to improve the impacts of last mile freight distribution in urban areas. In this paper, a System Dynamics (SD) model exploring the dynamics of the diffusion of a ICT platform for CL management across different populations is proposed. For the development of the model two sources have been used. On the one hand, the major diffusion variables and feedback loops are derived from a literature review of existing diffusion models. On the other hand, the parameters are represented by the value propositions delivered by the platform as a response to some of the users’ needs. To extract the most important value propositions the Business Model Canvas approach has been used. Such approach in fact focuses on understanding how a company can create value for her target customers. These variables and parameters are thus translated into a SD diffusion model with three different populations namely municipalities, logistics service providers, and own account carriers. Results show that, the three populations under analysis fully adopt the platform within the simulation time frame, highlighting a strong demand by different stakeholders for CL projects aiming at carrying out more efficient urban logistics operations.Keywords: city logistics, simulation, system dynamics, business model
Procedia PDF Downloads 2673603 A Probabilistic Study on Time to Cover Cracking Due to Corrosion
Authors: Chun-Qing Li, Hassan Baji, Wei Yang
Abstract:
Corrosion of steel in reinforced concrete structures is a major problem worldwide. The volume expansion of corrosion products causes concrete cover cracking, which could lead to delamination of concrete cover. The time to cover cracking plays a key role to the assessment of serviceability of reinforced concrete structures subjected to corrosion. Many analytical, numerical, and empirical models have been developed to predict the time to cracking initiation due to corrosion. In this study, a numerical model based on finite element modeling of corrosion-induced cracking process is used. In order to predict the service life based on time to cover initiation, the numerical approach is coupled with a probabilistic procedure. In this procedure, all the influential factors affecting time to cover cracking are modeled as random variables. The results show that the time to cover cracking is highly variables. It is also shown that rust product expansion ratio and the size of more porous concrete zone around the rebar are the most influential factors in predicting service life of corrosion-affected structures.Keywords: corrosion, crack width, probabilistic, service life
Procedia PDF Downloads 2073602 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach
Authors: Dongkwon Han, Sangho Kim, Sunil Kwon
Abstract:
Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance
Procedia PDF Downloads 1963601 Design and Optimization of Flow Field for Cavitation Reduction of Valve Sleeves
Authors: Kamal Upadhyay, Zhou Hua, Yu Rui
Abstract:
This paper aims to improve the streamline linked with the flow field and cavitation on the valve sleeve. We observed that local pressure fluctuation produces a low-pressure zone, central to the formation of vapor volume fraction within the valve chamber led to air-bubbles (or cavities). Thus, it allows simultaneously to a severe negative impact on the inner surface and lifespan of the valve sleeves. Cavitation reduction is a vitally important issue to pressure control valves. The optimization of the flow field is proposed in this paper to reduce the cavitation of valve sleeves. In this method, the inner wall of the valve sleeve is changed from a cylindrical surface to the conical surface, leading to the decline of the fluid flow velocity and the rise of the outlet pressure. Besides, the streamline is distributed inside the sleeve uniformly. Thus, the bubble generation is lessened. The fluid models are built and analysis of flow field distribution, pressure, vapor volume and velocity was carried out using computational fluid dynamics (CFD) and numerical technique. The results indicate that this structure can suppress the cavitation of valve sleeves effectively.Keywords: streamline, cavitation, optimization, computational fluid dynamics
Procedia PDF Downloads 1453600 Theoretical Analysis of Self-Starting Busemann Intake Family
Authors: N. Moradian, E. Timofeev, R. Tahir
Abstract:
In this work, startability of the Busemann intake family with weak/strong conical shock, as most efficient intakes, via overboard mass spillage method is theoretically analyzed. Masterix and Candifix codes are used to numerically simulate few models of this type of intake and verify the theoretical results. Portions of the intake corresponding to various flow capture angles are considered to have mass spillage in the starting process of this intake. This approach allows for overboard mass spillage via a V-shaped slot with the tip of V coinciding with the focal point of the Busemann flow. The theoretical results, achieved using two different theories, of self-started Busemann takes with weak/strong conical shock show that significant improve in intake startability using overboard spillage technique. The starting phenomena of Busemann intakes with weak conical shock and seven different capture angles are numerically simulated at freestream Mach number of 3 to find the minimum area ratios of self-started intakes. The numerical results confirm the theoretical ones achieved by authors.Keywords: Busemann intake, conical shock, overboard spillage, startability
Procedia PDF Downloads 2053599 Three Dimensional Flexible Dynamics of Continuous Cislunar Payloads Transfer System
Authors: Y. Yang, Dian Ming Xing, Qiu Hua Du
Abstract:
Based on the Motorized Momentum Exchange Tether (MMET), with the principle of momentum exchange, the three dimension flexible dynamics of continuous cislunar payloads transferring system (CCPTS) is built by Lagrange method and its numerical solution is solved by Mathematica software. In the derivation precession of potential energy, this paper uses the Tylor expansion method to simplify the Lagrange equation. Furthermore, the tension coming from the centripetal load is considered in the elastic potential energy. The comparison simulation results between the 3D rigid model and 3D flexible model of CCPTS shows that the tether flexibility has important influence on CCPTS’s orbital parameters (such as radius of CCPTS’s COM and the true anomaly) and the tether’s rotational movement, the relative deviation of radius and the true anomaly between the two dynamic models is about 0.00678% and 0.00259%, the relative deviation of the angle of tether-span and local gravity gradient is about 3.55%. Additionally, the external torque has an apparent influence on the tether’s axial vibration.Keywords: cislunar transfer, dynamics, momentum exchange, tether
Procedia PDF Downloads 2693598 Global Best Practice Paradox; the Failure of One Size Fits All Approach to Development a Case Study of Pakistan
Authors: Muhammad Naveed Iftikhar, Farah Khalid
Abstract:
Global best practices as ordained by international organizations comprise a broader top-down approach to development problems, without taking into account country-specific factors. The political economy of each country is extremely different and the failure of several attempts of international organizations to implement global best practice models in developing countries each with its unique set of variables, goes on to show that this is not the most efficient solution to development problems. This paper is a humble attempt at shedding light on some specific examples of failures of the global best practices. Pakistan has its unique set of problems and unless those are added to the broader equation of development, country-specific reform and growth will continue to pose a challenge to reform programs initiated by international organizations. The three case studies presented in this paper are just a few prominent examples of failure of the global best practice, top-down, universalistic approach to development as ordained by international organizations. Development and reform can only be achieved if local dynamics are given their due importance. The modus operandi of international organizations needs to be tailored according to each country’s unique politico-economic environment.Keywords: best practice, development, context
Procedia PDF Downloads 4733597 Universal Design Building Standard for India: A Critical Inquiry
Authors: Sushil Kumar Solanki, Rachna Khare
Abstract:
Universal Design is a concept of built environment creation, where all people are facilitated to the maximum extent possible without using any type of specialized design. However, accessible design is a design process in which the needs of people with disabilities are specifically considered. Building standards on accessibility contains scoping and technical requirements for accessibility to sites, facilities, building and elements by individual with disability. India is also following its prescriptive types of various building standards for the creation of physical environment for people with disabilities. These building standards are based on western models instead of research based standards to serve Indian needs. These standards lack contextual connect when reflects in its application in the urban and rural environment. This study focuses on critical and comparative study of various international building standards and codes, with existing Indian accessibility standards to understand problems and prospects of concept of Universal Design building standards for India. The result of this study is an analysis of existing state of Indian building standard pertaining to accessibility and future need of performance based Universal Design concept.Keywords: accessibility, building standard, built-environment, universal design
Procedia PDF Downloads 2963596 Intuitive Decision Making When Facing Risks
Authors: Katharina Fellnhofer
Abstract:
The more information and knowledge that technology provides, the more important are profoundly human skills like intuition, the skill of using nonconscious information. As our world becomes more complex, shaken by crises, and characterized by uncertainty, time pressure, ambiguity, and rapidly changing conditions, intuition is increasingly recognized as a key human asset. However, due to methodological limitations of sample size or time frame or a lack of real-world or cross-cultural scope, precisely how to measure intuition when facing risks on a nonconscious level remains unclear. In light of the measurement challenge related to intuition’s nonconscious nature, a technique is introduced to measure intuition via hidden images as nonconscious additional information to trigger intuition. This technique has been tested in a within-subject fully online design with 62,721 real-world investment decisions made by 657 subjects in Europe and the United States. Bayesian models highlight the technique’s potential to measure skill at using nonconscious information for conscious decision making. Over the long term, solving the mysteries of intuition and mastering its use could be of immense value in personal and organizational decision-making contexts.Keywords: cognition, intuition, investment decisions, methodology
Procedia PDF Downloads 863595 Understanding the Motivations behind the Assassination of Turkish Armenian Journalist, Hrant Dink
Authors: Nusret Mesut Sahin
Abstract:
Hrant Dink, a prominent Turkish-Armenian journalist, and editor-in-chief of the bilingual Turkish-Armenian newspaper Agos was assassinated in Istanbul on January 19th, 2007 by a nationalist extremist, Ogun Samast. Dink had been voicing the atrocities against the Armenians between 1915 and 1922 during the Ottoman rule, and his comments on the issue appeared in the Turkish media many times before his assassination. It has been argued that the suffocating atmosphere created by the Turkish news media targeting Mr. Dink made him a target of an extremist Turkish juvenile. This study analyzes the media news to understand and explain why Hrant Dink became the target of a nationalist extremist. In this research, content analysis of news articles (N= 170) is conducted to identify whether there is a link between hate speech against Hrant Dink in the Turkish media and his assassination. The content of the newspaper articles is categorized and coded according to the hate language being used. The analysis suggested that Turkish media paved the way for Dink’s assassination. Hate speech against Hrant Dink on the media had risen gradually before the assassination. The study also found that the number of news stories covering hate speech and racist discourse against non-Muslim citizens of Turkey also increased dramatically before the assassination. Therefore, hate speech against minorities in media narratives and news reports should be monitored, and political figures or leaders of social groups who are targeted by some media outlets should be protected.Keywords: Hrant Dink, assassination, Turkish Armenian journalist, media
Procedia PDF Downloads 1593594 Review and Classification of the Indicators and Trends Used in Bridge Performance Modeling
Authors: S. Rezaei, Z. Mirzaei, M. Khalighi, J. Bahrami
Abstract:
Bridges, as an essential part of road infrastructures, are affected by various deterioration mechanisms over time due to the changes in their performance. As changes in performance can have many negative impacts on society, it is essential to be able to evaluate and measure the performance of bridges throughout their life. This evaluation includes the development or the choice of the appropriate performance indicators, which, in turn, are measured based on the selection of appropriate models for the existing deterioration mechanism. The purpose of this article is a statistical study of indicators and deterioration mechanisms of bridges in order to discover further research capacities in bridges performance assessment. For this purpose, some of the most common indicators of bridge performance, including reliability, risk, vulnerability, robustness, and resilience, were selected. The researches performed on each index based on the desired deterioration mechanisms and hazards were comprehensively reviewed. In addition, the formulation of the indicators and their relationship with each other were studied. The research conducted on the mentioned indicators were classified from the point of view of deterministic or probabilistic method, the level of study (element level, object level, etc.), and the type of hazard and the deterioration mechanism of interest. For each of the indicators, a number of challenges and recommendations were presented according to the review of previous studies.Keywords: bridge, deterioration mechanism, lifecycle, performance indicator
Procedia PDF Downloads 1053593 Determination of Chemical and Adsorption Kinetics: An Investigation of a Petrochemical Wastewater Treatment Utilizing GAC
Authors: Leila Vafajoo, Feria Ghanaat, Alireza Mohmadi Kartalaei, Amin Ghalebi
Abstract:
Petrochemical industries are playing an important role in producing wastewaters. Nowadays different methods are employed to treat these materials. The goal of the present research was to reduce the COD of a petrochemical wastewater via adsorption technique using a commercial granular activated carbon (GAC) as adsorbent. In the current study, parameters of kinetic models as well as; adsorption isotherms were determined through utilizing the Langmuir and Freundlich isotherms. The key parameters of KL= 0.0009 and qm= 33.33 for the former and nf=0.5 and Kf= 0.000004 for the latter isotherms resulted. Moreover, a correlation coefficient of above 90% for both cases proved logical use of such isotherms. On the other hand, pseudo-first and -second order kinetics equations were implemented. These resulted in coefficients of k1=0.005 and qe=2018 as well as; K2=0.009 and qe=1250; respectively. In addition, obtaining the correlation coefficients of 0.94 and 0.68 for these 1st and 2nd order kinetics; respectively indicated advantageous use of the former model. Furthermore, a significant experimental reduction of the petrochemical wastewater COD revealed that, using GAC for the process undertaken was an efficient mean of treatment. Ultimately, the current investigation paved down the road for predicting the system’s behavior on industrial scale.Keywords: petrochemical wastewater, adsorption, granular activated carbon, equilibrium isotherm, kinetic model
Procedia PDF Downloads 3613592 Implementing Text Using Political and Current Issues to Create Choreography: “The Pledge 2.0”
Authors: Muhammad Fairul Azreen bin Mohd Zahid, Melissa Querk, Aimi Nabila bt Anizaim
Abstract:
For this particular research, the focus is based on the practice as research which will produce a choreography as the outcome. The ideas organically develop as an “epiphany” from the meeting, brainstorming, or situation that revolves around surroundings. In this study, the researchers are approaching the national pillar of Malaysia known as ‘Rukun Negara’ to develop a choreographic idea. The concept theory of Speech Act by J.L Austin is used to compose the choreography alongside with national pillar ‘Rukun Negara’ as a guideline for a contemporary work titled, The Pledge 2.0, besides fostering the spirit of unity. These approaches will offer flexibility in creating a choreography piece. The pledge has crossed the boundaries by using texts and heavy issues in choreography developments. It will emphasize the concept of delivering the speech via verbal and nonverbal body language. Besides using the Theory of Speech Acts, the development process of creating this piece will lay the bare normative structure implicit in performance practice. Converging current issues into the final choreographic piece for this research is vital as this research will explore a few choreography methods from different perspectives. Hence, the audience will be able to see the world of dance that always revolves in line with the diachronic process in many ways. The method used in this research is qualitative, which will be used in finding the movement that fits the given facts.Keywords: performing arts, speech act, performative, nationalism, choreography, politic in dance
Procedia PDF Downloads 843591 Compilation of Tall Building with Green Architecture Case Study: Babolsar City (North of Iran) at 2014-2015
Authors: Seyyed Hossein Alavi, Soudabeh Mehri Talarposhti
Abstract:
Quick development of urban population need for housing on the one hand and prevention of irregular urban extension for optimum usage of urban land, resolving problems of urban physiognomy, land using, and environmental issues and urban transport, on the other hand, proposed tall building as urban area extension requirement in developing and advanced countries. Beside the tall building, protection, and creation of green architecture is one the most important issues of today's architecture world. This research is about attending tall building with green architecture in Babolsar city 2015. For this, the issues that can make favorite conditions for green architecture has been discussed. The purpose of this discussion is skeleton extension and accessing interactions between architecture and related technologies. This discussion with using of qualitative research methods (Analytical Description) tried to studying designed performance models and also studying and analyzing the inside and foreign articles and books. Hope this research is useful in solving the existing problems in this issue.Keywords: tall building, green architecture, skeleton extension, Babolsar city
Procedia PDF Downloads 4303590 Translating History in a Brazilian Graphic Novel: A Translation Project for Angola Janga by Marcelo D'Salete
Authors: Carolina Rezende, Julio Cesar Neves Monteiro
Abstract:
Traditionally, History and fiction are considered to be opposing fields of study. While one is linked to the study of facts, things that have happened within the limits of ‘reality’, the other explores a made-up world, originated from imagination and fantasy. However, despite their apparent discrepancies, there is a fundamental trait that brings them closer. Historical narratives, similarly to fiction ones, are produced based on multiple interpretations of an event, which are transmitted in a rather subjective way by language. It is within this perspective of history and fiction intertwined that this paper aims to discuss the translation of historical facts in the graphic novel Angola Janga, by Marcelo D’Salete, as well as presenting it as a historical document. The novel, which is divided into 11 short stories, narrates the rebellions that took place in Serra da Barriga, between the 16th and 17th centuries, that resulted in the Guerra dos Palmares. The graphic novel in question is a result of the author’s 11-year historical and bibliographical research, which combines history and fiction in order to shed a light of the confrontation that history seems to overlook. Also, the book includes a foreword, glossary, chronological line of Guerra dos Palmares, as well as maps and references used by the author during his research. For that, a few segments from the book will be selected and translated in order to show such connection between history and fiction, and the discussion resulted from it will be based on the works of Southgate (2009), Pym (2001) and D’hulst (2001).Keywords: graphic novel, history, fiction, Palmares
Procedia PDF Downloads 1763589 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm
Authors: Ameur Abdelkader, Abed Bouarfa Hafida
Abstract:
Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm
Procedia PDF Downloads 1423588 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 2923587 Innovative Techniques of Teaching Henrik Ibsen’s a Doll’s House
Authors: Shilpagauri Prasad Ganpule
Abstract:
The teaching of drama is considered as the most significant and noteworthy area in an ESL classroom. Diverse innovative techniques can be used to make the teaching of drama worthwhile and interesting. The paper presents the different innovative techniques that can be used while teaching Henrik Ibsen’s A Doll’s House [2007]. The innovative techniques facilitate students’ understanding and comprehension of the text. The use of the innovative techniques makes them explore the dramatic text and uncover a multihued arena of meanings hidden in it. They arouse the students’ interest and assist them overcome the difficulties created by the second language. The diverse innovative techniques appeal to the imagination of the students and increase their participation in the classroom. They help the students in the appreciation of the dramatic text and make the teaching learning situation a fruitful experience for both the teacher and students. The students successfully overcome the problem of L2 comprehension and grasp the theme, story line and plot-structure of the play effectively. The innovative techniques encourage a strong sense of participation on the part of the students and persuade them to learn through active participation. In brief, the innovative techniques promote the students to perform various tasks and expedite their learning process. Thus the present paper makes an attempt to present varied innovative techniques that can be used while teaching drama. It strives to demonstrate how the use of innovative techniques improve and enhance the students’ understanding and appreciation of Ibsen’s A Doll’s House [2007].Keywords: ESL classroom, innovative techniques, students’ participation, teaching of drama
Procedia PDF Downloads 6263586 Applied Bayesian Regularized Artificial Neural Network for Up-Scaling Wind Speed Profile and Distribution
Authors: Aghbalou Nihad, Charki Abderafi, Saida Rahali, Reklaoui Kamal
Abstract:
Maximize the benefit from the wind energy potential is the most interest of the wind power stakeholders. As a result, the wind tower size is radically increasing. Nevertheless, choosing an appropriate wind turbine for a selected site require an accurate estimate of vertical wind profile. It is also imperative from cost and maintenance strategy point of view. Then, installing tall towers or even more expensive devices such as LIDAR or SODAR raises the costs of a wind power project. Various models were developed coming within this framework. However, they suffer from complexity, generalization and lacks accuracy. In this work, we aim to investigate the ability of neural network trained using the Bayesian Regularization technique to estimate wind speed profile up to height of 100 m based on knowledge of wind speed lower heights. Results show that the proposed approach can achieve satisfactory predictions and proof the suitability of the proposed method for generating wind speed profile and probability distributions based on knowledge of wind speed at lower heights.Keywords: bayesian regularization, neural network, wind shear, accuracy
Procedia PDF Downloads 5023585 A Study on Mesh Size Dependency on Bed Expansion Zone in a Three-Phase Fluidized Bed Reactor
Authors: Liliana Patricia Olivo Arias
Abstract:
The present study focused on the hydrodynamic study in a three-phase fluidized bed reactor and the influence of important aspects, such as volume fractions (Hold up), velocity magnitude of gas, liquid and solid phases (hydrogen, gasoil, and gamma alumina), interactions of phases, through of drag models with the k-epsilon turbulence model. For this purpose was employed a Euler-Euler model and also considers the system is constituted of three phases, gaseous, liquid and solid, characterized by its physical and thermal properties, the transport processes that are developed within the transient regime. The proposed model of the three-phase fluidized bed reactor was solved numerically using the ANSYS-Fluent software with different mesh refinements on bed expansion zone in order to observe the influence of the hydrodynamic parameters and convergence criteria. With this model and the numerical simulations obtained for its resolution, it was possible to predict the results of the volume fractions (Hold ups) and the velocity magnitude for an unsteady system from the initial and boundaries conditions were established.Keywords: three-phase fluidized bed system, CFD simulation, mesh dependency study, hydrodynamic study
Procedia PDF Downloads 1663584 Novel Recommender Systems Using Hybrid CF and Social Network Information
Authors: Kyoung-Jae Kim
Abstract:
Collaborative Filtering (CF) is a popular technique for the personalization in the E-commerce domain to reduce information overload. In general, CF provides recommending items list based on other similar users’ preferences from the user-item matrix and predicts the focal user’s preference for particular items by using them. Many recommender systems in real-world use CF techniques because it’s excellent accuracy and robustness. However, it has some limitations including sparsity problems and complex dimensionality in a user-item matrix. In addition, traditional CF does not consider the emotional interaction between users. In this study, we propose recommender systems using social network and singular value decomposition (SVD) to alleviate some limitations. The purpose of this study is to reduce the dimensionality of data set using SVD and to improve the performance of CF by using emotional information from social network data of the focal user. In this study, we test the usability of hybrid CF, SVD and social network information model using the real-world data. The experimental results show that the proposed model outperforms conventional CF models.Keywords: recommender systems, collaborative filtering, social network information, singular value decomposition
Procedia PDF Downloads 2903583 Critical Review of Oceanic and Geological Storage of Carbon Sequestration
Authors: Milad Nooshadi, Alessandro Manzardo
Abstract:
CO₂ emissions in the atmosphere continue to rise, mostly as a result of the combustion of fossil fuels. CO₂ injection into the oceans and geological formation as a process of physical carbon capture are two of the most promising emerging strategies for mitigating climate change and global warming. The purpose of this research is to evaluate the two mentioned methods of CO₂ sequestration and to assess information on previous and current advancements, limitations, and uncertainties associated with carbon sequestration in order to identify possible prospects for ensuring the timely implementation of the technology, such as determining how governments and companies can gain a better understanding of CO₂ storage in terms of which media have the most applicable capacity, which type of injection has the fewer environmental impact, and how much carbon sequestration and storage will cost. The behavior of several forms is characterized as a near field, a far field, and a see-floor in ocean storage, and three medias in geological formations as an oil and gas reservoir, a saline aquifer, and a coal bed. To determine the capacity of various forms of media, an analysis of some models and practical experiments are necessary. Additionally, as a major component of sequestration, the various injection methods into diverse media and their monitoring are associated with a variety of environmental impacts and financial consequences.Keywords: carbon sequestration, ocean storage, geologic storage, carbon transportation
Procedia PDF Downloads 1023582 Top Management Support as an Enabling Factor for Academic Innovation through Knowledge Sharing
Authors: Sawsan J. Al-husseini, Talib A. Dosa
Abstract:
Educational institutions are today facing increasing pressures due to economic, political and social upheaval. This is only exacerbated by the nature of education as an intangible good which relies upon the intellectual assets of the organisation, its staff. Top management support has been acknowledged as having a positive general influence on knowledge management and creativity. However, there is a lack of models linking top management support, knowledge sharing, and innovation within higher education institutions, in general within developing countries, and particularly in Iraq. This research sought to investigate the impact of top management support on innovation through the mediating role of knowledge sharing in Iraqi private HEIs. A quantitative approach was taken and 262 valid responses were collected to test the causal relationships between top management support, knowledge sharing, and innovation. Employing structural equation modelling with AMOS v.25, the research demonstrated that knowledge sharing plays a pivotal role in the relationship between top management support and innovation. The research has produced some guidelines for researchers as well as leaders, and provided evidence to support the use of knowledge sharing to increase innovation within the higher education environment in developing countries, particularly Iraq.Keywords: top management support, knowledge sharing, innovation, structural equation modelling
Procedia PDF Downloads 3263581 A Comparative Study of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and Extreme Value Theory (EVT) Model in Modeling Value-at-Risk (VaR)
Authors: Longqing Li
Abstract:
The paper addresses the inefficiency of the classical model in measuring the Value-at-Risk (VaR) using a normal distribution or a Student’s t distribution. Specifically, the paper focuses on the one day ahead Value-at-Risk (VaR) of major stock market’s daily returns in US, UK, China and Hong Kong in the most recent ten years under 95% confidence level. To improve the predictable power and search for the best performing model, the paper proposes using two leading alternatives, Extreme Value Theory (EVT) and a family of GARCH models, and compares the relative performance. The main contribution could be summarized in two aspects. First, the paper extends the GARCH family model by incorporating EGARCH and TGARCH to shed light on the difference between each in estimating one day ahead Value-at-Risk (VaR). Second, to account for the non-normality in the distribution of financial markets, the paper applies Generalized Error Distribution (GED), instead of the normal distribution, to govern the innovation term. A dynamic back-testing procedure is employed to assess the performance of each model, a family of GARCH and the conditional EVT. The conclusion is that Exponential GARCH yields the best estimate in out-of-sample one day ahead Value-at-Risk (VaR) forecasting. Moreover, the discrepancy of performance between the GARCH and the conditional EVT is indistinguishable.Keywords: Value-at-Risk, Extreme Value Theory, conditional EVT, backtesting
Procedia PDF Downloads 3213580 Effectiveness of Cranberry Ingesting for Prevention of Urinary Tract Infection: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
Authors: Yu-Chieh Huang, Pei-Shih Chen, Tao-Hsin Tung
Abstract:
Background: Urinary tract infection is the most common bacterial infection to our best knowledge. Objective: This study is to investigate whether cranberry ingesting could improve the urinary tract infection. Methods: We searched the PubMed and Cochrane Library for relevant randomized controlled trials without language limitations between 9 March 1994 and June 30, 2017, with a priori defined inclusion and exclusion criteria. The search terms included (cranberry OR Vaccinium macrocarpon OR Vaccinium oxy-coccus OR Vaccinium microcarpum OR Vaccinium erythrocarpum OR Vaccinium) AND (urinary tract infection OR bacteriuria OR pyuria) AND (effect OR effective-ness OR efficacy) AND (random OR randomized). Results: There were 26 studies met the selection criteria included among 4709 eligible participants. We analyzed all trials in meta-analysis. The random-effects pooled risk ratio (RR) for the group using cranberry versus using placebo was 0.75; 95%CI[0.63, 0.880]; p-value=0.0002) and heterogeneity was 56%. Furthermore, we divided the subjects into different subgroup to analysis. Ingesting cranberry seemed to be more effective in some subgroups, including the patients with recurrent UTI (RR, 0.71; 95%CI[0.54,0.93]; p-value=0.002) (I²= 65%) and female population (RR, 0.73, 95%CI[0.58,0.92]; p-value=0.002) (I²= 59%). The prevention effect was not different between cranberry and trimethoprim (RR, 1.25, 95%CI[0.67, 2.33]; p-value=0.49) (I²= 68%). No matter the forms of cranberry were capsules or juice, the efficacy was useful. Conclusions: It is showed that cranberry ingesting is usefully associated with prevention UTI. There are more effective in prevention of UTI in some groups.Keywords: cranberry, effectiveness, prevention, urinary tract infect
Procedia PDF Downloads 4003579 Market Segmentation and Conjoint Analysis for Apple Family Design
Authors: Abbas Al-Refaie, Nour Bata
Abstract:
A distributor of Apple products' experiences numerous difficulties in developing marketing strategies for new and existing mobile product entries that maximize customer satisfaction and the firm's profitability. This research, therefore, integrates market segmentation in platform-based product family design and conjoint analysis to identify iSystem combinations that increase customer satisfaction and business profits. First, the enhanced market segmentation grid is created. Then, the estimated demand model is formulated. Finally, the profit models are constructed then used to determine the ideal product family design that maximizes profit. Conjoint analysis is used to explore customer preferences with their satisfaction levels. A total of 200 surveys are collected about customer preferences. Then, simulation is used to determine the importance values for each attribute. Finally, sensitivity analysis is conducted to determine the product family design that maximizes both objectives. In conclusion, the results of this research shall provide great support to Apple distributors in determining the best marketing strategies that enhance their market share.Keywords: market segmentation, conjoint analysis, market strategies, optimization
Procedia PDF Downloads 3723578 Measurement Errors and Misclassifications in Covariates in Logistic Regression: Bayesian Adjustment of Main and Interaction Effects and the Sample Size Implications
Authors: Shahadut Hossain
Abstract:
Measurement errors in continuous covariates and/or misclassifications in categorical covariates are common in epidemiological studies. Regression analysis ignoring such mismeasurements seriously biases the estimated main and interaction effects of covariates on the outcome of interest. Thus, adjustments for such mismeasurements are necessary. In this research, we propose a Bayesian parametric framework for eliminating deleterious impacts of covariate mismeasurements in logistic regression. The proposed adjustment method is unified and thus can be applied to any generalized linear and non-linear regression models. Furthermore, adjustment for covariate mismeasurements requires validation data usually in the form of either gold standard measurements or replicates of the mismeasured covariates on a subset of the study population. Initial investigation shows that adequacy of such adjustment depends on the sizes of main and validation samples, especially when prevalences of the categorical covariates are low. Thus, we investigate the impact of main and validation sample sizes on the adjusted estimates, and provide a general guideline about these sample sizes based on simulation studies.Keywords: measurement errors, misclassification, mismeasurement, validation sample, Bayesian adjustment
Procedia PDF Downloads 4083577 The Adsorption of Perfluorooctanoic Acid on Coconut Shell Activated Carbons
Authors: Premrudee Kanchanapiya, Supachai Songngam, Thanapol Tantisattayakul
Abstract:
Perfluorooctanoic acid (PFOA) is one of per- and polyfluoroalkyl substances (PFAS) that have increasingly attracted concerns due to their global distribution in environment, persistence, high bioaccumulation, and toxicity. It is important to study the effective treatment to remove PFOA from contaminated water. The feasibility of using commercial coconut shell activated carbon produced in Thailand to remove PFOA from water was investigated with regard to their adsorption kinetics and isotherms of powder activated carbon (PAC-325) and granular activated carbon (GAC-20x50). Adsorption kinetic results show that the adsorbent size significantly affected the adsorption rate of PFOA, and GAC-20x50 required at least 100 h to achieve the equilibrium, much longer than 3 h for PAC-325. Two kinetic models were fitted to the experimental data, and the pseudo-second-order model well described the adsorption of PFOA on both PAC-325 and GAC-20x50. PAC-325 trended to adsorb PFOA faster than GAC-20x50, and testing with the shortest adsorption times (5 min) still yielded substantial PFOA removal (~80% for PAC-325). The adsorption isotherms show that the adsorption capacity of PAC-325 was 0.80 mmol/g, which is 83 % higher than that for GAC-20x50 (0.13 mmol/g), according to the Langmuir fitting.Keywords: perfluorooctanoic acid, PFOA, coconut shell activated carbons, adsorption, water treatment
Procedia PDF Downloads 1433576 The Hubs of Transformation Dictated by the Innovation Wave: Boston as a Case Study. Exploring How Design is Emerging as an Essential Feature in the Process of Laboratorisation of Cities
Authors: Luana Parisi, Sohrab Donyavi
Abstract:
Cities have become the nodes of global networks, standing at the intersection points of the flows of capital, goods, workers, businesses and travellers, making them the spots where innovation, progress and economic development occur. The primary challenge for them is to create the most fertile ecosystems for triggering innovation activities. Design emerges as an essential feature in this process of laboratorisation of cities. This paper aims at exploring the spatial hubs of transformation within the knowledge economy, providing an overview of the current models of innovation spaces, before focusing on the innovation district of one of the cities that are riding the innovation wave, namely, Boston, USA. Useful lessons will be drawn from the case study of the innovation district in Boston, allowing to define precious tools for policymakers, in the form of a range of factors that define the broad strategy able to implement the model successfully. A mixed methodology is implemented, including information from observations, exploratory interviews to key stakeholders and on-desk data.Keywords: Innovation District, innovation ecosystem, economic development, urban regeneration
Procedia PDF Downloads 1243575 A Comparison of Methods for Neural Network Aggregation
Authors: John Pomerat, Aviv Segev
Abstract:
Recently, deep learning has had many theoretical breakthroughs. For deep learning to be successful in the industry, however, there need to be practical algorithms capable of handling many real-world hiccups preventing the immediate application of a learning algorithm. Although AI promises to revolutionize the healthcare industry, getting access to patient data in order to train learning algorithms has not been easy. One proposed solution to this is data- sharing. In this paper, we propose an alternative protocol, based on multi-party computation, to train deep learning models while maintaining both the privacy and security of training data. We examine three methods of training neural networks in this way: Transfer learning, average ensemble learning, and series network learning. We compare these methods to the equivalent model obtained through data-sharing across two different experiments. Additionally, we address the security concerns of this protocol. While the motivating example is healthcare, our findings regarding multi-party computation of neural network training are purely theoretical and have use-cases outside the domain of healthcare.Keywords: neural network aggregation, multi-party computation, transfer learning, average ensemble learning
Procedia PDF Downloads 162