Search results for: phenazine-1-carboxylic acid degradation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4891

Search results for: phenazine-1-carboxylic acid degradation

4261 Treatment of Acid Mine Drainage with Metallurgical Slag

Authors: Sukla Saha, Alok Sinha

Abstract:

Acid mine drainage (AMD) refers to the production of acidified water from abandoned mines and active mines as well. The reason behind the generation of this kind of acidified water is the oxidation of pyrites present in the rocks in and around mining areas. Thiobacillus ferrooxidans, which is a sulfur oxidizing bacteria, helps in the oxidation process. AMD is extremely acidic in nature, (pH 2-3) with high concentration of several trace and heavy metals such as Fe, Al, Zn, Mn, Cu and Co and anions such as chloride and sulfate. AMD has several detrimental effect on aquatic organism and environment. It can directly or indirectly contaminate the ground water and surface water as well. The present study considered the treatment of AMD with metallurgical slag, which is a waste material. Slag helped to enhance the pH of AMD to 8.62 from 1.5 with 99% removal of trace metals such as Fe, Al, Mn, Cu and Co. Metallurgical slag was proven as efficient neutralizing material for the treatment of AMD.

Keywords: acid mine drainage, Heavy metals, metallurgical slag, Neutralization

Procedia PDF Downloads 187
4260 Alpha Lipoic Acid: An Antioxidant for Infertility

Authors: Chiara Di Tucci, Giulia Galati, Giulia Mattei, Valentina Bonanni, Oriana Capri, Renzo D'Amelio, Ludovico Muzii, Pierluigi Benedetti Panici

Abstract:

Objective: Infertility is an increasingly frequent health condition, which may depend on female or male factors. Oxidative stress (OS), resulting from a disrupted balance between reactive oxygen species (ROS) and protective antioxidants, affects the reproductive lifespan of men and women. In this review, we examine if alpha lipoic acid (ALA), among the oral supplements currently in use, has an evidence-based beneficial role in the context of female and male infertility. Methods: We performed a search from English literature using the PubMed database with the following keywords: 'female infertility', 'male infertility', 'semen', 'sperm', 'sub-fertile man', 'alpha-lipoic acid', ' alpha lipoic acid', 'lipoid acid', 'endometriosis', 'chronic pelvic pain', 'follicular fluid' and 'oocytes'. We included clinical trials, multicentric studies, and reviews. The total number of references found after automatically and manually excluding duplicates was 180. After the primary and secondary screening, 28 articles were selected. Results: The available literature demonstrates the positive effects of ALA in multiple processes, from oocyte maturation (0.87 ± 0.9% of oocyte in MII vs 0.81 ± 3.9%; p < .05) to fertilization, embryo development (57.7% vs 75.7% grade 1 embryo; p < .05) and reproductive outcomes. Its regular administration both in sub-fertile women and men has been shown to reduce pelvic pain in endometriosis (p < .05), regularize menstrual flow and metabolic disorders (p < .01), and improve sperm quality (p < .001). Conclusions: ALA represents a promising new molecule in the field of couple infertility. More clinical studies are needed in order to enhance its use in clinical practice.

Keywords: alpha lipoic acid, endometriosis, infertility, male factor, polycystic ovary syndrome

Procedia PDF Downloads 86
4259 Shear Modulus Degradation of a Liquefiable Sand Deposit by Shaking Table Tests

Authors: Henry Munoz, Muhammad Mohsan, Takashi Kiyota

Abstract:

Strength and deformability characteristics of a liquefiable sand deposit including the development of earthquake-induced shear stress and shear strain as well as soil softening via the progressive degradation of shear modulus were studied via shaking table experiments. To do so, a model of a liquefiable sand deposit was constructed and densely instrumented where accelerations, pressures, and displacements at different locations were continuously monitored. Furthermore, the confinement effects on the strength and deformation characteristics of the liquefiable sand deposit due to an external surcharge by placing a heavy concrete slab (i.e. the model of an actual structural rigid pavement) on the ground surface were examined. The results indicate that as the number of seismic-loading cycles increases, the sand deposit softens progressively as large shear strains take place in different sand elements. Liquefaction state is reached after the combined effects of the progressive degradation of the initial shear modulus associated with the continuous decrease in the mean principal stress, and the buildup of the excess of pore pressure takes place in the sand deposit. Finally, the confinement effects given by a concrete slab placed on the surface of the sand deposit resulted in a favorable increasing in the initial shear modulus, an increase in the mean principal stress and a decrease in the softening rate (i.e. the decreasing rate in shear modulus) of the sand, thus making the onset of liquefaction to take place at a later stage. This is, only after the sand deposit having a concrete slab experienced a higher number of seismic loading cycles liquefaction took place, in contrast to an ordinary sand deposit having no concrete slab.

Keywords: liquefaction, shear modulus degradation, shaking table, earthquake

Procedia PDF Downloads 387
4258 The Utilization of Salicylic Acid of the Extract from Avocado Skin as an Inhibitor of Ethylene Production to Keep the Quality of Banana in Storage

Authors: Adira Nofeadri Ryofi, Alvin Andrianus, Anna Khairunnisa, Anugrah Cahyo Widodo, Arbhyando Tri Putrananda, Arsy Imanda N. Raswati, Gita Rahmaningsih, Ina Agustina

Abstract:

The consumption level of fresh bananas from 2005 until 2010, increased from 8.2 to 10 kg/capita/year. The commercial scale of banana generally harvested when it still green to make the banana avoid physical damage, chemical, and disease after harvest and ripe fruit. That first metabolism activity can be used as a synthesis reaction. Ripening fruit was influenced by ethylene hormone that synthesized in fruit which is experiencing ripe and including hormone in the ripening fruit process in klimaterik phase. This ethylene hormone is affected by the respiration level that would speed up the restructuring of carbohydrates inside the fruit, so the weighting of fruit will be decreased. Compared to other klimaterik fruit, banana is a fruit that has a medium ethylene production rate and the rate of respiration is low. The salicylic acid can regulate the result number of the growth process or the development of fruits and plants. Salicylic acid serves to hinder biosynthesis ethylene and delay senses. The research aims to understand the influence of salicylic acid concentration that derived from the waste of avocado skin in inhibition process to ethylene production that the maturation can be controlled, so it can keep the quality of banana for storage. It is also to increase the potential value of the waste of avocado skin that were still used in industrial cosmetics.

Keywords: ethylene hormone, extract avocado skin, inhibitor, salicylic acid

Procedia PDF Downloads 237
4257 Magnetic Nano-Composite of Self-Doped Polyaniline Nanofibers for Magnetic Dispersive Micro Solid Phase Extraction Applications

Authors: Hatem I. Mokhtar, Randa A. Abd-El-Salam, Ghada M. Hadad

Abstract:

An improved nano-composite of self-doped polyaniline nanofibers and silica-coated magnetite nanoparticles were prepared and evaluated for suitability to magnetic dispersive micro solid-phase extraction. The work focused on optimization of the composite capacity to extract four fluoroquinolones (FQs) antibiotics, ciprofloxacin, enrofloxacin, danofloxacin, and difloxacin from water and improvement of composite stability towards acid and atmospheric degradation. Self-doped polyaniline nanofibers were prepared by oxidative co-polymerization of aniline with anthranilic acid. Magnetite nanopariticles were prepared by alkaline co-precipitation and coated with silica by silicate hydrolysis on magnetite nanoparticles surface at pH 6.5. The composite was formed by self-assembly by mixing self-doped polyaniline nanofibers with silica-coated magnetite nanoparticles dispersions in ethanol. The composite structure was confirmed by transmission electron microscopy (TEM). Self-doped polyaniline nanofibers and magnetite chemical structures were confirmed by FT-IR while silica coating of the magnetite was confirmed by Energy Dispersion X-ray Spectroscopy (EDS). Improved stability of the composite magnetic component was evidenced by resistance to degrade in 2N HCl solution. The adsorption capacity of self-doped polyaniline nanofibers based composite was higher than previously reported corresponding composite prepared from polyaniline nanofibers instead of self-doped polyaniline nanofibers. Adsorption-pH profile for the studied FQs on the prepared composite revealed that the best pH for adsorption was in range of 6.5 to 7. Best extraction recovery values were obtained at pH 7 using phosphate buffer. The best solvent for FQs desorption was found to be 0.1N HCl in methanol:water (8:2; v/v) mixture. 20 mL of Spiked water sample with studied FQs were preconcentrated using 4.8 mg of composite and resulting extracts were analysed by HPLC-UV method. The prepared composite represented a suitable adsorbent phase for magnetic dispersive micro-solid phase application.

Keywords: fluoroquinolones, magnetic dispersive micro extraction, nano-composite, self-doped polyaniline nanofibers

Procedia PDF Downloads 122
4256 Combined Use of Microbial Consortia for the Enhanced Degradation of Type-IIx Pyrethroids

Authors: Parminder Kaur, Chandrajit B. Majumder

Abstract:

The unrestrained usage of pesticides to meet the burgeoning demand of enhanced crop productivity has led to the serious contamination of both terrestrial and aquatic ecosystem. The remediation of mixture of pesticides is a challenging affair regarding inadvertent mixture of pesticides from agricultural lands treated with various compounds. Global concerns about the excessive use of pesticides have driven the need to develop more effective and safer alternatives for their remediation. We focused our work on the microbial degradation of a mixture of three Type II-pyrethroids, namely Cypermethrin, Cyhalothrin and Deltamethrin commonly applied for both agricultural and domestic purposes. The fungal strains (Fusarium strain 8-11P and Fusarium sp. zzz1124) had previously been isolated from agricultural soils and their ability to biotransform this amalgam was studied. In brief, the experiment was conducted in two growth systems (added carbon and carbon-free) enriched with variable concentrations of pyrethroids between 100 to 300 mgL⁻¹. Parameter optimization (pH, temperature, concentration and time) was done using a central composite design matrix of Response Surface Methodology (RSM). At concentrations below 200 mgL⁻¹, complete removal was observed; however, degradation of 95.6%/97.4 and 92.27%/95.65% (in carbon-free/added carbon) was observed for 250 and 300 mgL⁻¹ respectively. The consortium has been shown to degrade the pyrethroid mixture (300 mg L⁻¹) within 120 h. After 5 day incubation, the residual pyrethroids concentration in unsterilized soil were much lower than in sterilized soil, indicating that microbial degradation predominates in pyrethroids elimination with the half-life (t₁/₂) of 1.6 d and R² ranging from 0.992-0.999. Overall, these results showed that microbial consortia might be more efficient than single degrader strains. The findings will complement our current understanding of the bioremediation of mixture of Type II pyrethroids with microbial consortia and potentially heighten the importance for considering bioremediation as an effective alternative for the remediation of such pollutants.

Keywords: bioremediation, fungi, pyrethroids, soil

Procedia PDF Downloads 147
4255 Biodegradation of Malathion by Acinetobacter baumannii Strain AFA Isolated from Domestic Sewage in Egypt

Authors: Ahmed F. Azmy, Amal E. Saafan, Tamer M. Essam, Magdy A. Amin, Shaban H. Ahmed

Abstract:

Bacterial strains capable of degradation of malathion from the domestic sewage were isolated by an enrichment culture technique. Three bacterial strains were screened and identified as Acinetobacter baumannii (AFA), Pseudomonas aeruginosae (PS1),andPseudomonas mendocina (PS2) based on morphological, biochemical identification and 16S rRNA sequence analysis. Acinetobacter baumannii AFA was the most efficient malathion degrading bacterium, so used for further biodegradation study. AFA was able to grow in mineral salt medium (MSM) supplemented with malathion (100 mg/l) as a sole carbon source, and within 14 days, 84% of the initial dose was degraded by the isolate measured by high performance liquid chromatography. Strain AFA could also degrade other organophosphorus compounds including diazenon, chlorpyrifos and fenitrothion. The effect of different culture conditions on the degradation of malathion like inoculum density, other carbon or nitrogen sources, temperature and shaking were examined. Degradation of malathion and bacterial cell growth were accelerated when culture media were supplemented with yeast extract, glucose and citrate. The optimum conditions for malathion degradation by strain AFA were; an inoculum density of 1.5x 1012CFU/ml at 30°C with shaking. A specific polymerase chain reaction primers were designed manually using multiple sequence alignment of the corresponding carboxylesterase enzymes of Acinetobacter species. Sequencing result of amplified PCR product and phylogenetic analysis showed low degree of homology with the other carboxylesterase enzymes of Acinetobacter strains, so we suggested that this enzyme is a novel esterase enzyme. Isolated bacterial strains may have potential role for use in bioremediation of malathion contaminated.

Keywords: Acinetobacter baumannii, biodegradation, malathion, organophosphate pesticides

Procedia PDF Downloads 487
4254 Microwave Assisted Foam-Mat Drying of Guava Pulp

Authors: Ovais S. Qadri, Abhaya K. Srivastava

Abstract:

Present experiments were carried to study the drying kinetics and quality of microwave foam-mat dried guava powder. Guava pulp was microwave foam mat dried using 8% egg albumin as foaming agent and then dried at microwave power 480W, 560W, 640W, 720W and 800W, foam thickness 3mm, 5mm and 7mm and inlet air temperature of 40˚C and 50˚C. Weight loss was used to estimate change in drying rate with respect to time. Powdered samples were analysed for various physicochemical quality parameters viz. acidity, pH, TSS, colour change and ascorbic acid content. Statistical analysis using three-way ANOVA revealed that sample of 5mm foam thickness dried at 800W and 50˚C was the best with 0.3584% total acid, 3.98 pH, 14min drying time, 8˚Brix TSS, 3.263 colour change and 154.762mg/100g ascorbic acid content.

Keywords: foam mat drying, foam mat guava, guava powder, microwave drying

Procedia PDF Downloads 331
4253 Residual Life Prediction for a System Subject to Condition Monitoring and Two Failure Modes

Authors: Akram Khaleghei, Ghosheh Balagh, Viliam Makis

Abstract:

In this paper, we investigate the residual life prediction problem for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model with unknown parameters. The parameter estimation procedure based on an EM algorithm is developed and the formulas for the conditional reliability function and the mean residual life are derived, illustrated by a numerical example.

Keywords: partially observable system, hidden Markov model, competing risks, residual life prediction

Procedia PDF Downloads 415
4252 Biodegradability Evaluation of Polylactic Acid Composite with Natural Fiber (Sisal)

Authors: A. Bárbara Cattozatto Fortunato, D. de Lucca Soave, E. Pinheiro de Mello, M. Piasentini Oliva, V. Tavares de Moraes, G. Wolf Lebrão, D. Fernandes Parra, S. Marraccini Giampietri Lebrão

Abstract:

Due to increasing environmental pressure for biodegradable products, especially in polymeric materials, in order to meet the demands of the biological cycles of the circular economy, new materials have been developed as a sustainability strategy. This study proposes a composite material developed from the biodegradable polymer PLA Ecovio® (polylactic acid - PLA) with natural sisal fibers, where the soybean ester was used as a plasticizer, which can aid in adhesion between the materials and fibers, making the most attractive final composite from an environmental point of view. The composites were obtained by extrusion. The materials tests were produced and submitted to biodegradation tests. Through the biodegradation tests, it can be seen that the biodegradable polymer composition with 5% sisal fiber presented about 12.4% more biodegradability compared to the polymer without fiber addition. It has also been found that the plasticizer was not a compatible with fibers and the polymer. Finally, fibers help to anticipate the decomposition process of the material when subjected to conditions of a landfill. Therefore, its intrinsic properties are not affected during its use, only the biodegradation process begins after its exposure to landfill conditions.

Keywords: biocomposites, sisal, polilactic acid, Polylactic Acid (PLA)

Procedia PDF Downloads 247
4251 A Green Process for Drop-In Liquid Fuels from Carbon Dioxide, Water, and Solar Energy

Authors: Jian Yu

Abstract:

Carbo dioxide (CO2) from fossil fuel combustion is a prime green-house gas emission. It can be mitigated by microalgae through conventional photosynthesis. The algal oil is a feedstock of biodiesel, a carbon neutral liquid fuel for transportation. The conventional CO2 fixation, however, is quite slow and affected by the intermittent solar irradiation. It is also a technical challenge to reform the bio-oil into a drop-in liquid fuel that can be directly used in the modern combustion engines with expected performance. Here, an artificial photosynthesis system is presented to produce a biopolyester and liquid fuels from CO2, water, and solar power. In this green process, solar energy is captured using photovoltaic modules and converted into hydrogen as a stable energy source via water electrolysis. The solar hydrogen is then used to fix CO2 by Cupriavidus necator, a hydrogen-oxidizing bacterium. Under the autotrophic conditions, CO2 was reduced to glyceraldehyde-3-phosphate (G3P) that is further utilized for cell growth and biosynthesis of polyhydroxybutyrate (PHB). The maximum cell growth rate reached 10.1 g L-1 day-1, about 25 times faster than that of a typical bio-oil-producing microalga (Neochloris Oleoabundans) under stable indoor conditions. With nitrogen nutrient limitation, a large portion of the reduced carbon is stored in PHB (C4H6O2)n, accounting for 50-60% of dry cell mass. PHB is a biodegradable thermoplastic that can find a variety of environmentally friendly applications. It is also a platform material from which small chemicals can be derived. At a high temperature (240 - 290 oC), the biopolyester is degraded into crotonic acid (C4H6O2). On a solid phosphoric acid catalyst, PHB is deoxygenated via decarboxylation into a hydrocarbon oil (C6-C18) at 240 oC or so. Aromatics and alkenes are the major compounds, depending on the reaction conditions. A gasoline-grade liquid fuel (77 wt% oil) and a biodiesel-grade fuel (23 wt% oil) were obtained from the hydrocarbon oil via distillation. The formation routes of hydrocarbon oil from crotonic acid, the major PHB degradation intermediate, are revealed and discussed. This work shows a novel green process from which biodegradable plastics and high-grade liquid fuels can be directly produced from carbon dioxide, water and solar power. The productivity of the green polyester (5.3 g L-1 d-1) is much higher than that of microalgal oil (0.13 g L-1 d-1). Other technical merits of the new green process may include continuous operation under intermittent solar irradiation and convenient scale up in outdoor.

Keywords: bioplastics, carbon dioxide fixation, drop-in liquid fuels, green process

Procedia PDF Downloads 189
4250 A One Dimensional Cdᴵᴵ Coordination Polymer: Synthesis, Structure and Properties

Authors: Z. Derikvand, M. Dusek, V. Eigner

Abstract:

One dimensional coordination polymer of Cdᴵᴵ based on pyrazine (pz) and 3-nitrophthalic acid (3-nphaH₂), namely poly[[diaqua bis(3-nitro-2-carboxylato-1-carboxylic acid)(µ₂-pyrazine) cadmium(II)]dihydrate], {[Cd(3-nphaH)2(pz)(H₂O)₂]. 2H₂O}ₙ was prepared and characterized. The asymmetric unit consists of one Cdᴵᴵ center, two (3-nphaH)– anions, two halves of two crystallographically distinct pz ligands, two coordinated and two uncoordinated water molecules. The Cdᴵᴵ cation is surrounded by four oxygen atoms from two (3-nphaH)– and two water molecules as well as two nitrogen atoms from two pz ligands in distorted octahedral geometry. Complicated hydrogen bonding network accompanied with N–O···π and C–O···π stacking interactions leads to formation of a 3D supramolecular network. Commonly, this kind of C–O–π and N–O···π interaction is detected in electron-rich CO/NO groups of (3-nphaH)– ligand and electron-deficient π-system of pyrazine.

Keywords: supramolecular chemistry, Cd coordination polymer, crystal structure, 3-nithrophethalic acid

Procedia PDF Downloads 401
4249 Attenuation of Homocysteine-Induced Cyclooxygenase-2 Expression in Human Monocytes by Fulvic Acid

Authors: Shao-Ju Chien, Yi-Chien Wu, Ting-Ying Huang, Li-Tsen Li, You-Jin Chen, Cheng-Nan Chen

Abstract:

Homocysteine and pro-inflammatory mediators such as cyclooxygenase-2 (COX-2) have been linked to vascular dysfunction and risks of cardiovascular diseases. Fulvic acid (FA) is class of compounds of humic substances and possesses various pharmacological properties. However, the effect of FA on inflammatory responses of the monocytes remains unclear. We investigated the regulatory effect of FA on homocysteine-induced COX-2 expression in human monocytes. Peripheral blood monocytes and U937 cells were kept as controls or pre-treated with FA, and then stimulated with homocysteine. The results show that pretreating monocytes with FA inhibited the homocysteine-induced COX-2 expression in a dose-dependent manner. The inhibitor for nuclear factor-kB (NF-kB) attenuated homocysteine-induced COX-2 expression. Our findings provide a molecular mechanism by which FA inhibit homocysteine-induced COX-2 expression in monocytes, and a basis for using FA in pharmaceutical therapy against inflammation.

Keywords: homocysteine, monocytes, cyclooxygenase-2, fulvic acid, anti-inflammation

Procedia PDF Downloads 597
4248 Synthesis and Spectrophotometric Study of Omeprazole Charge Transfer Complexes with Bromothymol Blue, Methyl Orange, and Picric Acid

Authors: Saeeda Nadir Ali, Najma Sultana, Muhammad Saeed Arayne

Abstract:

Charge transfer complexes of omeprazole with bromothymol blue, methyl orange, and picric acid in the Beer’s law ranges 7-56, 6-48, and 10-80 µg mL-1, exhibiting stoichiometric ratio 1:1, and maximum wavelength 400, 420 and 373 nm respectively have been studied in aqueous medium. ICH guidelines were followed for validation study. Spectroscopic parameters including oscillator’s strength, dipole moment, ionization potential, energy of complexes, resonance energy, association constant and Gibb’s free energy changes have also been investigated and Benesi-Hildebrand plot in each case has been obtained. In addition, the methods were fruitfully employed for omeprazole determination in pharmaceutical formulations with no excipients obstruction during analysis. Solid omeprazole complexes with all the acceptors were synthesized and then structure was elucidated by IR and 1H NMR spectroscopy.

Keywords: omeprazole, bromothymol blue, methyl orange and picric acid, charge transfer complexes

Procedia PDF Downloads 540
4247 Separation of Rare-Earth Metals from E-Wastes

Authors: Gulsara Akanova, Akmaral Ismailova, Duisek Kamysbayev

Abstract:

The separation of rare earth metals (REM) from a neodymium magnet has been widely studied in the last year. The waste of computer hard disk contains 25.41 % neodymium, 64.09 % iron, and <<1 % boron. To further the separation of rare-earth metals, the magnet dissolved in open and closed systems with nitric acid. In the closed system, the magnet was dissolved in a microwave sample preparation system at different temperatures and pressures and the dissolution process lasted 1 hour. In the open system, the acid dissolution of the magnet was conducted at room temperature and the process lasted 30-40 minutes. To remove the iron in the magnet, oxalic acid was used and precipitated as oxalates under both conditions. For separation of rare earth metals (Nd, Pr and Dy) from magnet waste is used sorption method.

Keywords: dissolution of the magnet, Neodymium magnet, rare earth metals, separation, Sorption

Procedia PDF Downloads 208
4246 Carboxylic Acid-Functionalized Multi-Walled Carbon Nanotubes-Polyindole/Ti2O3 Nanocomposite: Electrochemical Nanomolar Detection of α-Lipoic Acid in Vegetables

Authors: Ragu Sasikumar, Palraj Ranganathan, Shen-Ming Chen, Syang-Peng Rwei

Abstract:

A highly sensitive, and selective α-Lipoic acid (ALA) sensor based on a functionalized multi-walled carbon nanotubes-polyindole/Ti2O3 (f-MWCNTs-PIN/Ti2O3) nanocomposite modified glassy carbon electrode (GCE) was developed. The fabricated f-MWCNTs-PIN/Ti2O3/GCE displayed an enhanced voltammetric response for oxidation towards ALA relative to that of a f-MWCNTs/GCE, f-MWCNTs-PIN/GCE, Ti2O3/GCE, and a bare GCE. Under optimum conditions, the f-MWCNTs-PIN/Ti2O3/GCE showed a wide linear range at ALA concentrations of 0.39-115.8 µM. The limit of detection of 12 nM and sensitivity of about 6.39 µA µM-1cm-2. The developed sensor showed anti-interference, reproducibility, good repeatability, and operational stability. Applied possibility of the sensor has been confirmed in vegetable samples.

Keywords: f-MWCNT, polyindole, Ti2O3, Alzheimer’s diseases, ALA sensor

Procedia PDF Downloads 225
4245 Study of Microbial Diversity Associated with Tarballs and Their Exploitation in Crude Oil Degradation

Authors: Varsha Shinde, Belle Damodara Shenoy

Abstract:

Tarballs are crude oil remnants found in oceans after long term weathering process and are a global concern since several decades as potential marine pollutant. Being complicated in structure microbial remediation of tarballs in natural environment is a slow process. They are rich in high molecular weight alkanes and poly aromatic hydrocarbons which are resistant to microbial attack and other environmental factors, therefore remain in environment for long time. However, it has been found that many bacteria and fungi inhabit on tarballs for nutrients and shelter. Many of them are supposed to be oil degraders, while others are supposed to be getting benefited by byproducts formed during hydrocarbon metabolism. Thus tarballs are forming special interesting ecological niche of microbes. This work aimed to study diversity of bacteria and fungi from tarballs and to see their potential application in crude oil degradation. The samples of tarballs were collected from Betul beach of south Goa (India). Different methods were used to isolate culturable fraction of bacteria and fungi from it. Those were sequenced for 16S rRNA gene and ITS for molecular level identification. The 16S rRNA gene sequence analysis revealed the presence of 13 bacterial genera/clades (Alcanivorax, Brevibacterium, Bacillus, Cellulomonas, Enterobacter, Klebsiella, Marinobacter, Nitratireductor, Pantoea, Pseudomonas, Pseudoxanthomonas, Tistrella and Vibrio), while the ITS sequence analysis placed the fungi in 8 diverse genera/ clades (Aspergillus, Byssochlamys, Monascus, Paecilomyces, Penicillium, Scytalidium/ Xylogone, Talaromyces and Trichoderma). All bacterial isolates were screened for oil degradation capacity. Potential strains were subjected to crude oil degradation experiment for quantification. Results were analyzed by GC-MS-MS.

Keywords: bacteria, biodegradation, crude oil, diversity, fungi, tarballs

Procedia PDF Downloads 221
4244 Effect of Citric Acid and Clove on Cured Smoked Meat: A Traditional Meat Product

Authors: Esther Eduzor, Charles A. Negbenebor, Helen O. Agu

Abstract:

Smoking of meat enhances the taste and look of meat, it also increases its longevity, and helps preserve the meat by slowing down the spoilage of fat and growth of bacteria. The Lean meat from the forequarter of beef carcass was obtained from the Maiduguri abattoir. The meat was cut into four portions with weight ranging from 525-545 g. The meat was cut into bits measuring about 8 cm in length, 3.5 cm in thickness and weighed 64.5 g. Meat samples were washed, cured with various concentration of sodium chloride, sodium nitrate, citric acid and clove for 30 min, drained and smoked in a smoking kiln at a temperature range of 55-600°C, for 8 hr a day for 3 days. The products were stored at ambient temperature and evaluated microbiologically and organoleptically. In terms of processing and storage there were increases in pH, free fatty acid content, a decrease in water holding capacity and microbial count of the cured smoked meat. The panelists rated control samples significantly (p < 0.05) higher in terms of colour, texture, taste and overall acceptability. The following organisms were isolated and identified during storage: Bacillus specie, Bacillus subtilis, streptococcus, Pseudomonas, Aspergillus niger, Candida and Penicillium specie. The study forms a basis for new product development for meat industry.

Keywords: citric acid, cloves, smoked meat, bioengineering

Procedia PDF Downloads 445
4243 Development of a Nurse Led Tranexamic Acid Administration Protocol for Trauma Patients in Rural South Africa

Authors: Christopher Wearmouth, Jacob Smith

Abstract:

Administration of tranexamic acid (TXA) reduces all-cause mortality in trauma patients when given within 3 hours of injury. Due to geographical distance and lack of emergency medical services patients often present late, following trauma, to our emergency department. Additionally, we found patients that may have benefited from TXA did not receive it, often due to lack of staff awareness, staff shortages out of hours and lack of equipment for delivering infusions. Our objective was to develop a protocol for nurse-led administration of TXA in the emergency department. We developed a protocol using physiological observations along with criteria from the South African Triage Scale to allow nursing staff to identify patients with, or at risk of, significant haemorrhage. We will monitor the use of the protocol to ensure appropriate compliance and for any adverse events reported.

Keywords: emergency department, emergency nursing, rural healthcare, tranexamic acid, trauma, triage

Procedia PDF Downloads 230
4242 Study of the Removal of a Red Dye Acid and Sodium Bentonite Raw

Authors: N. Ouslimani, M. T. Abadlia

Abstract:

Wastewater from manufacturing industries are responsible for many organic micropollutants such as some detergents and dyes. It is estimated that 10-15 % of these chemical compounds in the effluents are discharged. In the method of dyeing the dyes are often used in excess to improve the dye and thereby the waste water are highly concentrated dye. The treatment of effluents containing dye has become a necessity given its negative repercussions on ecosystems mainly due to the pollutant nature of synthetic dyes and particularly soluble dyes such as acid dyes. Technology adsorptive separation is now a separation technologies of the most important treatments. The choice led to the use of bentonite occurs in order to use an equally effective and less costly than replacing charcoal. This choice is also justified by the importance of the material developed by, the possibility of cation exchange and high availability in our country surface. During this study, therefore, we test the clay, the main constituent is montmorillonite, whose most remarkable properties are its swelling resulting from the presence of water in the space between the sheets and the fiber structure to the adsorption of acid dye "red Bemacid. "The study of various parameters i.e. time, temperature, and pH showed that the adsorption is more favorable to the temperature of 19 °C for 240 minutes at a Ph equal to 2.More styles and Langmuir adsorption Freundlich were applied to describe the isotherms. The results show that sodium bentonite seems to affect the ability and effectiveness to adsorb colorant.Les ultimate quantities are respectively 0.629 mg/g and 0.589 mg/g for sodium bentonite and bentonite gross.

Keywords: Bentonite, treatment of polluted water, acid dyes, adsorption

Procedia PDF Downloads 263
4241 TiO2 Solar Light Photocatalysis a Promising Treatment Method of Wastewater with Trinitrotoluene Content

Authors: Ines Nitoi, Petruta Oancea, Lucian Constantin, Laurentiu Dinu, Maria Crisan, Malina Raileanu, Ionut Cristea

Abstract:

2,4,6-Trinitrotoluene (TNT) is the most common pollutant identified in wastewater generated from munitions plants where this explosive is synthesized or handled (munitions load, assembly and pack operations). Due to their toxic and suspected carcinogenic characteristics, nitroaromatic compounds like TNT are included on the list of prioritary pollutants and strictly regulated in EU countries. Since their presence in water bodies is risky for human health and aquatic life, development of powerful, modern treatment methods like photocatalysis are needed in order to assures environmental pollution mitigation. The photocatalytic degradation of TNT was carried out at pH=7.8, in aqueous TiO2 based catalyst suspension, under sunlight irradiation. The enhanced photo activity of catalyst in visible domain was assured by 0.5% Fe doping. TNT degradation experiments were performed using a tubular collector type solar photoreactor (26 UV permeable silica glass tubes series connected), plug in a total recycle loops. The influence of substrate concentration and catalyst dose on the pollutant degradation and mineralization by-products (NO2-, NO3-, NH4+) formation efficiencies was studied. In order to compare the experimental results obtained in various working conditions, the pollutant and mineralization by-products measured concentrations have been considered as functions of irradiation time and cumulative photonic energy Qhν incident on the reactor surface (kJ/L). In the tested experimental conditions, at tens mg/L pollutant concentration, increase of 0,5%-TiO2 dose up to 200mg/L leads to the enhancement of CB degradation efficiency. Since, doubling of TNT content has a negative effect on pollutant degradation efficiency, in similar experimental condition, prolonged irradiation time from 360 to 480 min was necessary in order to assures the compliance of treated effluent with limits imposed by EU legislation (TNT ≤ 10µg/L).

Keywords: wastewater treatment, TNT, photocatalysis, environmental engineering

Procedia PDF Downloads 357
4240 Effect of Precursors Aging Time on the Photocatalytic Activity of Zno Thin Films

Authors: N. Kaneva, A. Bojinova, K. Papazova

Abstract:

Thin ZnO films are deposited on glass substrates via sol–gel method and dip-coating. The films are prepared from zinc acetate dehydrate as a starting reagent. After that the as-prepared ZnO sol is aged for different periods (0, 1, 3, 5, 10, 15, and 30 days). Nanocrystalline thin films are deposited from various sols. The effect ZnO sols aging time on the structural and photocatalytic properties of the films is studied. The films surface is studied by Scanning Electron Microscopy. The effect of the aging time of the starting solution is studied inrespect to photocatalytic degradation of Reactive Black 5 (RB5) by UV-vis spectroscopy. The experiments are conducted upon UV-light illumination and in complete darkness. The variation of the absorption spectra shows the degradation of RB5 dissolved in water, as a result of the reaction acurring on the surface of the films, and promoted by UV irradiation. The initial concentrations of dye (5, 10 and 20 ppm) and the effect of the aging time are varied during the experiments. The results show, that the increasing aging time of starting solution with respect to ZnO generally promotes photocatalytic activity. The thin films obtained from ZnO sol, which is aged 30 days have best photocatalytic degradation of the dye (97,22%) in comparison with the freshly prepared ones (65,92%). The samples and photocatalytic experimental results are reproducible. Nevertheless, all films exhibit a substantial activity in both UV light and darkness, which is promising for the development of new ZnO photocatalysts by sol-gel method.

Keywords: ZnO thin films, sol-gel, photocatalysis, aging time

Procedia PDF Downloads 382
4239 Bioactivities and Phytochemical Studies of Petroleum Ether Extract of Pleiogynium timorense Bark

Authors: Gehan F. Abdel Raoof, Ataa A. Said, Khaled Y. Mohamed, Hala M. Mohammed

Abstract:

Pleiogynium timorense(DC.) Leenh is one of the therapeutically active plants belonging to the family Anacardiaceae. The bark of Pleiogynium timorense needs further studies to investigate its phytochemical and biological activities. This work was carried out to investigate the chemical composition of petroleum ether extract of Pleiogynium timorense bark as well as to evaluate the analgesic and anti-inflammatory activities. The unsaponifiable matter and fatty acid methyl esters were analyzed by Gas chromatography–mass spectrometry (GC-MS). Moreover, analgesic and anti-inflammatory activities were evaluated using acetic acid-induced writhing test and carrageen hind paw oedema models in rats, respectively. The results showed that twenty one compounds in the unsaponifiable fraction were identified representing 92.54 % of the total beak area, the major compounds were 1-Heptene (35.32%), Butylated hydroxy toluene (19.42%) and phytol (12.53%), whereas fifteen compounds were identified in the fatty acid methyl esters fraction representing 94.15% of the total identified peak area. The major compounds were 9-Octadecenoic acid methyl ester (35.34%) and 9,12-Octadecadienoic acid methyl ester (29.32%). Moreover, petroleum ether extract showed a significant reduction in pain and inflammation in a dose dependent manner. This study aims to be the first step toward the use of petroleum ether extract of Pleiogynium timorense bark as analgesic and anti-inflammatory drug.

Keywords: analgesic, anti-inflammatory, bark, petroleum ether extract, Pleiogynium timorense

Procedia PDF Downloads 168
4238 Carbohydrates Quantification from Agro-Industrial Waste and Fermentation with Lactic Acid Bacteria

Authors: Prittesh Patel, Bhavika Patel, Ramar Krishnamurthy

Abstract:

Present study was conducted to isolate lactic acid bacteria (LAB) from Oreochromis niloticus and Nemipterus japonicus fish gut. The LAB isolated were confirmed through 16s rRNA sequencing. It was observed that isolated Lactococcus spp. were able to tolerate NaCl and bile acid up to certain range. The isolated Lactococcus spp. were also able to survive in acidic and alkaline conditions. Further agro-industrial waste like peels of pineapple, orange, lemon, sugarcane, pomegranate; sweet lemon was analyzed for their polysaccharide contents and prebiotic properties. In the present study, orange peels, sweet lemon peels, and pineapple peels give maximum indigestible polysaccharide. To evaluate synbiotic effect combination of probiotic and prebiotic were analyzed under in vitro conditions. Isolates Lactococcus garvieae R3 and Lactococcus sp. R4 reported to have better fermentation efficiency with orange, sweet lemon and pineapple compare to lemon, sugarcane and pomegranate. The different agro-industrial waste evaluated in this research resulted in being a cheap and fermentable carbon source by LAB.

Keywords: agro-industrial waste, lactic acid bacteria, prebiotic, probiotic, synbiotic

Procedia PDF Downloads 163
4237 Methyl Red Adsorption and Photodegradation on TiO₂ Modified Mesoporous Carbon Photocatalyst

Authors: Seyyed Ershad Moradi, Javad Khodaveisi, Atefeh Nasrollahpour

Abstract:

In this study, the highly ordered mesoporous carbon molecular sieve with high surface area and pore volume have been synthesized and modified by TiO₂ doping. The titanium oxide modified mesoporous carbon (Ti-OMC) was characterized by scanning electron microscope (SEM), BET surface area, DRS also XRD analysis (low and wide angle). Degradation experiments were conducted in batch mode with the variables such as amount of contact time, initial solution concentration, and solution pH. The optimal conditions for the degradation of methyl red (MR) were 100 mg/L dye concentration, pH of 7, and 0.12 mg/L of TiO₂ modified mesoporous carbon photocatalyst dosage.

Keywords: mesoporous carbon, photodegradation, surface modification, titanium oxide

Procedia PDF Downloads 193
4236 Potential of ᵞ-Polyglutamic Acid for Cadmium Toxicity Alleviation in Rice

Authors: N. Kotabin, Y. Tahara, K. Issakul, O. Chunhachart

Abstract:

Cadmium (II) (Cd) is one of the major toxic elemental pollutants which is hazardous for humans, animals and plants. γ-Polyglutamic acid (γ-PGA) is an extracellular biopolymer produced by several species of Bacillus which has been reported to be an effective biosorbent for metal ions. The effect of γ-PGA on growth of rice grown under laboratory conditions was investigated. Rice seeds were germinated and then grown at 30±1°C on filter paper soaked with Cd solution and γ-PGA for 7 days. The result showed that Cd significantly inhibited the growth of roots and shoots by reducing root and shoot lengths. Fresh and dry weights also decreased compared with control; however, the addition of 500 mg•L-1 γ-PGA alleviated rice seedlings from the adverse effects of Cd. The analysis of physiological traits revealed that Cd caused a decrease in the total chlorophyll and soluble protein contents and amylase activities in all treatments. The Cd content in seedling tissues increased for the Cd 250 μM treatment (P < 0.05) but the addition of 500 mg•L-1 γ-PGA resulted in a noticeable decrease in Cd (P < 0.05).

Keywords: polyglutamic acid, cadmium, rice, bacillus subtilis

Procedia PDF Downloads 299
4235 Kinetic Study on Extracting Lignin from Black Liquor Using Deep Eutectic Solvents

Authors: Fatemeh Saadat Ghareh Bagh, Srimanta Ray, Jerald Lalman

Abstract:

Lignin, the largest inventory of organic carbon with a high caloric energy value is a major component in woody and non-woody biomass. In pulping mills, a large amount of the lignin is burned for energy. At the same time, the phenolic structure of lignin enables it to be converted to value-added compounds.This study has focused on extracting lignin from black liquor using deep eutectic solvents (DESs). Therefore, three choline chloride (ChCl)-DESs paired with lactic acid (LA) (1:11), oxalic acid.2H₂O (OX) (1:4), and malic acid (MA) (1:3) were synthesized at 90oC and atmospheric pressure. The kinetics of lignin recovery from black liquor using DES was investigated at three moderate temperatures (338, 353, and 368 K) at time intervals from 30 to 210 min. The extracted lignin (acid soluble lignin plus Klason lignin) was characterized by Fourier transform infrared spectroscopy (FTIR). The FTIR studies included comparing the extracted lignin with a model Kraft lignin. The extracted lignin was characterized spectrophotometrically to determine the acid soluble lignin (ASL) [TAPPI UM 250] fraction and Klason lignin was determined gravimetrically using TAPPI T 222 om02. The lignin extraction reaction using DESs was modeled by first-order reaction kinetics and the activation energy of the process was determined. The ChCl:LA-DES recovered lignin was 79.7±2.1% at 368K and a DES:BL ratio of 4:1 (v/v). The quantity of lignin extracted for the control solvent, [emim][OAc], was 77.5+2.2%. The activation energy measured for the LA-DES system was 22.7 KJ mol⁻¹, while the activation energy for the OX-DES and MA-DES systems were 7.16 KJ·mol⁻¹ and 8.66 KJ·mol⁻¹ when the total lignin recovery was 75.4 ±0.9% and 62.4 ±1.4, % respectively.

Keywords: black liquor, deep eutectic solvents, kinetics, lignin

Procedia PDF Downloads 147
4234 Evaluation of Phytochemical and Fatty Acids Content and Composition in Iranian Borage (Echium amoenum) in Different Habitate of Iran

Authors: Esmaeil Babakhanzadeh Sajirani, Mohamadjavad Shakouri

Abstract:

Iranian Gole GavZaban (Echium amoenum fich & mey), is one of the most important medicinal plant in north of iran . is dry petals used for tonic, tranquillizer, diaphoretic, cough suppressant and a remedy for sore throat in treditional Iranian medicine. This study is the report about the analysis of phytochemical and seeds oil of Echium amoenum's in different habitates and accessions of Iran. The results showed that the oil content of seeds was 36% and eleven fatty acids were identified and quantified by gas chromatography (GC). The major fatty acids wereα-Linolenicacid (39.99), Linoleic acid (20.86), linolenic acid (20%) and Oleic acid (15.36) respectively. The amount of phenols, tannins, flavonoids and anthocyanins with increasing height, increased amount of these compounds. So that the highest rates of these compounds were observed at an altitude of 2125 meters in ciposht accession.

Keywords: accession, phytochemical, oil components, Iranian borage

Procedia PDF Downloads 251
4233 Investigation of Parameters Affecting Copper Recovery from Brass Melting Dross

Authors: Sercan Basit, Muhlis N. Sarıdede

Abstract:

Metal amounts of copper based compounds in the various wastes have been recovered successfully by hydrometallurgical treatment methods in the literature. X-ray diffraction pattern of the brass melting slag demonstrates that it contains sufficient amount of recoverable copper. Recovery of copper from brass melting dross by sulfuric acid leaching and the effect of temperature and acid and oxidant concentration on recovery rate of copper have been investigated in this study. Experiments were performed in a temperature-controlled reactor in sulfuric acid solution in different molarities using solid liquid ratio of 100 g/L, with leaching time of 300 min. Temperature was changed between 25 °C and 80 °C and molarity was between 0.5 and 3M. The results obtained showed that temperature has important positive effect on recovery whereas it decreases with time. Also copper was recovered in larger amounts from brass dross in the presence of H2O2 as an oxidant according to the case that oxidant was not used.

Keywords: brass dross, copper recovery, hydrogen peroxide, leaching

Procedia PDF Downloads 331
4232 Degradation of Chlorpyrifos Pesticide in Aqueous Solution and Chemical Oxygen Demand from Real Effluent with Hydrodynamic Cavitation Approach

Authors: Shrikant Randhavane, Anjali Khambete

Abstract:

Use of Pesticides is vital in attaining food security and protection from harmful pests and insects in living environment. Chlorpyrifos, an organophosphate pesticide is widely used worldwide for various purposes. Due to its wide use and applications, its residues are found in environmental matrices and persist in nature for long duration of time. This has an adverse effect on human, aquatic and living bodies. Use of different methodologies is need of an hour to treat such type of recalcitrant compound. The paper focuses on Hydrodynamic Cavitation (HC), a hybrid Advanced Oxidation Potential (AOP) method to degrade Chlorpyrifos in aqueous water. Obtained results show that optimum inlet pressure of 5 bars gave maximum degradation of 99.25% for lower concentration and 87.14% for higher concentration Chlorpyrifos solution in 1 hour treatment time. Also, with known initial concentrations, comparing treatment time with optimum pressure of 5 bars, degradation efficiency increases with Hydrodynamic Cavitation. The potential application of HC in removal of Chemical Oxygen Demand (COD) from real effluent with venturi as cavitating device reveals around 40% COD removal with 1 hour of treatment time.

Keywords: advanced oxidation potential, cavitation, chlorpyrifos, COD

Procedia PDF Downloads 219