Search results for: random factor
6539 Machine Learning Techniques in Seismic Risk Assessment of Structures
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine
Procedia PDF Downloads 1066538 The Nutritive Value of Fermented Sago Pith (Metroxylon sago Rottb) Enriched with Micro Nutrients for Poultry Feed
Authors: Wizna, Helmi Muis, Hafil Abbas
Abstract:
An experiment was conducted to improve the nutrient value of sago pith (Metroxylon sago Rottb) supplemented with Zn, Sulfur and urea through fermentation by using cellulolytic bacteria (Bacillus amyloliquefaciens) as inoculums. The experiment was determination of the optimum dose combination (dosage of Zn, S and urea) for sago pith fermentation based on nutrient quality and quantity of these fermented products. The study was conducted in experimental method, using the completely randomized design in factorial with 3 treatments consist of: factor A (Dose of urea: A1 = 2.0%, A2 = 3.0%), factor B (Dose of S: B1 = 0.2%, B2 = 0.4%) and factor C (Dose of Zn: C1 = 0.0025%, C2 = 0.005%). Results of study showed that optimum condition for fermentation process of sago pith with B. amyloliquefaciens caused a change of nutrient content was obtained at urea (3%), S (0,2%), and Zn (0,0025%). This fermentation process was able to increase amino acid average, reduce crude fiber content by 67% and increase crude protein by 433%, which made the nutritional value of the product based on dry matter was 18.22% crude protein, 12.42% crude fiber, 2525 Kcal/kg metabolic energy and 65.73% nitrogen retention.Keywords: fermentation, sago pith, sulfur, Zn, urea, Bacillus amyloliquefaciens
Procedia PDF Downloads 5116537 Optimal Design of Step-Stress Partially Life Test Using Multiply Censored Exponential Data with Random Removals
Authors: Showkat Ahmad Lone, Ahmadur Rahman, Ariful Islam
Abstract:
The major assumption in accelerated life tests (ALT) is that the mathematical model relating the lifetime of a test unit and the stress are known or can be assumed. In some cases, such life–stress relationships are not known and cannot be assumed, i.e. ALT data cannot be extrapolated to use condition. So, in such cases, partially accelerated life test (PALT) is a more suitable test to be performed for which tested units are subjected to both normal and accelerated conditions. This study deals with estimating information about failure times of items under step-stress partially accelerated life tests using progressive failure-censored hybrid data with random removals. The life data of the units under test is considered to follow exponential life distribution. The removals from the test are assumed to have binomial distributions. The point and interval maximum likelihood estimations are obtained for unknown distribution parameters and tampering coefficient. An optimum test plan is developed using the D-optimality criterion. The performances of the resulting estimators of the developed model parameters are evaluated and investigated by using a simulation algorithm.Keywords: binomial distribution, d-optimality, multiple censoring, optimal design, partially accelerated life testing, simulation study
Procedia PDF Downloads 3196536 Sensitivity Analysis of External-Rotor Permanent Magnet Assisted Synchronous Reluctance Motor
Authors: Hadi Aghazadeh, Seyed Ebrahim Afjei, Alireza Siadatan
Abstract:
In this paper, a proper approach is taken to assess a set of the most effective rotor design parameters for an external-rotor permanent magnet assisted synchronous reluctance motor (PMaSynRM) and therefore to tackle the design complexity of the rotor structure. There are different advantages for introducing permanent magnets into the rotor flux barriers, some of which are to saturate the rotor iron ribs, to increase the motor torque density and to improve the power factor. Moreover, the d-axis and q-axis inductances are of great importance to simultaneously achieve maximum developed torque and low torque ripple. Therefore, sensitivity analysis of the rotor geometry of an 8-pole external-rotor permanent magnet assisted synchronous reluctance motor is performed. Several magnetically accurate finite element analyses (FEA) are conducted to characterize the electromagnetic performance of the motor. The analyses validate torque and power factor equations for the proposed external-rotor motor. Based upon the obtained results and due to an additional term, permanent magnet torque, added to the reluctance torque, the electromagnetic torque of the PMaSynRM increases.Keywords: permanent magnet assisted synchronous reluctance motor, flux barrier, flux carrier, electromagnetic torque, and power factor
Procedia PDF Downloads 3316535 Wildland Fire in Terai Arc Landscape of Lesser Himalayas Threatning the Tiger Habitat
Authors: Amit Kumar Verma
Abstract:
The present study deals with fire prediction model in Terai Arc Landscape, one of the most dramatic ecosystems in Asia where large, wide-ranging species such as tiger, rhinos, and elephant will thrive while bringing economic benefits to the local people. Forest fires cause huge economic and ecological losses and release considerable quantities of carbon into the air and is an important factor inflating the global burden of carbon emissions. Forest fire is an important factor of behavioral cum ecological habit of tiger in wild. Post fire changes i.e. micro and macro habitat directly affect the tiger habitat or land. Vulnerability of fire depicts the changes in microhabitat (humus, soil profile, litter, vegetation, grassland ecosystem). Microorganism like spider, annelids, arthropods and other favorable microorganism directly affect by the forest fire and indirectly these entire microorganisms are responsible for the development of tiger (Panthera tigris) habitat. On the other hand, fire brings depletion in prey species and negative movement of tiger from wild to human- dominated areas, which may leads the conflict i.e. dangerous for both tiger & human beings. Early forest fire prediction through mapping the risk zones can help minimize the fire frequency and manage forest fires thereby minimizing losses. Satellite data plays a vital role in identifying and mapping forest fire and recording the frequency with which different vegetation types are affected. Thematic hazard maps have been generated by using IDW technique. A prediction model for fire occurrence is developed for TAL. The fire occurrence records were collected from state forest department from 2000 to 2014. Disciminant function models was used for developing a prediction model for forest fires in TAL, random points for non-occurrence of fire have been generated. Based on the attributes of points of occurrence and non-occurrence, the model developed predicts the fire occurrence. The map of predicted probabilities classified the study area into five classes very high (12.94%), high (23.63%), moderate (25.87%), low(27.46%) and no fire (10.1%) based upon the intensity of hazard. model is able to classify 78.73 percent of points correctly and hence can be used for the purpose with confidence. Overall, also the model works correctly with almost 69% of points. This study exemplifies the usefulness of prediction model of forest fire and offers a more effective way for management of forest fire. Overall, this study depicts the model for conservation of tiger’s natural habitat and forest conservation which is beneficial for the wild and human beings for future prospective.Keywords: fire prediction model, forest fire hazard, GIS, landsat, MODIS, TAL
Procedia PDF Downloads 3526534 Motivating Factors of Mobile Device Applications toward Learning
Authors: Yen-Mei Lee
Abstract:
Mobile learning (m-learning) has been applied in the education field not only because it is an alternative to web-based learning but also it possesses the ‘anytime, anywhere’ learning features. However, most studies focus on the technology-related issue, such as usability and functionality instead of addressing m-learning from the motivational perspective. Accordingly, the main purpose of the current paper is to integrate critical factors from different motivational theories and related findings to have a better understand the catalysts of an individual’s learning motivation toward m-learning. The main research question for this study is stated as follows: based on different motivational perspectives, what factors of applying mobile devices as medium can facilitate people’s learning motivations? Self-Determination Theory (SDT), Uses and Gratification Theory (UGT), Malone and Lepper’s taxonomy of intrinsic motivation theory, and different types of motivation concepts were discussed in the current paper. In line with the review of relevant studies, three motivating factors with five essential elements are proposed. The first key factor is autonomy. Learning on one’s own path and applying personalized format are two critical elements involved in the factor of autonomy. The second key factor is to apply a build-in instant feedback system during m-learning. The third factor is creating an interaction system, including communication and collaboration spaces. These three factors can enhance people’s learning motivations when applying mobile devices as medium toward learning. To sum up, in the currently proposed paper, with different motivational perspectives to discuss the m-learning is different from previous studies which are simply focused on the technical or functional design. Supported by different motivation theories, researchers can clearly understand how the mobile devices influence people’s leaning motivation. Moreover, instructional designers and educators can base on the proposed factors to build up their unique and efficient m-learning environments.Keywords: autonomy, learning motivation, mobile learning (m-learning), motivational perspective
Procedia PDF Downloads 1816533 Feeling Ambivalence Towards Values
Authors: Aysheh Maslemani, Ruth Mayo, Greg Maio, Ariel Knafo-Noam
Abstract:
Values are abstract ideals that serve as guiding principles in one's life. As inherently positive and desirable concepts, values are seen as motivators for actions and behaviors. However, research has largely ignored the possibility that values may elicit negative feelings despite being explicitly important to us. In the current study, we aim to examine this possibility. Four hundred participants over 18 years(M=41.6, SD=13.7, Female=178) from the UK completed a questionnaire in which they were asked to indicate their level of positive/negative feelings towards a comprehensive list of values and then report the importance of these values to them. The results support our argument by showing that people can have negative feelings towards their values and that people can feel both positive and negative emotions towards their values simultaneously, which means feeling ambivalence. We ran a mixed-effect model with ambivalence, value type, and their interaction as fixed effects, with by subject random intercept and by subject random slope for ambivalence. The results reveal that values that elicit less ambivalence predicted higher ratings for value importance. This research contributes to the field of values on multiple levels. Theoretically, it will uncover new insights about values, such as the existence of negative emotions towards them and the presence of ambivalence towards values. These findings may inspire future studies to explore the effects of ambivalence on people's well-being, behaviors, cognition, and their affect. We discuss the findings and consider their implications for understanding the social psychological mechanisms underpinning value ambivalence.Keywords: emotion, social cognition, values., ambivalence
Procedia PDF Downloads 676532 Feeling Ambivalence Towards Yours Values
Authors: Aysheh Maslemani, Ruth Mayo, Greg Maio, Ariel Knafo-Noam
Abstract:
Values are abstract ideals that serve as guiding principles in one's life. As inherently positive and desirable concepts, values are seen as motivators for actions and behaviors. However, research has largely ignored the possibility that values may elicit negative feelings despite being explicitly important to us. In the current study we aim to examine this possibility. Four hundred participants over 18 years(M=41.6,SD=13.7,Female=178) from the UK completed a questionnaire in which they were asked to indicate their level of positive/negative feelings towards a comprehensive list of values and then report the importance of these values to them. The results support our argument by showing that people can have negative feelings towards their values and that people can feel both positive and negative emotions towards their values simultaneously, which means feeling ambivalence. We ran a mixed-effect model with ambivalence, value type, and their interaction as fixed effects, with by subject random intercept, and by subject random slope for ambivalence. The results reveal that values that elicit less ambivalence predicted higher ratings for value importance. This research contributes to the field of values on multiple levels. Theoretically, it will uncover new insights about values, such as the existence of negative emotions towards them, the presence of ambivalence towards values. These findings may inspire future studies to explore the effects of ambivalence on people's well-being, behaviors, cognition, and their affect. We discuss the findings and consider their implications for understanding the social psychological mechanisms underpinning value ambivalence.Keywords: ambivalence, emotion, social cognition, values
Procedia PDF Downloads 676531 The Analysis of Increment of Road Traffic Accidents in Libya: Case Study City of Tripoli
Authors: Fares Elturki, Shaban Ismael Albrka Ali Zangena, H. A. M. Yahia
Abstract:
Safety is an important consideration in the design and operation of streets and highways. Traffic and highway engineers working with law enforcement officials are constantly seeking for better methods to ensure safety for motorists and pedestrians. Also, a highway safety improvement process involves planning, implementation, and evaluation. The planning process requires that engineers collect and maintain traffic safety data, identify the hazards location, conduct studies and establish project priorities. Unfortunately, in Libya, the increase in demand for private transportation in recent years, due to poor or lack of public transportation led to some traffic problems especially in the capital (Tripoli). Also, the growth of private transportation has significant influences on the society regarding road traffic accidents (RTAs). This study investigates the most critical factors affect RTAs in Tripoli the capital city of Libya. Four main classifications were chosen to build the questionnaire, namely; human factors, road factors, vehicle factors and environmental factors. Moreover, a quantitative method was used to collect the data from the field, the targeted sample size 400 respondents include; drivers, pedestrian and passengers and relative importance index (RII) were used to rank the factors of one group and between all groups. The results show that the human factors have the most significant impacts compared with other factors. Also, 84% of respondents considered the over speeding as the most significant factor cusses of RTAs while 81% considered the disobedience to driving regulations as the second most influential factor in human factors. Also, the results showed that poor brakes or brake failure factor a great impact on the RTAs among the vehicle factors with nearly 74%, while 79% categorized poor or no street lighting factor as one of the most effective factors on RTAs in road factors and third effecting factor concerning all factors. The environmental factors have the slights influences compared with other factors.Keywords: road traffic accidents, Libya, vehicle factors, human factors, relative importance index
Procedia PDF Downloads 2796530 Unified Theory of Acceptance and Use of Technology in Evaluating Voters' Intention Towards the Adoption of Electronic Forensic Election Audit System
Authors: Sijuade A. A., Oguntoye J. P., Awodoye O. O., Adedapo O. A., Wahab W. B., Okediran O. O., Omidiora E. O., Olabiyisi S. O.
Abstract:
Electronic voting systems have been introduced to improve the efficiency, accuracy, and transparency of the election process in many countries around the world, including Nigeria. However, concerns have been raised about the security and integrity of these systems. One way to address these concerns is through the implementation of electronic forensic election audit systems. This study aims to evaluate voters' intention to the adoption of electronic forensic election audit systems using the Unified Theory of Acceptance and Use of Technology (UTAUT) model. In the study, the UTAUT model which is a widely used model in the field of information systems to explain the factors that influence individuals' intention to use a technology by integrating performance expectancy, effort expectancy, social influence, facilitating conditions, cost factor and privacy factor to voters’ behavioural intention was proposed. A total of 294 sample data were collected from a selected population of electorates who had at one time or the other participated in at least an electioneering process in Nigeria. The data was then analyzed statistically using Partial Least Square Structural Equation Modeling (PLS-SEM). The results obtained show that all variables have a significant effect on the electorates’ behavioral intention to adopt the development and implementation of an electronic forensic election audit system in Nigeria.Keywords: election Audi, voters, UTAUT, performance expectancy, effort expectancy, social influence, facilitating condition social influence, facilitating conditions, cost factor, privacy factor, behavioural intention
Procedia PDF Downloads 736529 The Prognostic Values of Current Staging Schemes in Temporal Bone Carcinoma: A Real-World Evidence-Based Study
Authors: Minzi Mao, Jianjun Ren, Yu Zhao
Abstract:
Objectives: The absence of a uniform staging scheme for temporal bone carcinoma (TBC) seriously impedes the improvement of its management strategies. Therefore, this research was aimed to investigate the prognostic values of two currently applying staging schemes, namely, the modified Pittsburgh staging system (MPB) and Stell’s T classification (Stell-T) in patients with TBC. Methods: Areal-world single-institution retrospectivereview of patientsdiagnosed with TBC between2008 and 2019 was performed. Baseline characteristics were extracted, and patients were retrospectively staged by both the MPB and Stell-T classifications. Cox regression analyseswereconductedtocomparetheoverall survival (OS). Results: A total of 69 consecutive TBC patients were included in thisstudy. Univariate analysis showed that both Stell-T and T- classifications of the modified Pittsburgh staging system (MPB-T) were significant prognostic factors for all TBC patients as well as temporal bone squamous cell carcinoma (TBSCC, n=50) patients (P < 0.05). However, only Stell-T was confirmed to be an independent prognostic factor in TBSCC patients (P = 0.004). Conclusions: Tumor extensions, quantified by both Stell-T and MPB-T classifications, are significant prognostic factors for TBC patients, especially for TBSCC patients. However, only the Stell-T classification is an independent prognostic factor for TBSCC patients.Keywords: modified pittsburgh staging system, overall survival, prognostic factor, stell’s T- classification, temporal bone carcinoma
Procedia PDF Downloads 1296528 Entropy Risk Factor Model of Exchange Rate Prediction
Authors: Darrol Stanley, Levan Efremidze, Jannie Rossouw
Abstract:
We investigate the predictability of the USD/ZAR (South African Rand) exchange rate with sample entropy analytics for the period of 2004-2015. We calculate sample entropy based on the daily data of the exchange rate and conduct empirical implementation of several market timing rules based on these entropy signals. The dynamic investment portfolio based on entropy signals produces better risk adjusted performance than a buy and hold strategy. The returns are estimated on the portfolio values in U.S. dollars. These results are preliminary and do not yet account for reasonable transactions costs, although these are very small in currency markets.Keywords: currency trading, entropy, market timing, risk factor model
Procedia PDF Downloads 2716527 Adaptive Auth - Adaptive Authentication Based on User Attributes for Web Application
Authors: Senthuran Manoharan, Rathesan Sivagananalingam
Abstract:
One of the main issues in system security is Authentication. Authentication can be defined as the process of recognizing the user's identity and it is the most important step in the access control process to safeguard data/resources from being accessed by unauthorized users. The static method of authentication cannot ensure the genuineness of the user. Due to this reason, more innovative authentication mechanisms came into play. At first two factor authentication was introduced and later, multi-factor authentication was introduced to enhance the security of the system. It also had some issues and later, adaptive authentication was introduced. In this research paper, the design of an adaptive authentication engine was put forward. The user risk profile was calculated based on the user parameters and then the user was challenged with a suitable authentication method.Keywords: authentication, adaptive authentication, machine learning, security
Procedia PDF Downloads 2486526 Socio-Economic Determinants of House Developments in Nigeria
Authors: Odunjo Oluronke Omolola, Okanlawon Simon Ayorinde
Abstract:
This study examines the relationship between house characteristics and socio-economic characteristics of developers in Ibadan, southwest, Nigeria. The research is borne out of the fact that social housing has not done much as a result of finance and housing poverty is on the increase in the country. Multistage random sampling was used in selecting 2,646 respondents in the area. The questionnaire forms the basic instrument for data collection and was administered to heads of households to collect information on socio-economic and demographic characteristics as well as characteristics of development. Both descriptive and inferential statistical analyses were employed in the presentation of the findings; MANOVA was used to analyse the relationship between house characteristics measured by wall materials (Y1-Yn) and socio-economic characteristics of developers measured by gender (X1), religion (X2), educational background (X3) and employment status (X4).The study found out that the bulk of the respondents (65.7%) were male, while 51.7% practiced Christianity. Also, 35.9% had HND/1st/Postgraduate degree, while 43.9% were self employed; Most households however, had membership size of 5 (26.9%). The significant wall material in the area was sandcrete block (71.2%) as opposed to mud (19.1%) and brick (0.6%). Multiple Analysis of Variance shows that there is a significant relationship between sandcrete block and each of gender (X1) and employment status (X3). The factor adduced to this is accessibility to cooperative societies which serve as the gravitational force of attraction for housing finance. The study suggests among others that, there should be re-invigoration of existing cooperative societies, while more should be established for the provision of housing finance.Keywords: relationship, house development, developers, sandcrete block, cooperative societies
Procedia PDF Downloads 5046525 Synthesis of Pyrimidine-Based Polymers Consist of 2-{4-[4,6-Bis-(4-Hexyl-Thiophen-2-yl)-Pyrimidin-2-yl]-Phenyl}-Thiazolo[5,4-B]Pyridine with Deep HOMO Level for Photovoltaics
Authors: Hyehyeon Lee, Jiwon Yu, Juwon Kim, Raquel Kristina Leoni Tumiar, Taewon Kim, Juae Kim, Hongsuk Suh
Abstract:
Photovoltaics, which have many advantages in cost, easy processing, and light-weight, have attracted attention. We synthesized pyrimidine-based conjugated polymers with 2-{4-[4,6-bis-(4-hexyl-thiophen-2-yl)-pyrimidin-2-yl]-phenyl}-thiazolo[5,4-b]pyridine (pPTP) which have an ability of powerful electron withdrawing and introduced into the PSCs. By Stille polymerization, we designed the conjugated polymers, pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH and pPTPTTI. The HOMO energy levels of four polymers (pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH and pPTPTTI) were at -5.61 ~ -5.89 eV, their LUMO (Lowest Unoccupied Molecular Orbital) energy levels were at -3.95 ~ -4.09 eV. The device including pPTPBDT-12 and PC71BM (1:2) indicated a V_oc of 0.67 V, a J_sc of 1.33 mA/cm², and a fill factor (FF) of 0.25, giving a power conversion efficiency (PCE) of 0.23%. The device including pPTPBDT-EH and PC71BM (1:2) indicated a V_oc of 0.72 V, a J_sc of 2.56 mA/cm², and a fill factor (FF) of 0.30, giving a power conversion efficiency of 0.56%. The device including pPTPBDTT-EH and PC71BM (1:2) indicated a V_oc of 0.72 V, a J_sc of 3.61 mA/cm², and a fill factor (FF) of 0.29, giving a power conversion efficiency of 0.74%. The device including pPTPTTI and PC71BM (1:2) indicated a V_oc of 0.83 V, a J_sc of 4.41 mA/cm², and a fill factor (FF) of 0.31, giving a power conversion efficiency of 1.13%. Therefore, pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH, and pPTPTTI were synthesized by Stille polymerization. And We find one of the best efficiency for these polymers, called pPTPTTI. Their optical properties were measured and the results show that pyrimidine-based polymers especially like pPTPTTI have a great promise to act as the donor of the active layer.Keywords: polymer solar cells, pyrimidine-based polymers, photovoltaics, conjugated polymer
Procedia PDF Downloads 1986524 Web 2.0 Enabling Knowledge-Sharing Practices among Students of IIUM: An Exploration of the Determinants
Authors: Shuaibu Hassan Usman, Ishaq Oyebisi Oyefolahan
Abstract:
This study was aimed to explore the latent factors in the web 2.0 enabled knowledge sharing practices instrument. Seven latent factors were identified through a factor analysis with orthogonal rotation and interpreted based on simple structure convergence, item loadings, and analytical statistics. The number of factors retains was based on the analysis of Kaiser Normalization criteria and Scree plot. The reliability tests revealed a satisfactory reliability scores on each of the seven latent factors of the web 2.0 enabled knowledge sharing practices. Limitation, conclusion, and future work of this study were also discussed.Keywords: factor analysis, latent factors, knowledge sharing practices, students, web 2.0 enabled
Procedia PDF Downloads 4346523 A Data-Mining Model for Protection of FACTS-Based Transmission Line
Authors: Ashok Kalagura
Abstract:
This paper presents a data-mining model for fault-zone identification of flexible AC transmission systems (FACTS)-based transmission line including a thyristor-controlled series compensator (TCSC) and unified power-flow controller (UPFC), using ensemble decision trees. Given the randomness in the ensemble of decision trees stacked inside the random forests model, it provides an effective decision on the fault-zone identification. Half-cycle post-fault current and voltage samples from the fault inception are used as an input vector against target output ‘1’ for the fault after TCSC/UPFC and ‘1’ for the fault before TCSC/UPFC for fault-zone identification. The algorithm is tested on simulated fault data with wide variations in operating parameters of the power system network, including noisy environment providing a reliability measure of 99% with faster response time (3/4th cycle from fault inception). The results of the presented approach using the RF model indicate the reliable identification of the fault zone in FACTS-based transmission lines.Keywords: distance relaying, fault-zone identification, random forests, RFs, support vector machine, SVM, thyristor-controlled series compensator, TCSC, unified power-flow controller, UPFC
Procedia PDF Downloads 4236522 Effects of Continuous Training on Anthropometric Characteristics of Adolescents in Kano, Nigeria
Authors: Emmanuel S. Adeyanju
Abstract:
This study assessed the effects of continuous training on anthropometric characteristics of adolescents in Kano, Nigeria. The anthropometric measures of per cent body fat (%BF), body mass index (BMI), conicity index (CI) and waist-to-hip ratio (WHR) were selected because of their roles in increased adiposity and favourable cardiovascular disease (CVD) factor profiles in children and adolescence. The international standards and procedures were followed in all the measurements. A total of thirty (30) subjects (M=15; F=15), selected at random, were divided into two groups; one training (M=10; F=10) and the other control (M=5; F=5). Both groups were tested before training, at six (6) and 12 weeks in all the listed variables. The training group had 12 weeks continuous training which involved running round the standard 400 m track of the college following standard procedures; while the control group did not. The findings revealed significant sex-specific reductions in %BF (F=610.482 ˂ 0.05), BMI (F=73.860 ˂ 0.05), WHR (F=49.756 ˂ 0.05); however, no significant training effect on CI (F=1.855 ˃ 0.05) and WHR (F=1.956 ˃ 0.05) was found. Greater modifications found in females than in males (except in CI and WHR) due to training were probably related to their initial level of fitness and enzymatic modifications at subcellular level during training. The result also revealed significant relationship between the modifications in %BF, BMI and WHR but failed to establish any between CI and other adiposity measures. Thus, to avert the consequences of obesity and overweight, the declining fitness level of adolescents should be checked by ensuring they engaged in regular moderate-to-vigorous physical activity (MVPA) programmes. Such a childhood habit of exercise developed early in life will have a carry-over value into adult life and improve the quality of adult population.Keywords: adiposity, anthropometry, conicity, continuous training
Procedia PDF Downloads 4516521 Multilevel Modelling of Modern Contraceptive Use in Nigeria: Analysis of the 2013 NDHS
Authors: Akiode Ayobami, Akiode Akinsewa, Odeku Mojisola, Salako Busola, Odutolu Omobola, Nuhu Khadija
Abstract:
Purpose: Evidence exists that family planning use can contribute to reduction in infant and maternal mortality in any country. Despite these benefits, contraceptive use in Nigeria still remains very low, only 10% among married women. Understanding factors that predict contraceptive use is very important in order to improve the situation. In this paper, we analysed data from the 2013 Nigerian Demographic and Health Survey (NDHS) to better understand predictors of contraceptive use in Nigeria. The use of logistics regression and other traditional models in this type of situation is not appropriate as they do not account for social structure influence brought about by the hierarchical nature of the data on response variable. We therefore used multilevel modelling to explore the determinants of contraceptive use in order to account for the significant variation in modern contraceptive use by socio-demographic, and other proximate variables across the different Nigerian states. Method: This data has a two-level hierarchical structure. We considered the data of 26, 403 married women of reproductive age at level 1 and nested them within the 36 states and the Federal Capital Territory, Abuja at level 2. We modelled use of modern contraceptive against demographic variables, being told about FP at health facility, heard of FP on TV, Magazine or radio, husband desire for more children nested within the state. Results: Our results showed that the independent variables in the model were significant predictors of modern contraceptive use. The estimated variance component for the null model, random intercept, and random slope models were significant (p=0.00), indicating that the variation in contraceptive use across the Nigerian states is significant, and needs to be accounted for in order to accurately determine the predictors of contraceptive use, hence the data is best fitted by the multilevel model. Only being told about family planning at the health facility and religion have a significant random effect, implying that their predictability of contraceptive use varies across the states. Conclusion and Recommendation: Results showed that providing FP information at the health facility and religion needs to be considered when programming to improve contraceptive use at the state levels.Keywords: multilevel modelling, family planning, predictors, Nigeria
Procedia PDF Downloads 4186520 Ensemble Sampler For Infinite-Dimensional Inverse Problems
Authors: Jeremie Coullon, Robert J. Webber
Abstract:
We introduce a Markov chain Monte Carlo (MCMC) sam-pler for infinite-dimensional inverse problems. Our sam-pler is based on the affine invariant ensemble sampler, which uses interacting walkers to adapt to the covariance structure of the target distribution. We extend this ensem-ble sampler for the first time to infinite-dimensional func-tion spaces, yielding a highly efficient gradient-free MCMC algorithm. Because our ensemble sampler does not require gradients or posterior covariance estimates, it is simple to implement and broadly applicable. In many Bayes-ian inverse problems, Markov chain Monte Carlo (MCMC) meth-ods are needed to approximate distributions on infinite-dimensional function spaces, for example, in groundwater flow, medical imaging, and traffic flow. Yet designing efficient MCMC methods for function spaces has proved challenging. Recent gradi-ent-based MCMC methods preconditioned MCMC methods, and SMC methods have improved the computational efficiency of functional random walk. However, these samplers require gradi-ents or posterior covariance estimates that may be challenging to obtain. Calculating gradients is difficult or impossible in many high-dimensional inverse problems involving a numerical integra-tor with a black-box code base. Additionally, accurately estimating posterior covariances can require a lengthy pilot run or adaptation period. These concerns raise the question: is there a functional sampler that outperforms functional random walk without requir-ing gradients or posterior covariance estimates? To address this question, we consider a gradient-free sampler that avoids explicit covariance estimation yet adapts naturally to the covariance struc-ture of the sampled distribution. This sampler works by consider-ing an ensemble of walkers and interpolating and extrapolating between walkers to make a proposal. This is called the affine in-variant ensemble sampler (AIES), which is easy to tune, easy to parallelize, and efficient at sampling spaces of moderate dimen-sionality (less than 20). The main contribution of this work is to propose a functional ensemble sampler (FES) that combines func-tional random walk and AIES. To apply this sampler, we first cal-culate the Karhunen–Loeve (KL) expansion for the Bayesian prior distribution, assumed to be Gaussian and trace-class. Then, we use AIES to sample the posterior distribution on the low-wavenumber KL components and use the functional random walk to sample the posterior distribution on the high-wavenumber KL components. Alternating between AIES and functional random walk updates, we obtain our functional ensemble sampler that is efficient and easy to use without requiring detailed knowledge of the target dis-tribution. In past work, several authors have proposed splitting the Bayesian posterior into low-wavenumber and high-wavenumber components and then applying enhanced sampling to the low-wavenumber components. Yet compared to these other samplers, FES is unique in its simplicity and broad applicability. FES does not require any derivatives, and the need for derivative-free sam-plers has previously been emphasized. FES also eliminates the requirement for posterior covariance estimates. Lastly, FES is more efficient than other gradient-free samplers in our tests. In two nu-merical examples, we apply FES to challenging inverse problems that involve estimating a functional parameter and one or more scalar parameters. We compare the performance of functional random walk, FES, and an alternative derivative-free sampler that explicitly estimates the posterior covariance matrix. We conclude that FES is the fastest available gradient-free sampler for these challenging and multimodal test problems.Keywords: Bayesian inverse problems, Markov chain Monte Carlo, infinite-dimensional inverse problems, dimensionality reduction
Procedia PDF Downloads 1546519 An Investigation of Customer Relationship Management of Tourism
Authors: Wanida Suwunniponth
Abstract:
This research paper aimed to developing a causal relationship model of success factors of customer relationship management of tourism in Thailand and to investigating relationships among the potential factors that facilitate the success of customer relationship management (CRM). The research was conducted in both quantitative and qualitative methods, by utilizing both questionnaire and in-depth interview. The questionnaire was used in collecting the data from 250 management staff in the hotels located within Bangkok area. Sampling techniques used in this research included cluster sampling according to the service quality and simple random sampling. The data input was analyzed by use of descriptive analysis and System Equation Model (SEM). The research findings demonstrated important factors accentuated by most respondents towards the success of CRM, which were organization, people, information technology and the process of CRM. Moreover, the customer relationship management of tourism business in Thailand was found to be successful at a very significant level. The hypothesis testing showed that the hypothesis was accepted, as the factors concerning with organization, people and information technology played an influence on the process and the success of customer relationship management, whereas the process of customer relationship management factor manipulated its success. The findings suggested that tourism business in Thailand with the implementation of customer relationship management should opt in improvement approach in terms of managerial structure, corporate culture building with customer- centralized approach accentuated, and investment of information technology and customer analysis, in order to capacitate higher efficiency of customer relationship management process that would result in customer satisfaction and retention of service.Keywords: customer relationship management, casual relationship model, tourism, Thailand
Procedia PDF Downloads 3306518 Numerical Investigation on Optimizing Fatigue Life in a Lap Joint Structure
Authors: P. Zamani, S. Mohajerzadeh, R. Masoudinejad, K. Farhangdoost
Abstract:
The riveting process is one of the important ways to keep fastening the lap joints in aircraft structures. Failure of aircraft lap joints directly depends on the stress field in the joint. An important application of riveting process is in the construction of aircraft fuselage structures. In this paper, a 3D finite element method is carried out in order to optimize residual stress field in a riveted lap joint and also to estimate its fatigue life. In continue, a number of experiments are designed and analyzed using design of experiments (DOE). Then, Taguchi method is used to select an optimized case between different levels of each factor. Besides that, the factor which affects the most on residual stress field is investigated. Such optimized case provides the maximum residual stress field. Fatigue life of the optimized joint is estimated by Paris-Erdogan law. Stress intensity factors (SIFs) are calculated using both finite element analysis and experimental formula. In addition, the effect of residual stress field, geometry, and secondary bending are considered in SIF calculation. A good agreement is found between results of such methods. Comparison between optimized fatigue life and fatigue life of other joints has shown an improvement in the joint’s life.Keywords: fatigue life, residual stress, riveting process, stress intensity factor, Taguchi method
Procedia PDF Downloads 4526517 Spatial Temporal Rainfall Trends in Australia
Authors: Bright E. Owusu, Nittaya McNeil
Abstract:
Rainfall is one of the most essential quantities in meteorology and hydrology. It has important impacts on people’s daily life and excess or inadequate of it could bring tremendous losses in economy and cause fatalities. Population increase around the globe tends to have a corresponding increase in settlement and industrialization. Some countries are affected by flood and drought occasionally due to climate change, which disrupt most of the daily activities. Knowledge of trends in spatial and temporal rainfall variability and their physical explanations would be beneficial in climate change assessment and to determine erosivity. This study describes the spatial-temporal variability of daily rainfall in Australia and their corresponding long-term trend during 1950-2013. The spatial patterns were investigated by using exploratory factor analysis and the long term trend in rainfall time series were determined by linear regression, Mann-Kendall rank statistics and the Sen’s slope test. The exploratory factor analysis explained most of the variations in the data and grouped Australia into eight distinct rainfall regions with different rainfall patterns. Significant increasing trends in annual rainfall were observed in the northern regions of Australia. However, the northeastern part was the wettest of all the eight rainfall regions.Keywords: climate change, explanatory factor analysis, Mann-Kendall and Sen’s slope test, rainfall.
Procedia PDF Downloads 3526516 Women Executives' Career Success in the Office of the Basic Education
Authors: Nipon Sasithornsaowapa
Abstract:
This research aims to study the impact of personality and family status on women executives’ career success of the primary education department of Thailand. The independent variable includes three factors, namely family status, personality, and knowledge-skill-experience, while the dependent variable is the career success. The population of this study includes 2,179 female management officials in the department of primary education. A total of 400 female managers is interviewed and utilized as a sample group. A questionnaire is developed and used as a research tool for data collection. Content analysis is performed to get the quantitative data. Descriptive statistics in this research is conducted by SPSS program. The findings revealed that personality and family status of samples have an influence on the overall career success of women executives in terms of their objective career success. However, in terms of specific factors of personality or family status, it is found that there is no relevance of each factor on the women executives’ career success. It can be concluded that the factor affecting the women executives’ career success is subjective career success including the happiness and enjoyment with the job not factor concerning materials. Their success is the result of each individual working experience. However, their personal characteristics do not affect their success.Keywords: career success, women executives, primary education, knowledge-skill-experience
Procedia PDF Downloads 4816515 Reverse Impact of Temperature as Climate Factor on Milk Production in ChaharMahal and Bakhtiari
Abstract:
When long-term changes in normal weather patterns happen in a certain area, it generally could be identified as climate change. Concentration of principal's greenhouse gases such as carbon dioxide, nitrous oxide, methane, ozone, and water vapor will cause climate change and perhaps climate variability. Main climate factors are temperature, precipitation, air pressure, and humidity. Extreme events may be the result of the changing of carbon dioxide concentration levels in the atmosphere which cause a change in temperature. Extreme events in some ways will affect the productivity of crop and dairy livestock. In this research, the correlation of milk production and temperature as the main climate factor in ChaharMahal and Bakhtiari province in Iran has been considered. The methodology employed for this study consists, collect reports and published national and provincial data, available recorded data on climate factors and analyzing collected data using statistical software. Milk production in ChaharMahal and Bakhtiari province is in the same pattern as national milk production in Iran. According to the current study results, there is a significant negative correlation between milk production in ChaharMahal and Bakhtiari provinces and temperature as the main climate change factor.Keywords: Chaharmahal and Bakhtiari, climate change, impacts, Iran, milk production
Procedia PDF Downloads 1666514 Trade Policy Incentives and Economic Growth in Nigeria
Authors: Emmanuel Dele Balogun
Abstract:
This paper analyzes, using descriptive statistics and econometrics data which span the period 1981 to 2014 to gauge the effects of trade policy incentives on economic growth in Nigeria. It argues that the provided incentives penalize economic growth during pre-trade liberalization eras, but stimulated a rapid increase in total factor productivity during the post-liberalization period of 2000 to 2014. The trend analysis shows that Nigeria maintained high tariff walls in economic regulation eras which became low in post liberalization era. The protections were in favor of infant industries, which were mainly appendages of multinationals but against imports of competing food and finished consumer products. The trade openness index confirms the undue exposure of Nigeria’s economy to the vagaries of international market shocks; while banking sector recapitalization and new listing of telecommunications companies deepened the financial markets in post-liberalization era. The structure of economic incentives was biased in favor of construction, trade and services, but against the real sector despite protectionist policies. Total Factor Productivity (TFP) estimates show that the Nigerian economy suffered stagnation in pre-liberalization eras, but experienced rapid growth rates in post-liberalization eras. The regression results relating trade policy incentives to TFP growth rate yielded a significant but negative intercept suggesting that a non-interventionist policy could be detrimental to economic progress, while protective tariff which limits imports of competing products could spur productivity gains in domestic import substitutes beyond factor growth with market liberalization. The main constraint to the effectiveness of trade policy incentives is the failure of benefiting industries to leverage on the domestic factor endowments of the nation. This paper concludes that there is the need to review the current economic transformation strategies urgently with a view to provide policymakers with a better understanding of the most viable options that could make for rapid success.Keywords: economic growth, macroeconomic incentives, total factor productivity, trade policies
Procedia PDF Downloads 3226513 Optimized Algorithm for Particle Swarm Optimization
Authors: Fuzhang Zhao
Abstract:
Particle swarm optimization (PSO) is becoming one of the most important swarm intelligent paradigms for solving global optimization problems. Although some progress has been made to improve PSO algorithms over the last two decades, additional work is still needed to balance parameters to achieve better numerical properties of accuracy, efficiency, and stability. In the optimal PSO algorithm, the optimal weightings of (√ 5 − 1)/2 and (3 − √5)/2 are used for the cognitive factor and the social factor, respectively. By the same token, the same optimal weightings have been applied for intensification searches and diversification searches, respectively. Perturbation and constriction effects are optimally balanced. Simulations of the de Jong, the Rosenbrock, and the Griewank functions show that the optimal PSO algorithm indeed achieves better numerical properties and outperforms the canonical PSO algorithm.Keywords: diversification search, intensification search, optimal weighting, particle swarm optimization
Procedia PDF Downloads 5816512 Fraud Detection in Credit Cards with Machine Learning
Authors: Anjali Chouksey, Riya Nimje, Jahanvi Saraf
Abstract:
Online transactions have increased dramatically in this new ‘social-distancing’ era. With online transactions, Fraud in online payments has also increased significantly. Frauds are a significant problem in various industries like insurance companies, baking, etc. These frauds include leaking sensitive information related to the credit card, which can be easily misused. Due to the government also pushing online transactions, E-commerce is on a boom. But due to increasing frauds in online payments, these E-commerce industries are suffering a great loss of trust from their customers. These companies are finding credit card fraud to be a big problem. People have started using online payment options and thus are becoming easy targets of credit card fraud. In this research paper, we will be discussing machine learning algorithms. We have used a decision tree, XGBOOST, k-nearest neighbour, logistic-regression, random forest, and SVM on a dataset in which there are transactions done online mode using credit cards. We will test all these algorithms for detecting fraud cases using the confusion matrix, F1 score, and calculating the accuracy score for each model to identify which algorithm can be used in detecting frauds.Keywords: machine learning, fraud detection, artificial intelligence, decision tree, k nearest neighbour, random forest, XGBOOST, logistic regression, support vector machine
Procedia PDF Downloads 1486511 Asset Pricing Model: A Quality Paradigm
Authors: Urmi Khatri
Abstract:
Capital asset pricing model (CAPM) draws a direct relationship between the risk and the expected rate of return. There was a criticism on the beta and the assumptions of CAPM, as they are not applicable in the real world. Fama French Three Factor Model and Fama French Five Factor Model have given different factors, which have an impact on the return of any asset like size, value, investment and profitability. This study proposes to see Capital Asset pricing Model through the lenses of the quality aspect. In the study, the six factors are studied. The Fama French Five Factor Model and addition of the quality dimension are studied. Here, Graham’s seven quality and quantity criteria are measured to determine the score of the sample firms. Thus, this study tries to check the model fit. The beta coefficient of the quality dimension and the R square value is seen to determine validity of the proposed model. The sample is drawn from the firms listed on Indian Stock Exchange (BSE). For the study, only nonfinancial firms are been selected. The time period of the study is from January 1999 to December 2019. Hence, the primary objective of the study is to check how robust the model becomes after giving the quality dimension to the capital asset pricing model in addition to the size, value, profitability and investment.Keywords: asset pricing model, CAPM, Graham’s score, G-score, multifactor model, quality
Procedia PDF Downloads 1586510 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis
Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy
Abstract:
Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.Keywords: associated cervical cancer, data mining, random forest, logistic regression
Procedia PDF Downloads 83