Search results for: zinc solubilizing fungi.
505 Study on the Enhancement of Soil Fertility and Tomato Quality by Applying Concentrated Biogas Slurry
Authors: Fang Bo Yu, Li Bo Guan
Abstract:
Biogas slurry is a low-cost source of crop nutrients and can offer extra benefits to soil fertility and fruit quality. However, its current utilization mode and low content of active ingredients limit its application scale. In this report, one growing season field research was conducted to assess the effects of concentrated biogas slurry on soil property, tomato fruit quality, and composition of the microflora in both non-rhizosphere and rhizosphere soils. The results showed that application of concentrated slurry could cause significant changes to tomato cultivation, including increases in organic matter, available N, P, and K, total N, and P, electrical conductivity, and fruit contents of amino acids, protein, soluble sugar, β-carotene, tannins, and vitamin C, together with the R/S ratios and the culturable counts of bacteria, actinomycetes, and fungi in soils. It could be concluded as the application is a practicable means in tomato production and might better service the sustainable agriculture in the near future.Keywords: concentrated slurry, fruit quality, soil fertility, sustainable agriculture
Procedia PDF Downloads 457504 Bioactive, Nutritional and Heavy Metal Constituents of Some Edible Mushrooms Found in Abia State of Nigeria
Authors: I. C. Okwulehie, J. A. Ogoke
Abstract:
The phytocemical, mineral, proximate and heavy metals compositions of six edible and non-edible species of mushrooms were investigated. Fully fleshy mushrooms were used for the analysis. On the averagely, the bioactive constituents of the mushrooms were as follows Alkaloids 0.12 ± 0.02 – 1.01 ± 03 %, Tannins 0.44 ± 0.09 – 1.38 ± 0.6,). Phenols,(0.13 ± 0.01 – 0.26± 0.00, Saponins 0.14 ± 0.03 – 0.32 ± 0.04%, Flavonoids 0.08 ± 0.02 – 0.34 ± 0.02%. The result of proximate composition indicated that the mushroom contained (5.17 ± 0.06 – 12.28 ± 0.16% protein, 0.16 ± 0.02 – 0.67 ± 0.02% fats, 1.06 ± 0.03 – 8.49 ± 0.03 % fibre, (62.06 ± 0.52 – 80.01 ± 4.71% and carbohydrate. The mineral composition of the mushrooms were as follows, calcium 81.49 ± 2.32 - .914 ± 2.32mg/100g, Magnesium(8 ± 1.39-24 ± 2.40mg/100g, Potassium 64.54 ± 0.43 – 164.54 ± 1.23 mg/100g, sodium 9.47 ± 0.12 – 30.97 ± 0.16 mg/100g, and Phosphorus 22.19 ± 0.57-53.2± 0.44 mg/100g. Heavy metals concentration indicated Cadmium 0.7-0.94ppm. Zinc 27.82 – 70.98 ppm. Lead 0.66 – 2.86ppm and Copper 1.8-22.32ppm. The result obtained indicates that the mushrooms are of good sources of phytochemicals, proximate and minerals needed for maintenance of good health and can also be exploited in manufacture of drugs. Heavy metals obtained indicate that when consume intentionally in high content may cause liver, kidney damage and even death.Keywords: bioactive, heavy metals, mushroom, nutritive
Procedia PDF Downloads 424503 Promissing Antifungal Chitinase from Marine Strain of Bacillus
Authors: Ben Amar Cheba, Taha Ibrahim Zaghloul, Mohamad Hisham El-Massry, Ahmad Rafik El-Mahdy
Abstract:
Seventy two bacterial strains with ability to degrade chitin were isolated during a screening program. One of the most potent isolates (strain R2) was identified as Bacillus sp. using conventional methods as well as 16S rRNA technique and submitted in the Gen Bank sequence database as Bacillus sp. R2 with a given accession number DQ 923161. This strain was able to produce high levels of extracellular chitinase. The chitinase of Bacillus sp. R2 hydrolyzed several chitinous substrates preferentially and showed a maximum activity toward the β chitin such as Calmar pen and squid bone chitins with the folds 1.47 and 1.23 respectively. The enzyme also exhibited a substrate binding capacity of more than 70% for squid chitin, shrimp shell colloidal chitin, chitosan and prawn shell chitin. The chitinase showed a moderate antifungal activity against many phytopathogenic fungi such as Aspergillus niger, A. flavus, Penicillium degitatum and Fusarium calmorum.This strain could be a suitable candidate for chitinase production on an industrial scale for using as promising antifungal biopestecide.Keywords: antifungal activity, Bacillus sp. R2, chitinase, substrate specificity
Procedia PDF Downloads 501502 Effect of Entomopathogenic Fungi on the Food Consumption of Acrididae Species
Authors: S. Kumar, R. Sultana
Abstract:
This study was conducted to evaluate the effect of Aspergillus species on acridid populations which are major agricultural pests of rice, sugarcane, wheat, maize and fodder crops in Pakistan. Three and replicates i.e. Aspergillus flavus, A. fumigatus and A. niger, excluding the control, were held under laboratory conditions. It was observed that consumption faecal production of acridids was significantly reduced after the pathogenic application of Aspergillus. In the control replicate, the mortality ratio for stage (N4-N6) was maximum on day 2nd i.e. [F10.7 = 18.33, P < 0.05] followed by [F4.20 = 07.85, P < 0.05] and [F3.77 = 06.11, P < 0.05] on 4th and 3rd day, respectively. Similarly, it was a minimum i.e. [F0.48 = 84.65, P < 0.05] on the 1st day. It was also noted that faecal production of Acridid nymphs was not significantly affected when treated with conidial concentration in H2O formulation; however, it was significantly reduced after the contamination with conidial concentration in oil. The high morality of acridids after contamination of Aspergillus supports their use as bio-control agent for reducing pest population. The present study recommends that exploration and screening must be conducted to provide additional pathogens for evaluation as potential biological control against grasshoppers and locusts.Keywords: acridid, agriculture, formulation, grasshoppers
Procedia PDF Downloads 257501 Nanocomposite Metal Material: Study of Antimicrobial and Catalytic Properties
Authors: Roman J. Jedrzejczyk, Damian K. Chlebda, Anna Dziedzicka, Rafal Wazny, Agnieszka Domka, Maciej Sitarz, Przemyslaw J. Jodlowski
Abstract:
The aim of this study was to obtain antimicrobial material based on thin zirconium dioxide coatings on structured reactors doped with metal nanoparticles using the sonochemical sol-gel method. As a result, dense, uniform zirconium dioxide films were obtained on the kanthal sheets which can be used as support materials in antimicrobial converters with sophisticated shapes. The material was characterised by physicochemical methods, such as AFM, SEM, EDX, XRF, XRD, XPS and in situ Raman and DRIFT spectroscopy. In terms of antimicrobial activity, the material was tested by ATP/AMP method using model microbes isolated from the real systems. The results show that the material can be potentially used in the market as a good candidate for active package and as active bulkheads of climatic systems. The mechanical tests showed that the developed method is an efficient way to obtain durable converters with high antimicrobial activity against fungi and bacteria.Keywords: antimicrobial properties, kanthal steel, nanocomposite, zirconium oxide
Procedia PDF Downloads 200500 Bioactivity of Peptides from Two Mushrooms
Authors: Parisa Farzaneh, Azade Harati
Abstract:
Mushrooms, or macro-fungi, as an important superfood, contain many bioactive compounds, particularly bio-peptides. In this research, mushroom proteins were extracted by buffer or buffer plus salt (0.15 M), along with an ultrasound bath to extract the intercellular protein. As a result, the highest amount of proteins in mushrooms were categorized into albumin. Proteins were also hydrolyzed and changed into peptides through endogenous and exogenous proteases, including gastrointestinal enzymes. The potency of endogenous proteases was also higher in Agaricus bisporus than Terfezia claveryi, as their activity ended at 75 for 15 min. The blanching process, endogenous enzymes, the mixture of gastrointestinal enzymes (pepsin-trypsin-α-chymotrypsin or trypsin- α-chymotrypsin) produced the different antioxidant and antibacterial hydrolysates. The peptide fractions produced with different cut-off ultrafilters also had various levels of radical scavenging, lipid peroxidation inhibition, and antibacterial activities. The bio-peptides with superior bioactivities (less than 3 kD of T. claveryi) were resistant to various environmental conditions (pH and temperatures). Therefore, they are good options to be added to nutraceutical and pharmaceutical preparations or functional foods, even during processing.Keywords: bio-peptide, mushrooms, gastrointestinal enzymes, bioactivity
Procedia PDF Downloads 59499 Integrated Management of Diseases of Vegetables and Flower Crops Grown in Protected Condition under Organic Production System
Authors: Shripad Kulkarni
Abstract:
Plant disease is an impairment of the normal state of a plant that interrupts or modifies its vital functions. Disease occurs on different parts of plants and cause heavy losses. Diagnosis of Problem is very important before planning any management practice and this can be done based on appearance of the crop, examination of the root and examination of the soil. There are various types of diseases such as biotic (transmissible) which accounts for ~30% whereas , abiotic (not transmissible) diseases are the major one with ~70% incidence. Plant diseases caused by different groups of organism’s belonging fungi, bacteria, viruses, nematodes and few others have remained important in causing significant losses in different crops indicating the urgent need of their integrated management. Various factors favor disease development and different steps and methods are involved in management of diseases under protected condition. Management of diseases through botanicals and bioagents by modifying root and aerial environment, vector management along with care to be taken while managing the disease are analysed.Keywords: organic production system, diseases, bioagents and polyhouse, agriculture
Procedia PDF Downloads 406498 Effects of Enzymatic Liquefaction on the Physicochemical Properties and Antioxidant Activity of Zn-Amaranth (Amaranthus viridis) Puree
Authors: M. A. Siti Faridah, K. Muhammad, H. M. Ghazali, Y. A. Yusof
Abstract:
This study was conducted to investigate the effects of three variables namely types of cell wall degrading enzymes (Viscozyme L, Pectinex Ultra SP-L, Rapidase PAC, Rohament CL and Rohapect PTE) at varying concentrations (0.25-3% v/w) and times (30 min-24 h) on the zinc (Zn-) amaranth purees. Liquefaction treatment of the Zn-amaranth purees with Viscozyme (1% v/w at pH 5 and 45ºC for 3 h) was found to be the best procedure, which produced Zn-amaranth puree with low viscosity (8.60 mPas). Zn-amaranth purees were also found to have the highest metallo-chlorophyll derivative contents (0.16 mg/g), free radical 2, 2-diphenyl-1-picrylhydrazyl (DPPH) values (12.49 mM (TE)/g fresh weight) and ferric reducing antioxidant power (FRAP) values (4.57 mM (TE)/g fresh weight) within 3 h of liquefaction. Other physicochemical properties of the enzyme-liquefied Zn-amaranth purees indicated that lightness (L*) (12.54), greenness a*/b* (-0.30), reducing sugar (103.88 mg/mL) and soluble dietary fibre (5.94%) of the purees were higher compared to that of nonenzyme-liquefied amaranth purees.Keywords: amaranth, antioxidant, chlorophyll derivative, enzymatic liquefaction
Procedia PDF Downloads 146497 Effect Mechanisms of Aromatic Plants: Effects on Intestinal Health and Broiler Feeding
Authors: Ozlem Durna Aydin, Gultekin Yildiz
Abstract:
Antibiotics are microbial metabolites with low molecular weight produced by fungi and algae, inhibiting the development of other microorganisms even in low growth. Antibiotics have been used as growth factors in animal feeds for many years. They prohibited; because of increased residue problem and increased resistance to antibiotics in bacteria due to prolonged use. Aromatic plants and extracts have attracted the attention of scientists nowadays due to positive reasons such as confidence of the community to the products those are coming from nature, desire to consume, and no residue problems. Plant extracts are obtained from aromatic plants, and they come forward with antifungal, antibacterial, antiviral, antioxidant and antilipidemic properties. It has been stated that intestinal histomorphology and microbiosis are positively affected by the use of plant extract in feeds. In the present day, aromatic plants and extracts are a remarkable research field with intriguing unknowns in the field of animal nutrition, and they continue to exist in the journal in vitro and in vivo studies.Keywords: aromatic plant, broilers, extract mechanism of action, intestinal health
Procedia PDF Downloads 166496 Approximation of Selenium Content in Watermelons for Use as a Food Supplement
Authors: Roggers Mutwiri Aron
Abstract:
Watermelons are fruits that belong to the family cucurbitaceous. There are many types of watermelons have been positively identified to exist in the world. A watermelon consists of four distinct parts namely; seeds, pink flesh, white flesh and peel. It also contains high content of water of approximately 90% that is rich in essential minerals such as, phosphorous, calcium, magnesium, and potassium, sodium trace amounts of copper, iron, zinc and selenium. Watermelons have substantial amounts of boron, iodine, chromium, silicon and molybdenum. The levels of nutrients in different parts of the watermelons may be different. Selenium has been found to be a very useful food supplement especially for people living with HIV/AIDS. An experimental study was carried out to estimate the amount Se in different parts of the watermelon. Analysis of sampled watermelons was conducted using atomic absorption spectrophotometer. The results of the study indicated that high content of Se was present in the seeds compared to the other parts. High content of Se was also found in the water contained in the watermelon seeds.Keywords: food supplement, watermelons, HIV/AIDS, nutrition, fruits
Procedia PDF Downloads 152495 High Efficiency Achievement by a New Heterojunction N-Zno:Al/P-Si Solar Cell
Authors: A. Bouloufa, F. Khaled, K. Djessas
Abstract:
This paper presents a new structure of solar cell based on p-type microcrystalline silicon as an absorber and n-type aluminum doped zinc oxide (ZnO:Al) transparent conductive oxide as an optical window. The ZnO:Al layer deposited by rf-magnetron sputtering at room temperature yields a low resistivity about 7,64.10-2Ω.cm and more than 85% mean optical transmittance in the VIS–NIR range, with an optical band gap of 3.3 eV. These excellent optical properties of this layer in combination with an optimal contact at the front surface result in a superior light trapping yielding to efficiencies about 20%. In order to improve efficiency, we have used a p+-µc-Si thin layer highly doped as a back surface field which minimizes significantly the impact of rear surface recombination velocity on voltage and current leading to a high efficiency of 24%. Optoelectronic parameters were determined using the current density-voltage (J-V) curve by means of a numerical simulation with Analysis of Microelectronic and Photonic Structures (AMPS-1D) device simulator.Keywords: optical window, thin film, solar cell, efficiency
Procedia PDF Downloads 287494 Effect of Sprouting Period of Proximate Composition, Functional Properties and Mineral Content on Malted Sorghum Flour
Authors: Adebola Ajayi, Olakunle M. Makanjuola
Abstract:
Effect of sprouting period on proximate, functional and mineral properties of malted sorghum flour was evaluated. The study was carried out to determine the proximate, functional and mineral properties of sprouting period on malted sorghum flour produced. The malted sorghum flour was obtained by sorting, weighing, washing, steeping, draining, germination, drying, dry milling, sieving. Malted sorghum flour was evaluated for proximate composition, functional properties and mineral contents. Moisture, protein, fat content, crude fiber, ash contents and carbohydrate of 24 and 48 hours, were in the range of 10.50-11.0, 11.17-11.17, 1.50-4.00, 2.50-1.50, 1.50-1.54 and 73.15-70.79% respectively. Bulk density ranged between 0.64 and 0.59g/ml, water and oil absorption capacities ranged between 139.3 and 150.0 and 217.3 and 222.7g/g respectively. Calcium, Magnesium, Zinc, Iron and Manganese were also range of 12.5, 59.3-60.0, 3.22-3.25, 3.80-3.90 and 3.22-3.25 mg/100g respectively. The results indicate that the germination of red sorghum resulted in the enhancement of the nutritional quality and its functional properties.Keywords: sprouting, sorghum, malted sorghum flour, cabinet dryer
Procedia PDF Downloads 208493 Mycoflora and Aflatoxin Contamination of Kokoro: A Nigerian Maize Snack
Authors: D. A. Onifade
Abstract:
Kokoro is maize snack which is very popular among poor masses in Nigeria who consume it along with gari(a cassava product) as lunch on a regular basis. In this study, fungal contaminants of kokoro were characterized and its aflatoxin content determined. A total of 30 fungal isolates were obtained from kokoro samples and they belong to 3 different species. Aspergillus flavus had the highest frequency of occurrence of 73.33% while Penicillium species had the lowest (6.66%). Different concentration of aflatoxin B1 was detected in some of the kokoro samples analyzed. Sample D had the highest concentration of 7.25 parts per billion (ppb). The lowest concentration detected was 0.06 ppb in sample P. No aflatoxin G1 and G2 was detected in all the kokoro samples with exception of sample P which contained 2.54 ppb aflatoxin G1.According to international standards some of the kokoro samples are not suitable for human consumption because of high-level aflatoxin which was above the recommended level. Therefore, production of kokoro should be standardized and appropriate packaging materials utilized to prevent the growth of aflatoxigenic fungi. This is to safeguard the health of many poor Nigerians who consume it on a regular basis.Keywords: kokoro, maize snack, aflatoxin, contamination, mould, Nigeria
Procedia PDF Downloads 326492 Development of Folding Based Aptasensor for Ochratoxin a Using Different Pulse Voltammetry
Authors: Rupesh K. Mishra, Gaëlle Catanante, Akhtar Hayat, Jean-Louis Marty
Abstract:
Ochratoxins (OTA) are secondary metabolites present in a wide variety of food stuff. They are dangerous by-products mainly produced by several species of storage fungi including the Aspergillus and Penicillium genera. OTA is known to have nephrotoxic, immunotoxic, teratogenic and carcinogenic effects. Thus, needs a special attention for a highly sensitive and selective detection system that can quantify these organic toxins in various matrices such as cocoa beans. This work presents a folding based aptasensors by employing an aptamer conjugated redox probe (methylene blue) specifically designed for OTA. The aptamers were covalently attached to the screen printed carbon electrodes using diazonium grafting. Upon sensing the OTA, it binds with the immobilized aptamer on the electrode surface, which induces the conformational changes of the aptamer, consequently increased in the signal. This conformational change of the aptamer before and after biosensing of target OTA could produce the distinguishable electrochemical signal. The obtained limit of detection was 0.01 ng/ml for OTA samples with recovery of up to 88% in contaminated cocoa samples.Keywords: ochratoxin A, cocoa, DNA aptamer, labelled probe
Procedia PDF Downloads 285491 The Effect of Fermentation and Germination on the Nutrient and Antinutrient Composition of Lima Bean (Phaseolus lunatus) Flour
Authors: P. N. Okeke
Abstract:
Fermentation and germination of legumes have been an ancient practice. In this study, the influence of fermentation and germination on the chemical properties of Lima bean (Phaseolus lunatus) flour were evaluated. The flours were analyzed for their proximate and mineral composition, using the standard assay methods. The result showed that fermentation and germination increased the moisture, protein and ash content of the flours while fiber, fat and carbohydrate were decreased. The protein level of fermented and germinated lima bean increased from 21.06–26.60%. The minerals: iron, copper, zinc, and phosphorous increased due to germination and fermentation. The phytate and tannin levels were drastically reduced in both the fermented and germinated flours. The result of this study revealed that fermentation and germination makes the nutrient in lima beans more accessible as it reduces the anti-nutrients. It is therefore recommended that lima bean be process accordingly for richer and more bio-availability of the nutrients.Keywords: nutrient, anti-nutrient, fermented, germinated, lima bean flour
Procedia PDF Downloads 390490 Accumulation of Heavy Metals in Safflower (Carthamus tinctorius L.)
Authors: Violina R. Angelova, Mariana N. Perifanova-Nemska, Galina P. Uzunova, Elitsa N. Kolentsova
Abstract:
Comparative research has been conducted to allow us to determine the accumulation of heavy metals (Pb, Zn and Cd) in the vegetative and reproductive organs of safflower, and to identify the possibility of its growth on soils contaminated by heavy metals and efficacy for phytoremediation. The experiment was performed on an agricultural field contaminated by the Non-Ferrous-Metal Works (MFMW) near Plovdiv, Bulgaria. The experimental plots were situated at different distances (0.1, 0.5, 2.0, and 15 km) from the source of pollution. The contents of heavy metals in plant materials (roots, stems, leaves, seeds) were determined. The quality of safflower oils (heavy metals and fatty acid composition) was also determined. The quantitative measurements were carried out with inductively-coupled plasma (ICP). Safflower is a plant that is tolerant to heavy metals and can be referred to the hyperaccumulators of lead and cadmium and the accumulators of zinc. The plant can be successfully used in the phytoremediation of heavy metal contaminated soils. The processing of safflower seeds into oil and the use of the obtained oil will greatly reduce the cost of phytoremediation.Keywords: heavy metals, accumulation, safflower, polluted soils, phytoremediation
Procedia PDF Downloads 263489 Alginate Wrapped NiO-ZnO Nanocomposites-Based Catalyst for the Reduction of Methylene Blue
Authors: Mohamed A. Adam Abakar, Abdullah M. Asiri, Sher Bahadar Khan
Abstract:
In this paper, nickel oxide-zinc oxide (NiO-ZnO) catalyst was embedded in an alginate polymer (Na alg/NiO-ZnO), a nanocomposite that was used as a nano-catalyst for catalytic conversion of deleterious contaminants such as organic dyes (Acridine Orange “ArO”, Methylene Blue “MB”, Methyl Orange “MO”) and 4-Nitrophenol “4-NP” as well. FESEM, EDS, FTIR and XRD techniques were used to identify the shape and structure of the nano-catalyst (Na alg/NiO-ZnO). UV spectrophotometry is used to collect the results and it showed greater and faster reduction rate for MB (illustrated in figures 2, 3, 4 and 5). Data recorded and processed, drawing and analysis of graphs achieved by using Origin 2018. Reduction percentage of MB was assessed to be 95.25 % in just 13 minutes. Furthermore, the catalytic property of Na alg/NiO-ZnO in the reduction of organic dyes was investigated using various catalyst amounts, dye types, reaction times and reducing agent dosages at room temperature (rt). NaBH4-assisted reduction of organic dyes was studied using alg/NiO-ZnO as a potential catalyst.Keywords: Alginate, metal oxides, nanocomposites-based, catalysts, reduction, photocatalytic degradation, water treatment
Procedia PDF Downloads 72488 Surface Water Quality in Orchard Area, Amphawa District, Samut Songkram Province, Thailand
Authors: Sisuwan Kaseamsawat, Sivapan Choo-In
Abstract:
This study aimed to evaluated the surface water quality for agriculture and consumption in the district. Surface water quality parameters in this study in cluding water temperature, turbidity, conductivity. salinity, pH, dissolved oxygen, BOD, nitrate, Suspended solids, phosphorus. Total dissolve solids, iron, copper, zinc, manganese, lead and cadmium. Water samples were collected from small excavation, Lychee, Pomelo, and Coconut orchard for 3 season during January to December 2011. The surface water quality from small excavation, Lychee, pomelo, and coconut orchard are meet the type III of surface water quality standard issued by the National Environmental Quality Act B. E. 1992. except the concentration of heavy metal. And did not differ significantly at 0.05 level, except dissolved oxygen. The water is suitable for consumption by the usual sterile and generally improving water quality through the process before. And is suitable for agriculture.Keywords: water quality, surface water quality, Thailand, water
Procedia PDF Downloads 356487 Binding Ability of Carbazolylphenyl Dendrimers with Zinc (II) Tetraphenylporphyrin Core towards Cryptands
Authors: Galina Mamardashvili, Nugzar Mamardashvili, Win Dehaen
Abstract:
The processes of complexation of the Zn-tetraarylporphyrins with eight 4-(4-(3,6-bis(t-butyl)carbazol-9-yl-phenyl)-1,2,3-triazole (ZnP1) and eight 4-(4-(3,6-di-tert-butyl-9-H-carbazol-9-yl)phenoxy)methyl)-2,4,6-trimethylphenyl (ZnP2)with the 1,10-diaza-4,7,13,18tetraoxabicyclo[8.5.5]eicosane (L1),1,10-diaza-4,7,13,16,21,24-hexaoxabicyclo[8.8.8]hexacosane (L2)and 1,10-diaza-5,6,14,15-dibenzo-4,7,13,16,21,24 hexaoxabicyclo[8.8.8] hexacosane (L3) were investigated by the method of spectrophotometric titration and 1H NMR-spectroscopy. We determined the structures of the host-guest complexes, and their stability constants in toluene were calculated. It was found out that the ZnP1 interacts with the guest molecules L1, L2 with the formation of stable "nest" type complexes and does not form similar complexes with the L3 (presumably due to the fact that the L3 does not match the size of the porphyrin ZnP(1) cavity). On the other hand, the porphyrin ZnP2 binds all of the ligands L1-L3, however complexes thus formed are less stable than complexes ZnP1-L1, ZnP1-L2. In the report, we will also discuss the influence of the alkali cations additives on the stability of the complexes between the porphyrin ZnP1, ZnP2 hosts and guest molecules of the ligands L1-L3.Keywords: porphyrin, cryptand, cation, complex guest-host
Procedia PDF Downloads 222486 Evaluation of Microstructure, Mechanical and Abrasive Wear Response of in situ TiC Particles Reinforced Zinc Aluminum Matrix Alloy Composites
Authors: Mohammad M. Khan, Pankaj Agarwal
Abstract:
The present investigation deals with the microstructures, mechanical and detailed wear characteristics of in situ TiC particles reinforced zinc aluminum-based metal matrix composites. The composites have been synthesized by liquid metallurgy route using vortex technique. The composite was found to be harder than the matrix alloy due to high hardness of the dispersoid particles therein. The former was also lower in ultimate tensile strength and ductility as compared to the matrix alloy. This could be explained to be due to the use of coarser size dispersoid and larger interparticle spacing. Reasonably uniform distribution of the dispersoid phase in the alloy matrix and good interfacial bonding between the dispersoid and matrix was observed. The composite exhibited predominantly brittle mode of fracture with microcracking in the dispersoid phase indicating effective easy transfer of load from matrix to the dispersoid particles. To study the wear behavior of the samples three different types of tests were performed namely: (i) sliding wear tests using a pin on disc machine under dry condition, (ii) high stress (two-body) abrasive wear tests using different combinations of abrasive media and specimen surfaces under the conditions of varying abrasive size, traversal distance and load, and (iii) low-stress (three-body) abrasion tests using a rubber wheel abrasion tester at various loads and traversal distances using different abrasive media. In sliding wear test, significantly lower wear rates were observed in the case of base alloy over that of the composites. This has been attributed to the poor room temperature strength as a result of increased microcracking tendency of the composite over the matrix alloy. Wear surfaces of the composite revealed the presence of fragmented dispersoid particles and microcracking whereas the wear surface of matrix alloy was observed to be smooth with shallow grooves. During high-stress abrasion, the presence of the reinforcement offered increased resistance to the destructive action of the abrasive particles. Microcracking tendency was also enhanced because of the reinforcement in the matrix. The negative effect of the microcracking tendency was predominant by the abrasion resistance of the dispersoid. As a result, the composite attained improved wear resistance than the matrix alloy. The wear rate increased with load and abrasive size due to a larger depth of cut made by the abrasive medium. The wear surfaces revealed fine grooves, and damaged reinforcement particles while subsurface regions revealed limited plastic deformation and microcracking and fracturing of the dispersoid phase. During low-stress abrasion, the composite experienced significantly less wear rate than the matrix alloy irrespective of the test conditions. This could be explained to be due to wear resistance offered by the hard dispersoid phase thereby protecting the softer matrix against the destructive action of the abrasive medium. Abraded surfaces of the composite showed protrusion of dispersoid phase. The subsurface regions of the composites exhibited decohesion of the dispersoid phase along with its microcracking and limited plastic deformation in the vicinity of the abraded surfaces.Keywords: abrasive wear, liquid metallurgy, metal martix composite, SEM
Procedia PDF Downloads 150485 Effects of Additives on Thermal Decompositions of Carbon Black/High Density Polyethylene Compounds
Authors: Orathai Pornsunthorntawee, Wareerom Polrut, Nopphawan Phonthammachai
Abstract:
In the present work, the effects of additives, including contents of the added antioxidants and type of the selected metallic stearates (either calcium stearate (CaSt) or zinc stearate (ZnSt)), on the thermal stabilities of carbon black (CB)/high density polyethylene (HDPE) compounds were studied. The results showed that the AO contents played a key role in the thermal stabilities of the CB/HDPE compounds—the higher the AO content, the higher the thermal stabilities. Although the CaSt-containing compounds were slightly superior to those with ZnSt in terms of the thermal stabilities, the remaining solid residue of CaSt after heated to the temperature of 600 °C (mainly calcium carbonate (CaCO3) as characterized by the X-ray diffraction (XRD) technique) seemed to catalyze the decomposition of CB in the HDPE-based compounds. Hence, the quantification of CB in the CaSt-containing compounds with a muffle furnace gave an inaccurate CB content—much lower than actual value. However, this phenomenon was negligible in the ZnSt-containing system.Keywords: antioxidant, stearate, carbon black, polyethylene
Procedia PDF Downloads 363484 Isolation and Identification of Fungal Pathogens in Palm Groves of Oued Righ
Authors: Lakhdari Wassima, Ouffroukh Ammar, Dahliz Abderrahmène, Soud Adila, Hammi Hamida, M’lik Randa
Abstract:
Prospected palm groves of Oued Righ regions (Ouargla, Algeria) allowed us to observe sudden death of palm trees aged between 05 and 70 years. Field examinations revealed abnormal clinical signs with sometimes a quick death of affected trees. Entomologic investigations have confirmed the absence of phytophagous insects on dead trees. Further investigations by questioning farmers on the global management of palm groves visited (Irrigation, water quality used, soil type, etc.) did not establish any relationship between these aspects and the death of palm trees, which naturally pushed us to focus our investigations for research on fungal pathogens. Thus, laboratory studies were conducted to know the real causes of this phenomenon, 13 fungi were found on different parts of the dead palm trees. The flowing fungal types were identified: 1-Diplodia phoenicum, 2-Theilaviopsis paradoxa, 3-Phytophthora sp, 4-Helminthosporium sp, 5-Stemphylium botryosum, 6-Alternaria sp, 7-Aspergillus niger, 8-Aspergillus sp.Keywords: palm tree, death, fungal pathogens, Oued Righ
Procedia PDF Downloads 411483 Piezotronic Effect on Electrical Characteristics of Zinc Oxide Varistors
Authors: Nadine Raidl, Benjamin Kaufmann, Michael Hofstätter, Peter Supancic
Abstract:
If polycrystalline ZnO is properly doped and sintered under very specific conditions, it shows unique electrical properties, which are indispensable for today’s electronic industries, where it is used as the number one overvoltage protection material. Under a critical voltage, the polycrystalline bulk exhibits high electrical resistance but becomes suddenly up to twelve magnitudes more conductive if this voltage limit is exceeded (i.e., varistor effect). It is known that these peerless properties have their origin in the grain boundaries of the material. Electric charge is accumulated in the boundaries, causing a depletion layer in their vicinity and forming potential barriers (so-called Double Schottky Barriers, or DSB) which are responsible for the highly non-linear conductivity. Since ZnO is a piezoelectric material, mechanical stresses induce polarisation charges that modify the DSB heights and as a result the global electrical characteristics (i.e., piezotronic effect). In this work, a finite element method was used to simulate emerging stresses on individual grains in the bulk. Besides, experimental efforts were made to testify a coherent model that could explain this influence. Electron back scattering diffraction was used to identify grain orientations. With the help of wet chemical etching, grain polarization was determined. Micro lock-in infrared thermography (MLIRT) was applied to detect current paths through the material, and a micro 4-point probes method system (M4PPS) was employed to investigate current-voltage characteristics between single grains. Bulk samples were tested under uniaxial pressure. It was found that the conductivity can increase by up to three orders of magnitude with increasing stress. Through in-situ MLIRT, it could be shown that this effect is caused by the activation of additional current paths in the material. Further, compressive tests were performed on miniaturized samples with grain paths containing solely one or two grain boundaries. The tests evinced both an increase of the conductivity, as observed for the bulk, as well as a decreased conductivity. This phenomenon has been predicted theoretically and can be explained by piezotronically induced surface charges that have an impact on the DSB at the grain boundaries. Depending on grain orientation and stress direction, DSB can be raised or lowered. Also, the experiments revealed that the conductivity within one single specimen can increase and decrease, depending on the current direction. This novel finding indicates the existence of asymmetric Double Schottky Barriers, which was furthermore proved by complementary methods. MLIRT studies showed that the intensity of heat generation within individual current paths is dependent on the direction of the stimulating current. M4PPS was used to study the relationship between the I-V characteristics of single grain boundaries and grain orientation and revealed asymmetric behavior for very specific orientation configurations. A new model for the Double Schottky Barrier, taking into account the natural asymmetry and explaining the experimental results, will be given.Keywords: Asymmetric Double Schottky Barrier, piezotronic, varistor, zinc oxide
Procedia PDF Downloads 267482 Developing a Town Based Soil Database to Assess the Sensitive Zones in Nutrient Management
Authors: Sefa Aksu, Ünal Kızıl
Abstract:
For this study, a town based soil database created in Gümüşçay District of Biga Town, Çanakkale, Turkey. Crop and livestock production are major activities in the district. Nutrient management is mainly based on commercial fertilizer application ignoring the livestock manure. Within the boundaries of district, 122 soil sampling points determined over the satellite image. Soil samples collected from the determined points with the help of handheld Global Positioning System. Labeled samples were sent to a commercial laboratory to determine 11 soil parameters including salinity, pH, lime, organic matter, nitrogen, phosphorus, potassium, iron, manganese, copper and zinc. Based on the test results soil maps for mentioned parameters were developed using remote sensing, GIS, and geostatistical analysis. In this study we developed a GIS database that will be used for soil nutrient management. Methods were explained and soil maps and their interpretations were summarized in the study.Keywords: geostatistics, GIS, nutrient management, soil mapping
Procedia PDF Downloads 375481 Studies on H2S Gas Sensing Performance of Al2O3-Doped ZnO Thick Films at Ppb Level
Authors: M. K. Deore
Abstract:
The thick films of undoped and Al2O3 doped- ZnO were prepared by screen printing technique. AR grade (99.9 % pure) Zinc Oxide powder were mixed mechanochemically in acetone medium with Aluminium Chloride (AlCl2) material in various weight percentages such as 0.5, 1, 3 and 5 wt % to obtain Al2O3 - ZnO composite. The prepared materials were sintered at 1000oC for 12h in air ambience and ball milled to ensure sufficiently fine particle size. The electrical, structural and morphological properties of the films were investigated. The X-ray diffraction analysis of pure and doped ZnO shows the polycrystalline nature. The surface morphology of the films was studied by SEM. The final composition of each film was determined by EDAX analysis. The gas response of undoped and Al2O3- doped ZnO films were studied for different gases such as CO, H2, NH3, and H2S at operating temperature ranging from 50 oC to 450 o C. The pure film shows the response to H2S gas (500ppm) at 300oC while the film doped with 3 wt.% Al2O3 gives the good response to H2S gas(ppb) at 350oC. The selectivity, response and recovery time of the sensor were measured and presented.Keywords: thick films, ZnO-Al2O3, H2S gas, sensitivity, selectivity, response and recovery time
Procedia PDF Downloads 420480 Absorption Capability Examination of Heavy Metals by Spirogyra Alga in Ahvaz Water Treatment Plant
Authors: F. Fakheri Raof, F. Zobeidizadeh
Abstract:
The present study examined the potential capability of Spirogyra algae remove heavy metals Zn, Pb, Cu, and Cr from the water. For this purpose, the water treatment No. 3 of Ahvaz County in Khuzestan Province of Iran was selected as a case study. From 8 sampling stations, 4 stations were dedicated to the water samples and 4 stations to the algae samples. According to the obtained results, the concentration of the heavy metals Cr, Cu, Pb, and Zn in water samples were within the ranges of 1.98-19.53, 0.67-13.45, 1-23.18, and 2.12-83.04 µg/L. Besides, the concentration of heavy metal Cr, Pb, Cu, and Zn in spirogyra algae samples varied between the ranges 2.30-3.61, 2.06-3.43, 2.29-2.56, and 9.88-10.84 µg/L. The highest amount of metal absorption in spirogyra algae samples was related to the zinc. The obtained results also indicated that the last spirogyra algae sample which was at the inlet of Tank 4 absorbed the lowest concentration of metals. This would be due to the treatment process along the course of ponds resulted in completely pure water at the outlet without the existence of algae on the sides. The paper also provides some useful recommendations on this issue.Keywords: absorption, Ahvaz, heavy metal, spirogyra algae, water treatment plants
Procedia PDF Downloads 265479 Diversified Farming and Agronomic Interventions Improve Soil Productivity, Soybean Yield and Biomass under Soil Acidity Stress
Authors: Imran, Murad Ali Rahat
Abstract:
One of the factors affecting crop production and nutrient availability is acidic stress. The most important element decreasing under acidic stress conditions is phosphorus deficiency, which results in stunted growth and yield because of inefficient nutrient cycling. At the Agriculture Research Institute Mingora Swat, Pakistan, tests were carried out for the first time throughout the course of two consecutive summer seasons in 2016 (year 1) and 2017 (year 2) with the goal of increasing crop productivity and nutrient availability under acidic stress. Three organic supplies (peach nano-black carbon, compost, and dry-based peach wastes), three phosphorus rates, and two advantageous microorganisms (Trichoderma and PSB) were incorporated in the experimental treatments. The findings showed that, in conditions of acid stress, peach organic sources had a significant impact on yield and yield components. The application of nano-black carbon produced the greatest thousand seed weight of 164.6 g among organic sources, however the use of phosphorus solubilizing bacteria (PSB) for seed inoculation increased the thousand seed weight of beneficial microbes when compared to Trichoderma soil application. The thousand seed weight was significantly impacted by the quantities of phosphorus. The treatment of 100 kg P ha-1 produced the highest thousand seed weight (167.3 g), which was followed by 75 kg P ha-1 (162.5 g). Compost amendments provided the highest seed yield (2,140 kg ha-1) and were comparable to the application of nano-black carbon (2,120 kg ha-1). With peach residues, the lowest seed output (1,808 kg ha-1) was observed.Compared to seed inoculation with PSB (1,913 kg ha-1), soil treatment with Trichoderma resulted in the maximum seed production (2,132 kg ha-1). Applying phosphorus to the soybean crop greatly increased its output. The highest seed yield (2,364 kg ha-1) was obtained with 100 kg P ha-1, which was comparable to 75 kg P ha-1 (2,335 kg ha-1), while the lowest seed yield (1,569 kg ha-1) was obtained with 50 kg P ha-1. The average values showed that compared to control plots (3.3 g kg-1), peach organic sources produced greatest SOC (10.0 g kg-1). Plots with treated soil had a maximum soil P of 19.7 mg kg-1, while plots under stress had a maximum soil P of 4.8 mg kg-1. While peach compost resulted in the lowest soil P levels, peach nano-black carbon yielded the highest soil P levels (21.6 mg kg-1). Comparing beneficial bacteria with PSB to Trichoderma (18.3 mg/kg-1), the former also shown an improvement in soil P (21.1 mg kg-1). Regarding P treatments, the application of 100 kg P per ha produced significantly higher soil P values (26.8 mg /kg-1), followed by 75 kg P per ha (18.3 mg /kg-1), and 50 kg P ha-1 produced the lowest soil P values (14.1 mg /kg-1). Comparing peach wastes and compost to peach nano-black carbon (13.7 g kg-1), SOC rose. In contrast to PSB (8.8 g kg-1), soil-treated Trichoderma was shown to have a greater SOC (11.1 g kg-1). Higher among the P levels.Keywords: acidic stress, trichoderma, beneficial microbes, nano-black carbon, compost, peach residues, phosphorus, soybean
Procedia PDF Downloads 77478 Secondary Metabolite Profiling and Antimicrobial Activity of Leaf Extract of Tecomella undulata (Sm.) Seem
Authors: Richa Bhardwaj
Abstract:
Tecomella undulata (Sm.) Seem is a monotypic genus belonging to family Bignoniaceae. The plant holds tremendous potential of medicinal value and has been traditionally used in various ailments like syphilis, leukoderma, blood disorders to name a few. The plant has gained prominence due to the presence of some prominent secondary metabolites. The present study focuses on the GC-MS analysis of leaf extracts of T. undulata which revealed the presence of certain bioactive compounds like stigmasterol, sitosterol, thiazoline, phytol, pthalic acid, methyl alpha ketopalmitate and so forth. A total of about 20 bioactive compounds were identified from the leaf extract spectra. Antimicrobial activity of the leaf extract was assayed against pathogenic bacteria and fungi. The alkaloids from leaf extracts showed antimicrobial activity against E.coli and B.subtilis. The flavonoids from leaves showed positive activity against Penicillium species and Candida albicans. The study thus infers that the presence of bioactive components may be the principle behind the antimicrobial property of different plant parts and therefore Tecomella forms a potential plant for herbal drug formulation.Keywords: Tecomella undulata, bioactive compounds, GC-MS, antimicrobial activity
Procedia PDF Downloads 150477 Influence of Grain Shape, Size and Grain Boundary Diffusion on High Temperature Oxidation of Metal
Authors: Sneha Samal, Iva Petrikova, Bohdana Marvalova
Abstract:
Influence of grain size, shape and grain boundary diffusion at high temperature oxidation of pure metal is investigated as the function of microstructure evolution in this article. The oxidized scale depends on the geometrical parameter of the metal-scale system and grain shape, size, diffusion through boundary layers and influence of the contamination. The creation of the inner layer and the morphological structure develops from the internal stress generated during the growth of the scale. The oxidation rate depends on the cation and anion mobile transport of the metal in the inward and outward direction of the diffusion layer. Oxidation rate decreases with decreasing the grain size of the pure metal, whereas zinc deviates from this principle. A strong correlation between the surface roughness evolution, grain size, crystalline properties and oxidation mechanism of the oxidized metal was established.Keywords: high temperature oxidation, pure metals, grain size, shape and grain boundary
Procedia PDF Downloads 497476 Coordination Behavior, Theoretical Studies, and Biological Activity of Some Transition Metal Complexes with Oxime Ligands
Authors: Noura Kichou, Manel Tafergguenit, Nabila Ghechtouli, Zakia Hank
Abstract:
The aim of this work is to synthesize, characterize and evaluate the biological activity of two Ligands : glyoxime and dimethylglyoxime, and their metal Ni(II) chelates. The newly chelates were characterized by elemental analysis, IR, EPR, nuclear magnetic resonances (1H and 13C), and biological activity. The antibacterial and antifungal activities of the ligands and its metal complexes were screened against bacterial species (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) and fungi (Candida albicans). Ampicillin and amphotericin were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with parent free ligand against bacterial and fungal species. A structural, energetic, and electronic theoretical study was carried out using the DFT method, with the functional B3LYP and the gaussian program 09. A complete optimization of geometries was made, followed by a calculation of the frequencies of the normal modes of vibration. The UV spectrum was also interpreted. The theoretical results were compared with the experimental data.Keywords: glyoxime, dimetylglyoxime, nickel, antibacterial activity
Procedia PDF Downloads 106