Search results for: novel object recognition
2147 Layers of Identities in Nahdliyyin Mosque Architecture and Some Related Socio-Political Context Within
Authors: Yulia Eka Putrie, Widjaja Martokusumo
Abstract:
The development of architecture today indicates that an architectural object often does not represent one single identity only. One architectural object could represents layers of multiple identities of an increasingly complex society. Mosque architecture for example, is mainly associated with one religious identity; that mosque architecture serves as the representation of Islamic identity. However, on many occasions, mosque architecture also serves as the representation of other motives, such as political, social, even individual identity. In normal circumstances, these layers of identities are not always seen or realized by common people outside the community. They are only represented implicitly in some symbolic forms, activities, and events. On the other hand, in specific circumstances, these kinds of identities were represented explicitly in mosque architecture. This paper is a part of an initial research on the representation of socio-political identities in Nahdliyyin mosques in East Java, Indonesia. Nahdliyyin mosques were chosen as the object of research because of its significance in Indonesian socio-political context, because majority of Indonesian muslims are culturally associated with Nahdlatul Ulama (NU) with its aswaja doctrine. Some frictions in mosque ownership and management between Nahdliyyin and other islamic school of thoughts, has resulted in preventive efforts, where some of the efforts are related to the representation of their identity in their mosque architecture. The research is a field research that took place in Malang, East Java. Malang is one of main cities in East Java; a cultural and regional basis of NU and Nahdliyyin people. Formal analysis were conducted in ten large Nahdliyyin mosques in Malang. Some structured and in-depth interviews were also held to explore the motives of identity representation in some architectural aspects of the mosques. The result of this initial study indicates that there are layers of identities which were manifested in the studied mosques. These layers of identities in Nahdliyyin mosques were based on the same main values, but represented through various formal expressions. Furthermore, the study also brings the deeper understanding on socio-political context of mosques in Nahdliyyin culture.Keywords: Nahdliyyin mosque architecture, layers of identities, representation, Nahdlatul Ulama
Procedia PDF Downloads 5192146 A Smartphone-Based Real-Time Activity Recognition and Fall Detection System
Authors: Manutchanok Jongprasithporn, Rawiphorn Srivilai, Paweena Pongsopha
Abstract:
Fall is the most serious accident leading to increased unintentional injuries and mortality. Falls are not only the cause of suffering and functional impairments to the individuals, but also the cause of increasing medical cost and days away from work. The early detection of falls could be an advantage to reduce fall-related injuries and consequences of falls. Smartphones, embedded accelerometer, have become a common device in everyday life due to decreasing technology cost. This paper explores a physical activity monitoring and fall detection application in smartphones which is a non-invasive biomedical device to determine physical activities and fall event. The combination of application and sensors could perform as a biomedical sensor to monitor physical activities and recognize a fall. We have chosen Android-based smartphone in this study since android operating system is an open-source and no cost. Moreover, android phone users become a majority of Thai’s smartphone users. We developed Thai 3 Axis (TH3AX) as a physical activities and fall detection application which included command, manual, results in Thai language. The smartphone was attached to right hip of 10 young, healthy adult subjects (5 males, 5 females; aged< 35y) to collect accelerometer and gyroscope data during performing physical activities (e.g., walking, running, sitting, and lying down) and falling to determine threshold for each activity. Dependent variables are including accelerometer data (acceleration, peak acceleration, average resultant acceleration, and time between peak acceleration). A repeated measures ANOVA was performed to test whether there are any differences between DVs’ means. Statistical analyses were considered significant at p<0.05. After finding threshold, the results were used as training data for a predictive model of activity recognition. In the future, accuracies of activity recognition will be performed to assess the overall performance of the classifier. Moreover, to help improve the quality of life, our system will be implemented with patients and elderly people who need intensive care in hospitals and nursing homes in Thailand.Keywords: activity recognition, accelerometer, fall, gyroscope, smartphone
Procedia PDF Downloads 6922145 The Principle of a Thought Formation: The Biological Base for a Thought
Authors: Ludmila Vucolova
Abstract:
The thought is a process that underlies consciousness and cognition and understanding its origin and processes is a longstanding goal of many academic disciplines. By integrating over twenty novel ideas and hypotheses of this theoretical proposal, we can speculate that thought is an emergent property of coded neural events, translating the electro-chemical interactions of the body with its environment—the objects of sensory stimulation, X, and Y. The latter is a self- generated feedback entity, resulting from the arbitrary pattern of the motion of a body’s motor repertory (M). A culmination of these neural events gives rise to a thought: a state of identity between an observed object X and a symbol Y. It manifests as a “state of awareness” or “state of knowing” and forms our perception of the physical world. The values of the variables of a construct—X (object), S1 (sense for the perception of X), Y (object), S2 (sense for perception of Y), and M (motor repertory that produces Y)—will specify the particular conscious percept at any given time. The proposed principle of interaction between the elements of a construct (X, Y, S1, S2, M) is universal and applies for all modes of communication (normal, deaf, blind, deaf and blind people) and for various language systems (Chinese, Italian, English, etc.). The particular arrangement of modalities of each of the three modules S1 (5 of 5), S2 (1 of 3), and M (3 of 3) defines a specific mode of communication. This multifaceted paradigm demonstrates a predetermined pattern of relationships between X, Y, and M that passes from generation to generation. The presented analysis of a cognitive experience encompasses the key elements of embodied cognition theories and unequivocally accords with the scientific interpretation of cognition as the mental action or process of acquiring knowledge and understanding through thought, experience, and the senses, and cognition means thinking and awareness. By assembling the novel ideas presented in twelve sections, we can reveal that in the invisible “chaos”, there is an order, a structure with landmarks and principles of operations and mental processes (thoughts) are physical and have a biological basis. This innovative proposal explains the phenomenon of mental imagery; give the first insight into the relationship between mental states and brain states, and support the notion that mind and body are inseparably connected. The findings of this theoretical proposal are supported by the current scientific data and are substantiated by the records of the evolution of language and human intelligence.Keywords: agent, awareness, cognitive, element, experience, feedback, first person, imagery, language, mental, motor, object, sensory, symbol, thought
Procedia PDF Downloads 3842144 Negativization: A Focus Strategy in Basà Language
Authors: Imoh Philip
Abstract:
Basà language is classified as belonging to Kainji family, under the sub-phylum Western-Kainji known as Rubasa (Basa Benue) (Croizier & Blench, 1992:32). Basà is an under-described language spoken in the North-Central Nigeria. The language is characterized by subject-verb-object (henceforth SVO) as its canonical word order. Data for this work is sourced from the researcher’s native intuition of the language corroborated with a careful observation of native speakers. This paper investigates the syntactic derivational strategy of information-structure encoding in Basà language. It emphasizes on a negative operator, as a strategy for focusing a constituent or clause that follows it and negativizes a whole proposition. For items that are not nouns, they have to undergo an obligatory nominalization process, either by affixation, modification or conversion before they are moved to the pre verbal position for these operations. The study discovers and provides evidence of the fact showing that deferent constituents in the sentence such as the subject, direct, indirect object, genitive, verb phrase, prepositional phrase, clause and idiophone, etc. can be focused with the same negativizing operator. The process is characterized by focusing the pre verbal NP constituent alone, whereas the whole proposition is negated. The study can stimulate similar study or be replicated in other languages.Keywords: negation, focus, Basà, nominalization
Procedia PDF Downloads 5962143 Thermo-Mechanical Analysis of Dissimilar Al/Cu Foil Single Lap Joints Made by Composite Metal Foil Manufacturing
Authors: Javaid Butt, Habtom Mebrahtu, Hassan Shirvani
Abstract:
The paper presents a new additive manufacturing process for the production of metal and composite parts. It is termed as composite metal foil manufacturing and is a combination of laminated object manufacturing and brazing techniques. The process has been described in detail and is being used to produce dissimilar aluminum to copper foil single lap joints. A three dimensional finite element model has been developed to study the thermo-mechanical characteristics of the dissimilar Al/Cu single lap joint. The effects of thermal stress and strain have been analyzed by carrying out transient thermal analysis on the heated plates used to join the two 0.1mm thin metal foils. Tensile test has been carried out on the foils before joining and after the single Al/Cu lap joints are made, they are subjected to tensile lap-shear test to analyze the effect of heat on the foils. The analyses are designed to assess the mechanical integrity of the foils after the brazing process and understand whether or not the heat treatment has an effect on the fracture modes of the produced specimens.Keywords: brazing, laminated object manufacturing, tensile lap-shear test, thermo-mechanical analysis
Procedia PDF Downloads 3422142 Integrating Knowledge Distillation of Multiple Strategies
Authors: Min Jindong, Wang Mingxia
Abstract:
With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.Keywords: object detection, knowledge distillation, convolutional network, model compression
Procedia PDF Downloads 2782141 Investigating the Influences of Long-Term, as Compared to Short-Term, Phonological Memory on the Word Recognition Abilities of Arabic Readers vs. Arabic Native Speakers: A Word-Recognition Study
Authors: Insiya Bhalloo
Abstract:
It is quite common in the Muslim faith for non-Arabic speakers to be able to convert written Arabic, especially Quranic Arabic, into a phonological code without significant semantic or syntactic knowledge. This is due to prior experience learning to read the Quran (a religious text written in Classical Arabic), from a very young age such as via enrolment in Quranic Arabic classes. As compared to native speakers of Arabic, these Arabic readers do not have a comprehensive morpho-syntactic knowledge of the Arabic language, nor can understand, or engage in Arabic conversation. The study seeks to investigate whether mere phonological experience (as indicated by the Arabic readers’ experience with Arabic phonology and the sound-system) is sufficient to cause phonological-interference during word recognition of previously-heard words, despite the participants’ non-native status. Both native speakers of Arabic and non-native speakers of Arabic, i.e., those individuals that learned to read the Quran from a young age, will be recruited. Each experimental session will include two phases: An exposure phase and a test phase. During the exposure phase, participants will be presented with Arabic words (n=40) on a computer screen. Half of these words will be common words found in the Quran while the other half will be words commonly found in Modern Standard Arabic (MSA) but either non-existent or prevalent at a significantly lower frequency within the Quran. During the test phase, participants will then be presented with both familiar (n = 20; i.e., those words presented during the exposure phase) and novel Arabic words (n = 20; i.e., words not presented during the exposure phase. ½ of these presented words will be common Quranic Arabic words and the other ½ will be common MSA words but not Quranic words. Moreover, ½ the Quranic Arabic and MSA words presented will be comprised of nouns, while ½ the Quranic Arabic and MSA will be comprised of verbs, thereby eliminating word-processing issues affected by lexical category. Participants will then determine if they had seen that word during the exposure phase. This study seeks to investigate whether long-term phonological memory, such as via childhood exposure to Quranic Arabic orthography, has a differential effect on the word-recognition capacities of native Arabic speakers and Arabic readers; we seek to compare the effects of long-term phonological memory in comparison to short-term phonological exposure (as indicated by the presentation of familiar words from the exposure phase). The researcher’s hypothesis is that, despite the lack of lexical knowledge, early experience with converting written Quranic Arabic text into a phonological code will help participants recall the familiar Quranic words that appeared during the exposure phase more accurately than those that were not presented during the exposure phase. Moreover, it is anticipated that the non-native Arabic readers will also report more false alarms to the unfamiliar Quranic words, due to early childhood phonological exposure to Quranic Arabic script - thereby causing false phonological facilitatory effects.Keywords: modern standard arabic, phonological facilitation, phonological memory, Quranic arabic, word recognition
Procedia PDF Downloads 3572140 An Analysis of Uncoupled Designs in Chicken Egg
Authors: Pratap Sriram Sundar, Chandan Chowdhury, Sagar Kamarthi
Abstract:
Nature has perfected her designs over 3.5 billion years of evolution. Research fields such as biomimicry, biomimetics, bionics, bio-inspired computing, and nature-inspired designs have explored nature-made artifacts and systems to understand nature’s mechanisms and intelligence. Learning from nature, the researchers have generated sustainable designs and innovation in a variety of fields such as energy, architecture, agriculture, transportation, communication, and medicine. Axiomatic design offers a method to judge if a design is good. This paper analyzes design aspects of one of the nature’s amazing object: chicken egg. The functional requirements (FRs) of components of the object are tabulated and mapped on to nature-chosen design parameters (DPs). The ‘independence axiom’ of the axiomatic design methodology is applied to analyze couplings and to evaluate if eggs’ design is good (i.e., uncoupled design) or bad (i.e., coupled design). The analysis revealed that eggs design is a good design, i.e., uncoupled design. This approach can be applied to any nature’s artifacts to judge whether their design is a good or a bad. This methodology is valuable for biomimicry studies. This approach can also be a very useful teaching design consideration of biology and bio-inspired innovation.Keywords: uncoupled design, axiomatic design, nature design, design evaluation
Procedia PDF Downloads 1732139 Differential Effects of Parity, Stress and Fluoxetine Treatment on Locomotor Activity and Swimming Behavior in Rats
Authors: Nur Hidayah Kaz Abdul Aziz, Norhalida Hashim, Zurina Hassan
Abstract:
Peripartum period is a time where women are vulnerable to depression, and stress may further increase the risk of its occurrence. Use of selective serotonin reuptake inhibitors (SSRI) in the treatment of postpartum depression is a common practice. Comparison of antidepressant treatment, however, is rarely studied between gestated and nulliparous animals exposed to stress. This study was aimed to investigate the effect of parity and stress, as well as fluoxetine (an SSRI) treatment after stress exposure on the behavior of rats. Gestating and nulliparous Sprague Dawley rats were either subjected to chronic stressors or left undisturbed throughout the gestation period. After parturition, all stressors were stopped and some of the stressed rats were treated with fluoxetine (10mg/kg). Hence, the final groups formed were: 1. Non-stressed nulliparous rats, 2. Non-stressed dams, 3. Stressed nulliparous rats, 4. Stressed dams, 5. Fluoxetine-treated stressed nulliparous rats, and 6. Fluoxetine-treated stressed dams. Rats were tested in open field test (OFT), novel object recognition test (NOR) and forced swim test (FST) after weaning of pups. Gestational stress significantly reduced the locomotor activity of rats in OFT (p<0.05), while fluoxetine significantly increased the activity in nulliparous rats (p<0.001) but not the dams. While no differences were observed in NOR, stress and parity inhibited the rats from performing swimming behavior in FST. However, climbing and immobile behaviors in FST were found to have no significant differences, although there is a tendency of effect of treatment for immobility parameter (p=0.06) where fluoxetine-treated stressed dams were being the least immobile. In conclusion, the effects of parity and stress, as well as fluoxetine treatment, depended on the type of behavioral test performed.Keywords: stress, parity, SSRI, behavioral tests
Procedia PDF Downloads 1722138 Traffic Light Detection Using Image Segmentation
Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra
Abstract:
Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks
Procedia PDF Downloads 1732137 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata
Procedia PDF Downloads 3882136 A Single Feature Probability-Object Based Image Analysis for Assessing Urban Landcover Change: A Case Study of Muscat Governorate in Oman
Authors: Salim H. Al Salmani, Kevin Tansey, Mohammed S. Ozigis
Abstract:
The study of the growth of built-up areas and settlement expansion is a major exercise that city managers seek to undertake to establish previous and current developmental trends. This is to ensure that there is an equal match of settlement expansion needs to the appropriate levels of services and infrastructure required. This research aims at demonstrating the potential of satellite image processing technique, harnessing the utility of single feature probability-object based image analysis technique in assessing the urban growth dynamics of the Muscat Governorate in Oman for the period 1990, 2002 and 2013. This need is fueled by the continuous expansion of the Muscat Governorate beyond predicted levels of infrastructural provision. Landsat Images of the years 1990, 2002 and 2013 were downloaded and preprocessed to forestall appropriate radiometric and geometric standards. A novel approach of probability filtering of the target feature segment was implemented to derive the spatial extent of the final Built-Up Area of the Muscat governorate for the three years period. This however proved to be a useful technique as high accuracy assessment results of 55%, 70%, and 71% were recorded for the Urban Landcover of 1990, 2002 and 2013 respectively. Furthermore, the Normalized Differential Built – Up Index for the various images were derived and used to consolidate the results of the SFP-OBIA through a linear regression model and visual comparison. The result obtained showed various hotspots where urbanization have sporadically taken place. Specifically, settlement in the districts (Wilayat) of AL-Amarat, Muscat, and Qurayyat experienced tremendous change between 1990 and 2002, while the districts (Wilayat) of AL-Seeb, Bawshar, and Muttrah experienced more sporadic changes between 2002 and 2013.Keywords: urban growth, single feature probability, object based image analysis, landcover change
Procedia PDF Downloads 2742135 A Similar Image Retrieval System for Auroral All-Sky Images Based on Local Features and Color Filtering
Authors: Takanori Tanaka, Daisuke Kitao, Daisuke Ikeda
Abstract:
The aurora is an attractive phenomenon but it is difficult to understand the whole mechanism of it. An approach of data-intensive science might be an effective approach to elucidate such a difficult phenomenon. To do that we need labeled data, which shows when and what types of auroras, have appeared. In this paper, we propose an image retrieval system for auroral all-sky images, some of which include discrete and diffuse aurora, and the other do not any aurora. The proposed system retrieves images which are similar to the query image by using a popular image recognition method. Using 300 all-sky images obtained at Tromso Norway, we evaluate two methods of image recognition methods with or without our original color filtering method. The best performance is achieved when SIFT with the color filtering is used and its accuracy is 81.7% for discrete auroras and 86.7% for diffuse auroras.Keywords: data-intensive science, image classification, content-based image retrieval, aurora
Procedia PDF Downloads 4492134 Difficulties in the Emotional Processing of Intimate Partner Violence Perpetrators
Authors: Javier Comes Fayos, Isabel RodríGuez Moreno, Sara Bressanutti, Marisol Lila, Angel Romero MartíNez, Luis Moya Albiol
Abstract:
Given the great impact produced by gender-based violence, its comprehensive approach seems essential. Consequently, research has focused on risk factors for violent behaviour, linking various psychosocial variables, as well as cognitive and neuropsychological deficits with the aggressors. However, studies on affective processing are scarce, so the present study investigates possible emotional alterations in men convicted of gender violence. The participants were 51 aggressors, who attended the CONTEXTO program with sentences of less than two years, and 47 men with no history of violence. The sample did not differ in age, socioeconomic level, education, or alcohol and other substances consumption. Anger, alexithymia and facial recognition of other people´s emotions were assessed through the State-Trait Anger Expression Inventory (STAXI-2), the Toronto Alexithymia Scale (TAS-20) and Reading the mind in the eyes (REM), respectively. Men convicted of gender-based violence showed higher scores on the anger trait and temperament dimensions, as well as on the anger expression index. They also scored higher on alexithymia and in the identification and emotional expression subscales. In addition, they showed greater difficulties in the facial recognition of emotions by having a lower score in the REM. These results seem to show difficulties in different affective areas in men condemned for gender violence. The deficits are reflected in greater difficulty in identifying and expressing emotions, in processing anger and in recognizing the emotions of others. All these difficulties have been related to the use of violent behavior. Consequently, it is essential and necessary to include emotional regulation in intervention programs for men who have been convicted of gender-based violence.Keywords: alexithymia, anger, emotional processing, emotional recognition, empathy, intimate partner violence
Procedia PDF Downloads 1992133 Development of a Computer Vision System for the Blind and Visually Impaired Person
Authors: Rodrigo C. Belleza, Jr., Roselyn A. Maaño, Karl Patrick E. Camota, Darwin Kim Q. Bulawan
Abstract:
Eyes are an essential and conspicuous organ of the human body. Human eyes are outward and inward portals of the body that allows to see the outside world and provides glimpses into ones inner thoughts and feelings. Inevitable blindness and visual impairments may result from eye-related disease, trauma, or congenital or degenerative conditions that cannot be corrected by conventional means. The study emphasizes innovative tools that will serve as an aid to the blind and visually impaired (VI) individuals. The researchers fabricated a prototype that utilizes the Microsoft Kinect for Windows and Arduino microcontroller board. The prototype facilitates advanced gesture recognition, voice recognition, obstacle detection and indoor environment navigation. Open Computer Vision (OpenCV) performs image analysis, and gesture tracking to transform Kinect data to the desired output. A computer vision technology device provides greater accessibility for those with vision impairments.Keywords: algorithms, blind, computer vision, embedded systems, image analysis
Procedia PDF Downloads 3182132 Disaggregating and Forecasting the Total Energy Consumption of a Building: A Case Study of a High Cooling Demand Facility
Authors: Juliana Barcelos Cordeiro, Khashayar Mahani, Farbod Farzan, Mohsen A. Jafari
Abstract:
Energy disaggregation has been focused by many energy companies since energy efficiency can be achieved when the breakdown of energy consumption is known. Companies have been investing in technologies to come up with software and/or hardware solutions that can provide this type of information to the consumer. On the other hand, not all people can afford to have these technologies. Therefore, in this paper, we present a methodology for breaking down the aggregate consumption and identifying the highdemanding end-uses profiles. These energy profiles will be used to build the forecast model for optimal control purpose. A facility with high cooling load is used as an illustrative case study to demonstrate the results of proposed methodology. We apply a high level energy disaggregation through a pattern recognition approach in order to extract the consumption profile of its rooftop packaged units (RTUs) and present a forecast model for the energy consumption.Keywords: energy consumption forecasting, energy efficiency, load disaggregation, pattern recognition approach
Procedia PDF Downloads 2772131 Financial Reporting Quality and International Financial Reporting
Authors: Matthias Nnadi
Abstract:
Using samples of 250 large listed firms by market capitalization in China and Hong Kong, we conducted empirical test to determine the impact of regulatory environment on reporting quality following IFRS convergence using three financial reporting measures; earning management, timely loss recognition and value relevance. Our results indicate that accounting data are more value relevant for Hong Kong listed firms than the Chinese A-share firms. The empirical results for timely loss recognition further reveal that there is a larger coefficient estimate on bad news earnings, which suggests that Chines A-share firms are more likely to report losses in a timely manner. The results support the evidence that substantial convergence of IFRS can improve financial reporting quality in a regulated environment such as China. This further supports the expectation that IFRS are relevant to China and has positive effect on its accounting practice and quality.Keywords: reporting, quality, earning, loss, relevance, financial, China, Hong Kong
Procedia PDF Downloads 4622130 Awareness of Turkish Cypriots on Domestic Violence: Exploratory Study of Cultural Influence on Public Health
Authors: Nazif Fuat Turkmen
Abstract:
Domestic violence is the most common form of violence that risks the health and psychological well-being of victims and its witnesses. Psychology as a scientific field has made contributions in research, exploration, assessment, intervention, and prevention of domestic violence. The present study will be exploring the level of recognition of Turkish Cypriots on domestic violence and their understanding about it in general terms. While discussing the level of awareness of Turkish Cypriots on domestic violence and the effects of this level of awareness on the general well-being of the members of the society, the most common types of domestic violence as well as how Turkish Cypriots recognize and interpret these different types will be explored. The participants consisted of 224 Turkish Cypriots; 48.4% (n= 109) were female, 51.1% (n=115) were male. For the purpose of the study, a 28-item questionnaire was prepared and used for data collection. According to the results, there is a strong relationship between the education level of the respondents and their awareness on domestic violence. The study shows that cultural approaches on child rearing effect people’s recognition of violence in general and awareness on domestic violence in particular.Keywords: culture, domestic violence, health psychology, public health, Turkish Cypriots, violence
Procedia PDF Downloads 4522129 A Preliminary Analysis of The Effect After Cochlear Implantation in the Unilateral Hearing Loss
Authors: Haiqiao Du, Qian Wang, Shuwei Wang, Jianan Li
Abstract:
Purpose: The aim is to evaluate the effect of cochlear implantation (CI) in patients with unilateral hearing loss, with a view to providing data support for the selection of therapeutic interventions for patients with single-sided deafness (SSD)/asymmetric hearing loss (AHL) and the broadening of the indications for CI. Methods: The study subjects were patients with unilateral hearing loss who underwent cochlear implantation surgery in our hospital in August 2022 and were willing to cooperate with the test and were divided into 2 groups: SSD group and AHL group. The enrolled patients were followed up for hearing level, tinnitus changes, speech recognition ability, sound source localization ability, and quality of life at five-time points: preoperatively, and 1, 3, 6, and 12 months after postoperative start-up. Results: As of June 30, 2024, a total of nine patients completed follow-up, including four in the SSD group and five in the AHL group. The mean postoperative hearing aid thresholds on the CI side were 31.56 dB HL and 34.75 dB HL in the two groups, respectively. Of the four patients with preoperative tinnitus symptoms (three patients in the SSD group and one patient in the AHL group), all showed a degree of reduction in Tinnitus Handicap Inventory (THI) scores, except for one patient who showed no change. In both the SSD and AHL groups, the sound source localization results (expressed as RMS error values, with smaller values indicating better ability) were 66.87° and 77.41° preoperatively and 29.34° and 54.60° 12 months after postoperative start-up, respectively, which showed that the ability to localize the sound source improved significantly with longer implantation time. The level of speech recognition was assessed by 3 test methods: speech recognition rate of monosyllabic words in a quiet environment and speech recognition rate of different sound source directions at 0° and 90° (implantation side) in a noisy environment. The results of the 3 tests were 99.0%, 72.0%, and 36.0% in the preoperative SSD group and 96.0%, 83.6%, and 73.8% in the AHL group, respectively, whereas they fluctuated in the postoperative period 3 months after start-up, and stabilized at 12 months after start-up to 99.0%, 100.0%, and 100.0% in the SSD group and 99.5%, 96.0%, and 99.0%. Quality of life was subjectively evaluated by three tests: the Speech Spatial Quality of Sound Auditory Scale (SSQ-12), the Quality-of-Life Bilateral Listening Questionnaire (QLBHE), and the Nijmegen Cochlear Implantation Inventory (NCIQ). The results of the SSQ-12 (with a 10-point score out of 10) showed that the scores of preoperative and postoperative 12 months after start-up were 6.35 and 6.46 in the SSD group, while they were 5.61 and 9.83 in the AHL group. The QLBHE scores (100 points out of 100) were 61.0 and 76.0 in the SSD group and 53.4 and 63.7 in the AHL group for the preoperative versus the postoperative 12 months after start-up. Conclusion: Patients with unilateral hearing loss can benefit from cochlear implantation: CI implantation is effective in compensating for the hearing on the affected side and reduces the accompanying tinnitus symptoms; there is a significant improvement in sound source localization and speech recognition in the presence of noise; and the quality of life is improved.Keywords: single-sided deafness, asymmetric hearing loss, cochlear implant, unilateral hearing loss
Procedia PDF Downloads 142128 The Impact of Trait and Mathematical Anxiety on Oscillatory Brain Activity during Lexical and Numerical Error-Recognition Tasks
Authors: Alexander N. Savostyanov, Tatyana A. Dolgorukova, Elena A. Esipenko, Mikhail S. Zaleshin, Margherita Malanchini, Anna V. Budakova, Alexander E. Saprygin, Yulia V. Kovas
Abstract:
The present study compared spectral-power indexes and cortical topography of brain activity in a sample characterized by different levels of trait and mathematical anxiety. 52 healthy Russian-speakers (age 17-32; 30 males) participated in the study. Participants solved an error recognition task under 3 conditions: A lexical condition (simple sentences in Russian), and two numerical conditions (simple arithmetic and complicated algebraic problems). Trait and mathematical anxiety were measured using self-repot questionnaires. EEG activity was recorded simultaneously during task execution. Event-related spectral perturbations (ERSP) were used to analyze spectral-power changes in brain activity. Additionally, sLORETA was applied in order to localize the sources of brain activity. When exploring EEG activity recorded after tasks onset during lexical conditions, sLORETA revealed increased activation in frontal and left temporal cortical areas, mainly in the alpha/beta frequency ranges. When examining the EEG activity recorded after task onset during arithmetic and algebraic conditions, additional activation in delta/theta band in the right parietal cortex was observed. The ERSP plots reveled alpha/beta desynchronizations within a 500-3000 ms interval after task onset and slow-wave synchronization within an interval of 150-350 ms. Amplitudes of these intervals reflected the accuracy of error recognition, and were differently associated with the three (lexical, arithmetic and algebraic) conditions. The level of trait anxiety was positively correlated with the amplitude of alpha/beta desynchronization. The level of mathematical anxiety was negatively correlated with the amplitude of theta synchronization and of alpha/beta desynchronization. Overall, trait anxiety was related with an increase in brain activation during task execution, whereas mathematical anxiety was associated with increased inhibitory-related activity. We gratefully acknowledge the support from the №11.G34.31.0043 grant from the Government of the Russian Federation.Keywords: anxiety, EEG, lexical and numerical error-recognition tasks, alpha/beta desynchronization
Procedia PDF Downloads 5252127 An Automatic Generating Unified Modelling Language Use Case Diagram and Test Cases Based on Classification Tree Method
Authors: Wassana Naiyapo, Atichat Sangtong
Abstract:
The processes in software development by Object Oriented methodology have many stages those take time and high cost. The inconceivable error in system analysis process will affect to the design and the implementation process. The unexpected output causes the reason why we need to revise the previous process. The more rollback of each process takes more expense and delayed time. Therefore, the good test process from the early phase, the implemented software is efficient, reliable and also meet the user’s requirement. Unified Modelling Language (UML) is the tool which uses symbols to describe the work process in Object Oriented Analysis (OOA). This paper presents the approach for automatically generated UML use case diagram and test cases. UML use case diagram is generated from the event table and test cases are generated from use case specifications and Graphic User Interfaces (GUI). Test cases are derived from the Classification Tree Method (CTM) that classify data to a node present in the hierarchy structure. Moreover, this paper refers to the program that generates use case diagram and test cases. As the result, it can reduce work time and increase efficiency work.Keywords: classification tree method, test case, UML use case diagram, use case specification
Procedia PDF Downloads 1622126 Named Entity Recognition System for Tigrinya Language
Authors: Sham Kidane, Fitsum Gaim, Ibrahim Abdella, Sirak Asmerom, Yoel Ghebrihiwot, Simon Mulugeta, Natnael Ambassager
Abstract:
The lack of annotated datasets is a bottleneck to the progress of NLP in low-resourced languages. The work presented here consists of large-scale annotated datasets and models for the named entity recognition (NER) system for the Tigrinya language. Our manually constructed corpus comprises over 340K words tagged for NER, with over 118K of the tokens also having parts-of-speech (POS) tags, annotated with 12 distinct classes of entities, represented using several types of tagging schemes. We conducted extensive experiments covering convolutional neural networks and transformer models; the highest performance achieved is 88.8% weighted F1-score. These results are especially noteworthy given the unique challenges posed by Tigrinya’s distinct grammatical structure and complex word morphologies. The system can be an essential building block for the advancement of NLP systems in Tigrinya and other related low-resourced languages and serve as a bridge for cross-referencing against higher-resourced languages.Keywords: Tigrinya NER corpus, TiBERT, TiRoBERTa, BiLSTM-CRF
Procedia PDF Downloads 1302125 Formulating Rough Approximations in Information Tables with Possibilistic Information
Authors: Michinori Nakata, Hiroshi Sakai
Abstract:
A rough set, which consists of lower and upper approximations, is formulated in information tables containing possibilistic information. First, lower and upper approximations on the basis of possible world semantics in the same way as Lipski did in the field of incomplete databases are shown in order to clarify fundamentals of rough sets under possibilistic information. Possibility and necessity measures are used, as is done in possibilistic databases. As a result, each object has certain and possible membership degrees to lower and upper approximations, which degrees are the lower and upper bounds. Therefore, the degree that the object belongs to lower and upper approximations is expressed by an interval value. And the complementary property linked with the lower and upper approximations holds, as is valid under complete information. Second, the approach based on indiscernibility relations, which is proposed by Dubois and Prade, are extended in three cases. The first case is that objects used to approximate a set of objects are characterized by possibilistic information. The second case is that objects used to approximate a set of objects with possibilistic information are characterized by complete information. The third case is that objects that are characterized by possibilistic information approximate a set of objects with possibilistic information. The extended approach create the same results as the approach based on possible world semantics. This justifies our extension.Keywords: rough sets, possibilistic information, possible world semantics, indiscernibility relations, lower approximations, upper approximations
Procedia PDF Downloads 3212124 Influence of the Refractory Period on Neural Networks Based on the Recognition of Neural Signatures
Authors: José Luis Carrillo-Medina, Roberto Latorre
Abstract:
Experimental evidence has revealed that different living neural systems can sign their output signals with some specific neural signature. Although experimental and modeling results suggest that neural signatures can have an important role in the activity of neural networks in order to identify the source of the information or to contextualize a message, the functional meaning of these neural fingerprints is still unclear. The existence of cellular mechanisms to identify the origin of individual neural signals can be a powerful information processing strategy for the nervous system. We have recently built different models to study the ability of a neural network to process information based on the emission and recognition of specific neural fingerprints. In this paper we further analyze the features that can influence on the information processing ability of this kind of networks. In particular, we focus on the role that the duration of a refractory period in each neuron after emitting a signed message can play in the network collective dynamics.Keywords: neural signature, neural fingerprint, processing based on signal identification, self-organizing neural network
Procedia PDF Downloads 4922123 Modern Detection and Description Methods for Natural Plants Recognition
Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert
Abstract:
Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT
Procedia PDF Downloads 2762122 Real-Time Recognition of the Terrain Configuration to Improve Driving Stability for Unmanned Robots
Authors: Bongsoo Jeon, Jayoung Kim, Jihong Lee
Abstract:
Methods for measuring or estimating of ground shape by a laser range finder and a vision sensor (exteroceptive sensors) have critical weakness in terms that these methods need prior database built to distinguish acquired data as unique surface condition for driving. Also, ground information by exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Therefore, this paper proposes a method of recognizing exact and precise ground shape using Inertial Measurement Unit (IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot.Keywords: inertial measurement unit, laser range finder, real-time recognition of the ground shape, proprioceptive sensor
Procedia PDF Downloads 2862121 Degraded Document Analysis and Extraction of Original Text Document: An Approach without Optical Character Recognition
Authors: L. Hamsaveni, Navya Prakash, Suresha
Abstract:
Document Image Analysis recognizes text and graphics in documents acquired as images. An approach without Optical Character Recognition (OCR) for degraded document image analysis has been adopted in this paper. The technique involves document imaging methods such as Image Fusing and Speeded Up Robust Features (SURF) Detection to identify and extract the degraded regions from a set of document images to obtain an original document with complete information. In case, degraded document image captured is skewed, it has to be straightened (deskew) to perform further process. A special format of image storing known as YCbCr is used as a tool to convert the Grayscale image to RGB image format. The presented algorithm is tested on various types of degraded documents such as printed documents, handwritten documents, old script documents and handwritten image sketches in documents. The purpose of this research is to obtain an original document for a given set of degraded documents of the same source.Keywords: grayscale image format, image fusing, RGB image format, SURF detection, YCbCr image format
Procedia PDF Downloads 3772120 A Novel Combined Finger Counting and Finite State Machine Technique for ASL Translation Using Kinect
Authors: Rania Ahmed Kadry Abdel Gawad Birry, Mohamed El-Habrouk
Abstract:
This paper presents a brief survey of the techniques used for sign language recognition along with the types of sensors used to perform the task. It presents a modified method for identification of an isolated sign language gesture using Microsoft Kinect with the OpenNI framework. It presents the way of extracting robust features from the depth image provided by Microsoft Kinect and the OpenNI interface and to use them in creating a robust and accurate gesture recognition system, for the purpose of ASL translation. The Prime Sense’s Natural Interaction Technology for End-user - NITE™ - was also used in the C++ implementation of the system. The algorithm presents a simple finger counting algorithm for static signs as well as directional Finite State Machine (FSM) description of the hand motion in order to help in translating a sign language gesture. This includes both letters and numbers performed by a user, which in-turn may be used as an input for voice pronunciation systems.Keywords: American sign language, finger counting, hand tracking, Microsoft Kinect
Procedia PDF Downloads 2962119 Utilization of an Object Oriented Tool to Perform Model-Based Safety Analysis According to Extended Failure System Models
Authors: Royia Soliman, Salma ElAnsary, Akram Amin Abdellatif, Florian Holzapfel
Abstract:
Model-Based Safety Analysis (MBSA) is an approach in which the system and safety engineers share a common system model created using a model-based development process. The model can also be extended by the failure modes of the system components. There are two famous approaches for the addition of fault behaviors to system models. The first one is to enclose the failure into the system design directly. The second approach is to develop a fault model separately from the system model, thus combining both independent models for safety analysis. This paper introduces a hybrid approach of MBSA. The approach tries to use informal abstracted models to investigate failure behaviors. The approach will combine various concepts such as directed graph traversal, event lists and Constraint Satisfaction Problems (CSP). The approach is implemented using an Object Oriented programming language. The components are abstracted to its failure logic and relationships of connected components. The implemented approach is tested on various flight control systems, including electrical and multi-domain examples. The various tests are analyzed, and a comparison to different approaches is represented.Keywords: flight control systems, model based safety analysis, safety assessment analysis, system modelling
Procedia PDF Downloads 1642118 A Novel Method for Face Detection
Authors: H. Abas Nejad, A. R. Teymoori
Abstract:
Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, etc. in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as the user stays neutral for the majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this work, we propose a light-weight neutral vs. emotion classification engine, which acts as a preprocessor to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at Key Emotion (KE) points using a textural statistical model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a textural statistical model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves ER accuracy and simultaneously reduces the computational complexity of ER system, as validated on multiple databases.Keywords: neutral vs. emotion classification, Constrained Local Model, procrustes analysis, Local Binary Pattern Histogram, statistical model
Procedia PDF Downloads 338