Search results for: methylene blue degradation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2264

Search results for: methylene blue degradation

1634 An UHPLC (Ultra High Performance Liquid Chromatography) Method for the Simultaneous Determination of Norfloxacin, Metronidazole, and Tinidazole Using Monolithic Column-Stability Indicating Application

Authors: Asmaa Mandour, Ramzia El-Bagary, Asmaa El-Zaher, Ehab Elkady

Abstract:

Background: An UHPLC (ultra high performance liquid chromatography) method for the simultaneous determination of norfloxacin (NOR), metronidazole (MET) and tinidazole (TNZ) using monolithic column is presented. Purpose: The method is considered an environmentally friendly method with relatively low organic composition of the mobile phase. Methods: The chromatographic separation was performed using Phenomenex® Onyex Monolithic C18 (50mmx 20mm) column. An elution program of mobile phase consisted of 0.5% aqueous phosphoric acid : methanol (85:15, v/v). Where elution of all drugs was completed within 3.5 min with 1µL injection volume. The UHPLC method was applied for the stability indication of NOR in the presence of its acid degradation product ND. Results: Retention times were 0.69, 1.19 and 3.23 min for MET, TNZ and NOR, respectively. While ND retention time was 1.06 min. Linearity, accuracy, and precision were acceptable over the concentration range of 5-50µg mL-1for all drugs. Conclusions: The method is simple, sensitive and suitable for the routine quality control and dosage form assay of the three drugs and can also be used for the stability indication of NOR in the presence of its acid degradation product.

Keywords: antibacterial, monolithic cilumn, simultaneous determination, UHPLC

Procedia PDF Downloads 233
1633 Retro-Reflectivity and Diffuse Reflectivity Degradation of Thermoplastic Pavement Marking: A Case Study on Asphaltic Road in Thailand

Authors: Kittichai Thanasupsin, Satis Sukniam

Abstract:

Pavement marking is an essential task of road construction and maintenance. One of several benefits of pavement markings has been used to provide information about road alignment and road conditions ahead. In some cases, retro-reflectivity of road marking at night may not meet the standard. This degradation may be caused by internal factors such as the size of glass beads and the number of glass beads or external factors such as traffic volume, lane width, vehicle weight, and so on. This research aims to investigate the reflective efficiency of thermoplastic road marking with the glass beads. Ratios of glass beads, ranging from 359 to 553 grams per square meter on an asphaltic concrete, have been tested. The reflective efficiency data was collected at the beginning and at a specific time interval for a total of 8 months. It was found that the difference in glass beads quantity affects the rate of retro-reflectivity but does not affect the diffuse reflectivity. It was also found that other factors affect retro-reflectivity, such as duration, the position of road marking, traffic density, the quantity of glass beads, and dirt coating on top. The dirt coating on top is the most crucial factor that deteriorating retro-reflectivity.

Keywords: thermoplastic pavement marking, retro-reflectivity, diffuse reflectivity, asphalt concrete

Procedia PDF Downloads 116
1632 Integrated Coastal Management for the Sustainable Development of Coastal Cities: The Case of El-Mina, Tripoli, Lebanon

Authors: G. Ghamrawi, Y. Abunnasr, M. Fawaz, S. Yazigi

Abstract:

Coastal cities are constantly exposed to environmental degradation and economic regression fueled by rapid and uncontrolled urban growth as well as continuous resource depletion. This is the case of the City of Mina in Tripoli (Lebanon), where lack of awareness to preserve social, ecological, and historical assets, coupled with the increasing development pressures, are threatening the socioeconomic status of the city residents, the quality of life and accessibility to the coast. To address these challenges, a holistic coastal urban design and planning approach was developed to analyze the environmental, political, legal, and socioeconomic context of the city. This approach aims to investigate the potential of balancing urban development with the protection and enhancement of cultural, ecological, and environmental assets under an integrated coastal zone management approach (ICZM). The analysis of Mina's different sectors adopted several tools that include direct field observation, interviews with stakeholders, analysis of available data, historical maps, and previously proposed projects. The findings from the analysis were mapped and graphically represented, allowing the recognition of character zones that become the design intervention units. Consequently, the thesis proposes an urban, city-scale intervention that identifies 6 different character zones (the historical fishing port, Abdul Wahab island, the abandoned Port Said, Hammam el Makloub, the sand beach, and the new developable area) and proposes context-specific design interventions that capitalize on the main characteristics of each zone. Moreover, the intervention builds on the institutional framework of ICZM as well as other studies previously conducted for the coast and adopts nature-based solutions with hybrid systems for providing better environmental design solutions for developing the coast. This enables the realization of an all-inclusive, well-connected shoreline with easy and free access towards the sea; a developed shoreline with an active local economy, and an improved urban environment.

Keywords: blue green infrastructure, coastal cities, hybrid solutions, integrated coastal zone management, sustainable development, urban planning

Procedia PDF Downloads 133
1631 Two-Protein Modified Gold Nanoparticles for Serological Diagnosis of Borreliosis

Authors: Mohammed Alasel, Michael Keusgen

Abstract:

Gold is a noble metal; in its nano-scale level (e.g. spherical nanoparticles), the conduction electrons are triggered to collectively oscillate with a resonant frequency when certain wavelengths of electromagnetic radiation interact with its surface; this phenomenon is known as surface plasmon resonance (SPR). SPR is responsible for giving the gold nanoparticles its intense red color depending mainly on its size, shape and distance between nanoparticles. A decreased distance between gold nanoparticles results in aggregation of them causing a change in color from red to blue. This aggregation enables gold nanoparticles to serve as a sensitive biosensoric indicator. In the proposed work, gold nanoparticles were modified with two proteins: i) Borrelia antigen, variable lipoprotein surface-exposed protein (VlsE), and ii) protein A. VlsE antigen induces a strong antibody response against Lyme disease and can be detected from early to late phase during the disease in humans infected with Borrelia. In addition, it shows low cross-reaction with the other non-pathogenic Borrelia strains. The high specificity of VlsE antigen to anti-Borrelia antibodies, combined simultaneously with the high specificity of protein A to the Fc region of all IgG human antibodies, was utilized to develop a rapid test for serological point of care diagnosis of borreliosis in human serum. Only in the presence of anti-Borrelia antibodies in the serum probe, an aggregation of gold nanoparticles can be observed, which is visible by a concentration-dependent colour shift from red (low IgG) to blue (high IgG). Experiments showed it is clearly possible to distinguish between positive and negative sera samples using a simple suspension of the two-protein modified gold nanoparticles in a very short time (30 minutes). The proposed work showed the potential of using such modified gold nanoparticles generally for serological diagnosis. Improved specificity and reduced assay time can be archived in applying increased salt concentrations combined with decreased pH values (pH 5).

Keywords: gold nanoparticles, gold aggregation, serological diagnosis, protein A, lyme borreliosis

Procedia PDF Downloads 374
1630 NanoCelle®: A Nano Delivery Platform to Enhance Medicine

Authors: Sean Hall

Abstract:

Nanosystems for drug delivery are not new; as medicines evolve, so too does the desire to deliver a more targeted, patient-compliant medicine. Though, historically the widespread use of nanosystems for drug delivery has been fouled by non-replicability, scalability, toxicity issues, and economics. Examples include steps of manufacture and thus cost to manufacture, toxicity for nanoparticle scaffolding, autoimmune response, and considerable technical expertise for small non-commercial yields. This, unfortunately, demonstrates the not-so-obvious chasm between science and drug formulation for regulatory approval. Regardless there is a general and global desire to improve the delivery of medicines, reduce potential side effect profiles, promote increased patient compliance, and increase and/or speed public access to medicine availability. In this paper, the author will discuss NanoCelle®, a nano-delivery platform that specifically addresses degradation and solubility issues that expands from fundamental micellar preparations. NanoCelle® has been deployed in several Australian listed medicines and is in use of several drug candidates across small molecules, with research endeavors now extending into large molecules. The author will discuss several research initiatives as they relate to NanoCelle® to demonstrate similarities seen in various drug substances; these examples will include both in vitro and in vivo work.

Keywords: NanoCelle®, micellar, degradation, solubility, toxicity

Procedia PDF Downloads 163
1629 Development and Management of Integrated Mineral Resource Policy for Environmental Sustainability: The Mindanao Experience, the Philippines

Authors: Davidson E. Egirani, Nanfe R. Poyi, Napoleon Wessey

Abstract:

This paper would report the environmental challenges faced by stakeholders in the development and management of mineral resources in Mindanao mining region of the Philippines. The paper would proffer solutions via the development and management of integrated mineral resource framework. This is by interfacing the views of government, operating mining companies and the mining host communities. The project methods involved the desktop review of existing local, regional, national environmental and mining legislation. This was followed up with visits to mining sites and discussions were held with stakeholders in the mineral sector. The findings from a 2-year investigation would reveal lack of information, education, and communication campaign by stakeholders on environmental, health, political, and social issues in the mining industry. Small-scale miners lack the professional muscles for a balance shift of emphasis to sustainable and responsible mining to avoid environmental degradation and human health effect. Therefore, there is a need to balance ecological requirements, sustainability of the environment and development of mineral resources. This paper would provide an environmentally friendly mineral resource development framework.

Keywords: ecological requirements, environmental degradation, human health, mining legislation, responsible mining

Procedia PDF Downloads 110
1628 A Data Driven Approach for the Degradation of a Lithium-Ion Battery Based on Accelerated Life Test

Authors: Alyaa M. Younes, Nermine Harraz, Mohammad H. Elwany

Abstract:

Lithium ion batteries are currently used for many applications including satellites, electric vehicles and mobile electronics. Their ability to store relatively large amount of energy in a limited space make them most appropriate for critical applications. Evaluation of the life of these batteries and their reliability becomes crucial to the systems they support. Reliability of Li-Ion batteries has been mainly considered based on its lifetime. However, another important factor that can be considered critical in many applications such as in electric vehicles is the cycle duration. The present work presents the results of an experimental investigation on the degradation behavior of a Laptop Li-ion battery (type TKV2V) and the effect of applied load on the battery cycle time. The reliability was evaluated using an accelerated life test. Least squares linear regression with median rank estimation was used to estimate the Weibull distribution parameters needed for the reliability functions estimation. The probability density function, failure rate and reliability function under each of the applied loads were evaluated and compared. An inverse power model is introduced that can predict cycle time at any stress level given.

Keywords: accelerated life test, inverse power law, lithium-ion battery, reliability evaluation, Weibull distribution

Procedia PDF Downloads 152
1627 Quality Assessment of the Essential Oil from Eucalyptus globulus Labill of Blida (Algeria) Origin

Authors: M. A. Ferhat, M. N. Boukhatem, F. Chemat

Abstract:

Eucalyptus essential oil is extracted from Eucalyptus globulus of the Myrtaceae family and is also known as Tasmanian blue gum or blue gum. Despite the reputation earned by aromatic and medicinal plants of Algeria. The objectives of this study were: (i) the extraction of the essential oil from the leaves of Eucalyptus globulus Labill., Myrtaceae grown in Algeria, and the quantification of the yield thereof, (ii) the identification and quantification of the compounds in the essential oil obtained, and (iii) the determination of physical and chemical properties of EGEO. The chemical constituents of Eucalyptus globulus essential oil (EGEO) of Blida origin has not previously been investigated. Thus, the present study has been conducted for the determination of chemical constituents and different physico-chemical properties of the EGEO. Chemical composition of the EGEO, grown in Algeria, was analysed by Gas Chromatography-Mass Spectrometry. The chemical components were identified on the basis of Retention Time and comparing with mass spectral database of standard compounds. Relative amounts of detected compounds were calculated on the basis of GC peak areas. Fresh leaves of E. globulus on steam distillation yielded 0.96% (v/w) of essential oil whereas the analysis resulted in the identification of a total of 11 constituents, 1.8 cineole (85.8%), α-pinene (7.2%), and β-myrcene (1.5%) being the main components. Other notable compounds identified in the oil were β-pinene, limonene, α-phellandrene, γ-terpinene, linalool, pinocarveol, terpinen-4-ol, and α-terpineol. The physical properties such as specific gravity, refractive index and optical rotation and the chemical properties such as saponification value, acid number and iodine number of the EGEO were examined. The oil extracted has been analyzed to have 1.4602-1.4623 refractive index value, 0.918-0.919 specific gravity (sp.gr.), +9 - +10 optical rotation that satisfy the standards stipulated by European Pharmacopeia. All the physical and chemical parameters were in the range indicated by the ISO standards. Our findings will help to access the quality of the Eucalyptus oil which is important in the production of high value essential oils that will help to improve the economic condition of the community as well as the nation.

Keywords: chemical composition, essential oil, eucalyptol, gas chromatography

Procedia PDF Downloads 299
1626 Impact of Natural Degradation of Low Density Polyethylene on Its Morphology

Authors: Meryem Imane Babaghayou, Asma Abdelhafidi, Salem Fouad Chabira, Mohammed Sebaa

Abstract:

A challenge of plastics industries is the realization of materials that resist the degradation in its application environment, and that to guarantee a longer life time therefore an optimal time of use. Blown extruded films of low-density polyethylene (LDPE) supplied by SABIC SAUDI ARABIA blown and extruded in SOFIPLAST company in Setif ALGERIA , have been subjected to climatic ageing in a sub-Saharan facility at Laghouat (Algeria) with direct exposure to sun. Samples were characterized by X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques after prescribed amounts of time up to 8 months. It has been shown via these two techniques the impact of UV irradiation on the morphological development of a plastic material, especially the crystallinity degree which increases with exposure time. The reason of these morphological changes is related to photooxidative reactions leading to cross linking in the beginning and to chain scissions for an advanced stage of ageing this last ones are the first responsible. The crystallinity degree change is essentially controlled by the secondary crystallization of the amorphous chains whose mobility is enhanced by the chain scission processes. The diffusion of these short segments integrates the surface of the lamellae increasing in this way their thicknesses. The results presented highlight the complexity of the involved phenomena.

Keywords: Low Density poly (Ethylene), crystallinity, ageing, XRD, DSC

Procedia PDF Downloads 389
1625 Degradation of the Cu-DOM Complex by Bacteria: A Way to Increase Phytoextraction of Copper in a Vineyard Soil

Authors: Justine Garraud, Hervé Capiaux, Cécile Le Guern, Pierre Gaudin, Clémentine Lapie, Samuel Chaffron, Erwan Delage, Thierry Lebeau

Abstract:

The repeated use of Bordeaux mixture (copper sulphate) and other chemical forms of copper (Cu) has led to its accumulation in wine-growing soils for more than a century, to the point of modifying the ecosystem of these soils. Phytoextraction of copper could progressively reduce the Cu load in these soils, and even to recycle copper (e.g. as a micronutrient in animal nutrition) by cultivating the extracting plants in the inter-row of the vineyards. Soil cleaning up usually requires several years because the chemical speciation of Cu in solution is mainly based on forms complexed with dissolved organic matter (DOM) that are not phytoavailable, unlike the "free" forms (Cu2+). Indeed, more than 98% of Cu in the solution is bound to DOM. The selection and inoculation of invineyardsoils in vineyard soils ofbacteria(bioaugmentation) able to degrade Cu-DOM complexes could increase the phytoavailable pool of Cu2+ in the soil solution (in addition to bacteria which first mobilize Cu in solution from the soil bearing phases) in order to increase phytoextraction performance. In this study, sevenCu-accumulating plants potentially usable in inter-row were tested for their Cu phytoextraction capacity in hydroponics (ray-grass, brown mustard, buckwheat, hemp, sunflower, oats, and chicory). Also, a bacterial consortium was tested: Pseudomonas sp. previously studied for its ability to mobilize Cu through the pyoverdine siderophore (complexing agent) and potentially to degrade Cu-DOM complexes, and a second bacterium (to be selected) able to promote the survival of Pseudomonas sp. following its inoculation in soil. Interaction network method was used based on the notions of co-occurrence and, therefore, of bacterial abundance found in the same soils. Bacteria from the EcoVitiSol project (Alsace, France) were targeted. The final step consisted of incoupling the bacterial consortium with the chosen plant in soil pots. The degradation of Cu-DOMcomplexes is measured on the basis of the absorption index at 254nm, which gives insight on the aromaticity of the DOM. The“free” Cu in solution (from the mobilization of Cu and/or the degradation of Cu-MOD complexes) is assessed by measuring pCu. Eventually, Cu accumulation in plants is measured by ICP-AES. The selection of the plant is currently being finalized. The interaction network method targeted the best positive interactions ofFlavobacterium sp. with Pseudomonassp. These bacteria are both PGPR (plant growth promoting rhizobacteria) with the ability to improve the plant growth and to mobilize Cu from the soil bearing phases (siderophores). Also, these bacteria are known to degrade phenolic groups, which are highly present in DOM. They could therefore contribute to the degradation of DOM-Cu. The results of the upcoming bacteria-plant coupling tests in pots will be also presented.

Keywords: complexes Cu-DOM, bioaugmentation, phytoavailability, phytoextraction

Procedia PDF Downloads 66
1624 The Torah Scroll of the National Library of the Kingdom of Morocco: Parchment Support and Black Ink Analytical Study

Authors: Oubelkacem Yacine, El Bast Hassan, El Bakkali Abdelmajid, Lamhasni Taibi, Ettakni Mahmoud, Ait Lyazidi Saadia, Haddad Mustapha, Ben-Ncer Abdelouahed, El Ferrane Mohammed, Boufarra Abdelkrim

Abstract:

The present work relates to an on-site and completely non-invasive investigation of one of the most famous west Mediterranean Torah Scroll housed at the National Library of the Kingdom of Morocco. The scroll is 26 m long and consists of 143 parchment sheets of 59 cm x 19 cm, exhibiting only black writings; it is of unknown age. The artifact has been restored by the curator staff of the library. The investigation exploring separately the parchment support and the writing black ink aims at: i) the examination of the parchment conservation/degradation state, ii) the identification of the black ink and iii) the identification of the parchment handcrafting materials. For this purpose, the analyses have been based on combining all of elemental XRF and structural Raman, ATR-FT Infrared Red and Fiber Optical Reflectance spectroscopies, in addition to chroma-metric and pH measurements. pH measurements showing values around 6.5 are in concordance with the absence of any visual corrosion related to the parchment acidity. However, on the basis of the relative intensities and frequency shift of amid I (AI) and amid II (AII) vibrational bands of the collagen, ATR-FTIR spectra revealed diffuse hydrolysis and gelatinization of the parchment writing support; diffuse and non-homogeny degradation by gelatinization has been also confirmed by the IG gelatinization index deduced from the NIR bands on the FOR spectra. This IG index, defined as the ratio I (6860 cm-1) / I (6685 cm-1), ranges in the interval 0.98 – 1 and highlights collagen degradation at the molecular level. Sequentially Shifted Excitation Raman measurements (SSERS) crossed to X-ray fluorescence (XRF) ones on the black writings revealed that the black ink used is an iron-copper gall one, while FOR spectra are typical of pure metal gall inks. These later reflectance measurements exclude, thus, any intentional addition of carbon black to the ink recipe. Moreover, no lead white had been used while pre-drawing the writing lines. On another side, ATR-FTIR measurements highlighted the presence of oxalates as ink degradation products. Considering the parchment handcrafting, the combination of XRF and ATR-FTIR measurements led to the assumption that this writing support had been prepared according to ancient Middle East practices; the parchment infrared fingerprint seems identical to that of the Dead Sea scroll. The present multi-technical analyses are the first ones performed on an ancient Judaic written parchment of Morocco; it is under furthering. The investigation will be extended to other parchments belonging to the Jewish Cultural Heritage Museum of Morocco in Casablanca.

Keywords: torah scroll, parchment, black ink, non-invasive analyses, XRF/ATR-FTIR/RAMAN/FORS

Procedia PDF Downloads 70
1623 Effect of Different Sterilization Processes on Drug Loaded Silicone-Hydrogel

Authors: Raquel Galante, Marina Braga, Daniela Ghisleni, Terezinha J. A. Pinto, Rogério Colaço, Ana Paula Serro

Abstract:

The sensitive nature of soft biomaterials, such as hydrogels, renders their sterilization a particularly challenging task for the biomedical industry. Widely used contact lenses are now studied as promising platforms for topical corneal drug delivery. However, to the best of the authors knowledge, the influence of sterilization methods on these systems has yet to be evaluated. The main goal of this study was to understand how different pairs drug-hydrogel would interact under an ozone-based sterilization method in comparison with two conventional processes (steam heat and gamma irradiation). For that, Si-Hy containing hydroxylethyl methacrylate (HEMA) and [tris(trimethylsiloxy)silyl]propyl methacrylate (TRIS) was produced and soaked in different drug solutions, commonly used for the treatment of ocular diseases (levofloxacin, chlorhexidine, diclofenac and timolol maleate). The drug release profiles and main material properties were evaluated before and after the sterilization. Namely, swelling capacity was determined by water uptake studies, transparency was accessed by UV-Vis spectroscopy, surface topography/morphology by scanning electron microscopy (SEM) and mechanical properties by performing tensile tests. The drug released was quantified by high performance liquid chromatography (HPLC). The effectiveness of the sterilization procedures was assured by performing sterility tests. Ozone gas method led to a significant reduction of drug released and to the formation of degradation products specially for diclofenac and levofloxacin. Gamma irradiation led to darkening of the loaded Si-Hys and to the complete degradation of levofloxacin. Steam heat led to smoother surfaces and to a decrease of the amount of drug released, however, with no formation of degradation products. This difference in the total drug released could be the related to drug/polymer interactions promoted by the sterilization conditions in presence of the drug. Our findings offer important insights that, in turn, could be a useful contribution to the safe development of actual products.

Keywords: drug delivery, silicone hydrogels, sterilization, gamma irradiation, steam heat, ozone gas

Procedia PDF Downloads 292
1622 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application

Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb

Abstract:

This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/ Poly (ethylene-co vinyl acetate)(EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nano composite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25 oC) and (480 ± 25 oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1 oC) and captured double melting point at 84 (±2 oC) and 108 (±2 oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.

Keywords: thermal properties, nano MH, nano particles, cable and wire, LDPE/EVA

Procedia PDF Downloads 437
1621 An Ecosystem Approach to Natural Resource Management: Case Study of the Topčiderska River, Serbia

Authors: Katarina Lazarević, Mirjana Todosijević, Tijana Vulević, Natalija Momirović, Ranka Erić

Abstract:

Due to increasing demand, climate change, and world population growth, natural resources are getting exploit fast. One of the most important natural resources is soil, which is susceptible to degradation. Erosion as one of the forms of land degradation is also one of the most global environmental problems. Ecosystem services are often defined as benefits that nature provides to humankind. Soil, as the foundation of basic ecosystem functions, provides benefits to people, erosion control, water infiltration, food, fuel, fibers… This research is using the ecosystem approach as a strategy for natural resources management for promoting sustainability and conservation. The research was done on the Topčiderska River basin (Belgrade, Serbia). The InVEST Sediment Delivery Ratio model was used, to quantify erosion intensity with a spatial distribution output map of overland sediment generation and delivery to the stream. InVEST SDR, a spatially explicit model, is using a method based on the concept of hydrological connectivity and (R) USLE model. This, combined with socio-economic and law and policy analysis, gives a full set of information to decision-makers helping them to successfully manage and deliver sustainable ecosystems.

Keywords: ecosystem services, InVEST model, soil erosion, sustainability

Procedia PDF Downloads 121
1620 The Effect of Elapsed Time on the Cardiac Troponin-T Degradation and Its Utility as a Time Since Death Marker in Cases of Death Due to Burn

Authors: Sachil Kumar, Anoop K.Verma, Uma Shankar Singh

Abstract:

It’s extremely important to study postmortem interval in different causes of death since it assists in a great way in making an opinion on the exact cause of death following such incident often times. With diligent knowledge of the interval one could really say as an expert that the cause of death is not feigned hence there is a great need in evaluating such death to have been at the CRIME SCENE before performing an autopsy on such body. The approach described here is based on analyzing the degradation or proteolysis of a cardiac protein in cases of deaths due to burn as a marker of time since death. Cardiac tissue samples were collected from (n=6) medico-legal autopsies, (Department of Forensic Medicine and Toxicology), King George’s Medical University, Lucknow India, after informed consent from the relatives and studied post-mortem degradation by incubation of the cardiac tissue at room temperature (20±2 OC) for different time periods (~7.30, 18.20, 30.30, 41.20, 41.40, 54.30, 65.20, and 88.40 Hours). The cases included were the subjects of burn without any prior history of disease who died in the hospital and their exact time of death was known. The analysis involved extraction of the protein, separation by denaturing gel electrophoresis (SDS-PAGE) and visualization by Western blot using cTnT specific monoclonal antibodies. The area of the bands within a lane was quantified by scanning and digitizing the image using Gel Doc. As time postmortem progresses the intact cTnT band degrades to fragments that are easily detected by the monoclonal antibodies. A decreasing trend in the level of cTnT (% of intact) was found as the PM hours increased. A significant difference was observed between <15 h and other PM hours (p<0.01). Significant difference in cTnT level (% of intact) was also observed between 16-25 h and 56-65 h & >75 h (p<0.01). Western blot data clearly showed the intact protein at 42 kDa, three major (28 kDa, 30kDa, 10kDa) fragments, three additional minor fragments (12 kDa, 14kDa, and 15 kDa) and formation of low molecular weight fragments. Overall, both PMI and cardiac tissue of burned corpse had a statistically significant effect where the greatest amount of protein breakdown was observed within the first 41.40 Hrs and after it intact protein slowly disappears. If the percent intact cTnT is calculated from the total area integrated within a Western blot lane, then the percent intact cTnT shows a pseudo-first order relationship when plotted against the time postmortem. A strong significant positive correlation was found between cTnT and PM hours (r=0.87, p=0.0001). The regression analysis showed a good variability explained (R2=0.768) The post-mortem Troponin-T fragmentation observed in this study reveals a sequential, time-dependent process with the potential for use as a predictor of PMI in cases of burning.

Keywords: burn, degradation, postmortem interval, troponin-T

Procedia PDF Downloads 429
1619 Preparation and Characterisation of Electrospun Extracted β-Chitosan/Poly(Vinyl Alcohol) Blend Nanofibers for Tissue Engineering

Authors: E. Roshan Ara Begum, K. Bhavani, K. Subachitra, C. Kirthika, R. Shenbagarathai

Abstract:

In recent years, there has been a growing concern for the production of chitosan blend nanofibrous scaffold for its favorable physicochemical properties which mimic the native extracellular matrix (ECM) both morphologically and chemically. Therefore, this study focused on production of β-chitosan(β-Cts) and Poly(vinyl alcohol)(PVA) blend nanofibrous scaffold by electrospinning. β-Cts was extracted from the squid pen waste of locally available squid variety Loligo duvauceli (Indian Squid). To the best of our knowledge, there are no reports on nanofibers preparation from the extracted β-Cts. Both the β-Cts and PVA polymers were mixed in two different proportions (30:70 and 40:60 respectively. The electrospun nanofibrous scaffolds were characterized by SEM, swelling property, in vitro enzymatic degradation, and hemo, biocompatibility properties. β-Cts/PVA nanofibers scaffolds had an average fiber diameter of 120 to 550nm.Among the two different β-Cts/PVA blends nanofibers the β-Cts/PVA (40:60) blend fibers demonstrated favourable tissue engineering properties. The β-Cts/PVA (40:60) blend nanofibers exhibited a swelling ratio of 36 ± 2.5% with mass loss percentage of 20 ± 2.71% after 4 weeks of degradation. It has exhibited good hemocompatible properties. HEK-293(Human Embryonic Kidney) cells lines were able to adhere and proliferate well in the β-Cts/PVA blends nanofibers. All these results indicated that electrospun β-Cts/PVA blends nanofibers are a suitable scaffold to be used for tissue engineering purposes.

Keywords: β-chitosan, electrospinning, nanofibers, poly(vinyl alcohol) (PVA)

Procedia PDF Downloads 220
1618 A Study of Resin-Dye Fixation on Dyeing Properties of Cotton Fabrics Using Melamine Based Resins and a Reactive Dye

Authors: Nurudeen Ayeni, Kasali Bello, Ovi Abayeh

Abstract:

Study of the effect of dye–resin complexation on the degree of dye absorption were carried out using Procion Blue MX-R to dye cotton fabric in the presence hexamethylol melamine (MR 6) and its phosphate derivative (MPR 4) for resination. The highest degree of dye exhaustion was obtained at 400 C for 1 hour with the resinated fabric showing more affinity for the dye than the ordinary fiber. Improved fastness properties was recorded which show a relatively higher stability of dye–resin–cellulose network formed.

Keywords: cotton fabric, reactive dye, dyeing, resination

Procedia PDF Downloads 388
1617 Characterization of Biosurfactant during Crude Oil Biodegradation Employing Pseudomonas sp. PG1: A Strain Isolated from Garage Soil

Authors: Kaustuvmani Patowary, Suresh Deka

Abstract:

Oil pollution accidents, nowadays, have become a common phenomenon and have caused ecological and social disasters. Microorganisms with high oil-degrading performance are essential for bioremediation of petroleum hydrocarbon. In this investigation, an effective biosurfactant producer and hydrocarbon degrading bacterial strain, Pseudomonas sp.PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated garage soil of Pathsala, Assam, India, using crude oil enrichment technique. The growth parameters such as pH and temperature were optimized for the strain and upto 81.8% degradation of total petroleum hydrocarbon (TPH) has been achieved after 5 weeks when grown in mineral salt media (MSM) containing 2% (w/v) crude oil as the carbon source. The biosurfactant production during the course of hydrocarbon degradation was monitored by surface tension measurement and emulsification activity. The produced biosurfactant had the ability to decrease the surface tension of MSM from 72 mN/m to 29.6 mN/m, with the critical micelle concentration (CMC)of 56 mg/L. The biosurfactant exhibited 100% emulsification activity on crude oil. FTIR spectroscopy and LCMS-MS analysis of the purified biosurfactant revealed that the biosurfactant is Rhamnolipidic in nature with several rhamnolipid congeners. Gas Chromatography-Mass spectroscopy (GC-MS) analysis clearly demonstrated that the strain PG1 efficiently degrade different hydrocarbon fractions of the crude oil. The study suggeststhat application of the biosurfactant producing strain PG1 as an appropriate candidate for bioremediation of crude oil contaminants.

Keywords: petroleum hydrocarbon, hydrocarbon contamination, bioremediation, biosurfactant, rhamnolipid

Procedia PDF Downloads 334
1616 Method for Identification of Through Defects of Polymer Films Applied onto Metal Parts

Authors: Yu A. Pluttsova , O. V. Vakhnina , K. B. Zhogova

Abstract:

Nowadays, many devices operate under conditions of enhanced humidity, temperature drops, fog, and vibration. To ensure long-term and uninterruptable equipment operation under adverse conditions, one applies moisture-proof films on products and electronics components, which helps to prevent corrosion, short circuit, allowing a significant increase in device lifecycle. The reliability of such moisture-proof films is mainly determined by their coating uniformity without gaps and cracks. Unprotected product edges, as well as pores in films, can cause device failure during operation. The work objective was to develop an effective, affordable, and profit-proved method for determining the presence of through defects of protective polymer films on the surface of parts made of iron and its alloys. As a diagnostic reagent, one proposed water solution of potassium ferricyanide (III) in hydrochloric acid, this changes the color from yellow to blue according to the reactions; Feº → Fe²⁺ and 4Fe²⁺ + 3[Fe³⁺(CN)₆]³⁻ → Fe ³⁺4[Fe²⁺(CN)₆]₃. There was developed the principle scheme of technological process for determining the presence of polymer films through defects on the surface of parts made of iron and its alloys. There were studied solutions with different diagnostic reagent compositions in water: from 0,1 to 25 mass fractions, %, of potassium ferricyanide (III), and from 5 to 25 mass fractions, %, of hydrochloride acid. The optimal component ratio was chosen. The developed method consists in submerging a part covered with a film into a vessel with a diagnostic reagent. In the polymer film through defect zone, the part material (ferrum) interacts with potassium ferricyanide (III), the color changes to blue. Pilot samples were tested by the developed method for the presence of through defects in the moisture-proof coating. It was revealed that all the studied parts had through defects of the polymer film coating. Thus, the claimed method efficiently reveals polymer film coating through defects on parts made of iron or its alloys, being affordable and profit-proved.

Keywords: diagnostic reagent, metal parts, polimer films, through defects

Procedia PDF Downloads 135
1615 Analysis of Urban Slum: Case Study of Korail Slum, Dhaka

Authors: Sanjida Ahmed Sinthia

Abstract:

Bangladesh is one of the poorest countries in the world. There are several reasons for this insufficiency and uncontrolled population growth is one of the prime reasons. Others include low economic progress, imbalanced resource management, unemployment and underemployment, urban migration and natural catastrophes etc. As a result, the rate of urban poor is increasing inevitably in every sphere of urban cities in Bangladesh and Dhaka is the most affected one. Besides there is scarcity of urban land, housing, urban infrastructure and amenities which create pressure on urban cities and mostly encroach the open space, wetlands that causes environmental degradation. Government has no or limited control over these due to poor government policy and management, political pressure and lack of resource management. Unfortunately, over centralization and bureaucracy creates unnecessary delay and interruptions in any government initiations. There is also no coordination between government and private sector developer to solve the problem of urban Poor. To understand the problem of these huge populations this paper analyzes one of the single largest slum areas in Dhaka, Korail Slum. The study focuses on socio demographic analysis, morphological pattern and role of different actors responsible for the improvements of the area and recommended some possible steps for determining the potential outcomes.

Keywords: demographic analysis, environmental degradation, government policy, housing and land management policy

Procedia PDF Downloads 152
1614 Influence of Synergistic Modification with Tung Oil and Heat Treatment on Physicochemical Properties of Wood

Authors: Luxi He, Tianfang Zhang, Zhengbin He, Songlin Yi

Abstract:

Heat treatment has been widely recognized for its effectiveness in enhancing the physicochemical properties of wood, including hygroscopicity and dimensional stability. Nonetheless, the non-negligible volumetric shrinkage and loss of mechanical strength resulting from heat treatment may diminish the wood recovery and its product value. In this study, tung oil was used to alleviate heat-induced shrinkage and reduction in mechanical properties of wood during heat treatment. Tung oil was chosen as a modifier because it is a traditional Chinese plant oil that has been widely used for over a thousand years to protect wooden furniture and buildings due to its biodegradable and non-toxic properties. The effects of different heating media (air, tung oil) and their effective treatment parameters (temperature, duration) on the changes in the physical properties (morphological characteristics, pore structures, micromechanical properties), and chemical properties (chemical structures, chemical composition) of wood were investigated by using scanning electron microscopy, confocal laser scanning microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and dynamic vapor sorption. Meanwhile, the correlation between the mass changes and the color change, volumetric shrinkage, and hygroscopicity was also investigated. The results showed that the thermal degradation of wood cell wall components was the most important factor contributing to the changes in heat-induced shrinkage, color, and moisture adsorption of wood. In air-heat-treated wood samples, there was a significant correlation between mass change and heat-induced shrinkage, brightness, and moisture adsorption. However, the presence of impregnated tung oil in oil-heat-treated wood appears to disrupt these correlations among physical properties. The results of micromechanical properties demonstrated a significant decrease in elastic modulus following high-temperature heat treatment, which was mitigated by tung oil treatment. Chemical structure and compositional analyses indicated that the changes in chemical structure primarily stem from the degradation of hemicellulose and cellulose, and the presence of tung oil created an oxygen-insulating environment that slowed down this degradation process. Morphological observation results showed that tung oil permeated the wood structure and penetrated the cell walls through transportation channels, altering the micro-morphology of the cell wall surface, obstructing primary water passages (e.g., vessels and pits), and impeding the release of volatile degradation products as well as the infiltration and diffusion of water. In summary, tung oil treatment represents an environmentally friendly and efficient method for maximizing wood recovery and increasing product value. This approach holds significant potential for industrial applications in wood heat treatment.

Keywords: tung oil, heat treatment, physicochemical properties, wood cell walls

Procedia PDF Downloads 55
1613 Development of Lipid Architectonics for Improving Efficacy and Ameliorating the Oral Bioavailability of Elvitegravir

Authors: Bushra Nabi, Saleha Rehman, Sanjula Baboota, Javed Ali

Abstract:

Aim: The objective of research undertaken is analytical method validation (HPLC method) of an anti-HIV drug Elvitegravir (EVG). Additionally carrying out the forced degradation studies of the drug under different stress conditions to determine its stability. It is envisaged in order to determine the suitable technique for drug estimation, which would be employed in further research. Furthermore, comparative pharmacokinetic profile of the drug from lipid architectonics and drug suspension would be obtained post oral administration. Method: Lipid Architectonics (LA) of EVR was formulated using probe sonication technique and optimized using QbD (Box-Behnken design). For the estimation of drug during further analysis HPLC method has been validation on the parameters (Linearity, Precision, Accuracy, Robustness) and Limit of Detection (LOD) and Limit of Quantification (LOQ) has been determined. Furthermore, HPLC quantification of forced degradation studies was carried out under different stress conditions (acid induced, base induced, oxidative, photolytic and thermal). For pharmacokinetic (PK) study, Albino Wistar rats were used weighing between 200-250g. Different formulations were given per oral route, and blood was collected at designated time intervals. A plasma concentration profile over time was plotted from which the following parameters were determined:

Keywords: AIDS, Elvitegravir, HPLC, nanostructured lipid carriers, pharmacokinetics

Procedia PDF Downloads 125
1612 Managing the Blue Economy and Responding to the Environmental Dimensions of a Transnational Governance Challenge

Authors: Ivy Chen XQ

Abstract:

This research places a much-needed focus on the conservation of the Blue Economy (BE) by focusing on the design and development of monitoring systems to track critical indicators on the status of the BE. In this process, local experiences provide an insight into important community issues, as well as the necessity to cooperate and collaborate in order to achieve sustainable options. Researchers worldwide and industry initiatives over the last decade show that the exploitation of marine resources has resulted in a significant decrease in the share of total allowable catch (TAC). The result has been strengthening law enforcement, yet the results have shown that problems were related to poor policies, a lack of understanding of over-exploitation, biological uncertainty and political pressures. This reality and other statistics that show a significant negative impact on the attainment of the Sustainable Development Goals (SDGs), warrant an emphasis on the development of national M&E systems, in order to provide evidence-based information, on the nature and scale of especially transnational fisheries crime and under-sea marine resources in the BE. In particular, a need exists to establish a compendium of relevant BE indicators to assess such impact against the SDGs by using selected SDG indicators for this purpose. The research methodology consists of ATLAS.ti qualitative approach and a case study will be developed of Illegal, unregulated and unreported (IUU) poaching and Illegal Wildlife Trade (IWT) as component of the BE as it relates to the case of abalone in southern Africa and Far East. This research project will make an original contribution through the analysis and comparative assessment of available indicators, in the design process of M&E systems and developing indicators and monitoring frameworks in order to track critical trends and tendencies on the status of the BE, to ensure specific objectives to be aligned with the indicators of the SDGs framework. The research will provide a set of recommendations to governments and stakeholders involved in such projects on lessons learned, as well as priorities for future research. The research findings will enable scholars, civil society institutions, donors and public servants, to understand the capability of the M&E systems, the importance of showing multi-level governance, in the coordination of information management, together with knowledge management (KM) and M&E at the international, regional, national and local levels. This coordination should focus on a sustainable development management approach, based on addressing socio-economic challenges to the potential and sustainability of BE, with an emphasis on ecosystem resilience, social equity and resource efficiency. This research and study focus are timely as the opportunities of the post-Covid-19 crisis recovery package will be grasped to set the economy on a path to sustainable development in line with the UN 2030 Agenda. The pandemic raises more awareness for the world to eliminate IUU poaching and illegal wildlife trade (IWT).

Keywords: Blue Economy (BE), transnational governance, Monitoring and Evaluation (M&E), Sustainable Development Goals (SDGs).

Procedia PDF Downloads 160
1611 Predicting Long-Term Performance of Concrete under Sulfate Attack

Authors: Elakneswaran Yogarajah, Toyoharu Nawa, Eiji Owaki

Abstract:

Cement-based materials have been using in various reinforced concrete structural components as well as in nuclear waste repositories. The sulfate attack has been an environmental issue for cement-based materials exposed to sulfate bearing groundwater or soils, and it plays an important role in the durability of concrete structures. The reaction between penetrating sulfate ions and cement hydrates can result in swelling, spalling and cracking of cement matrix in concrete. These processes induce a reduction of mechanical properties and a decrease of service life of an affected structure. It has been identified that the precipitation of secondary sulfate bearing phases such as ettringite, gypsum, and thaumasite can cause the damage. Furthermore, crystallization of soluble salts such as sodium sulfate crystals induces degradation due to formation and phase changes. Crystallization of mirabilite (Na₂SO₄:10H₂O) and thenardite (Na₂SO₄) or their phase changes (mirabilite to thenardite or vice versa) due to temperature or sodium sulfate concentration do not involve any chemical interaction with cement hydrates. Over the past couple of decades, an intensive work has been carried out on sulfate attack in cement-based materials. However, there are several uncertainties still exist regarding the mechanism for the damage of concrete in sulfate environments. In this study, modelling work has been conducted to investigate the chemical degradation of cementitious materials in various sulfate environments. Both internal and external sulfate attack are considered for the simulation. In the internal sulfate attack, hydrate assemblage and pore solution chemistry of co-hydrating Portland cement (PC) and slag mixing with sodium sulfate solution are calculated to determine the degradation of the PC and slag-blended cementitious materials. Pitzer interactions coefficients were used to calculate the activity coefficients of solution chemistry at high ionic strength. The deterioration mechanism of co-hydrating cementitious materials with 25% of Na₂SO₄ by weight is the formation of mirabilite crystals and ettringite. Their formation strongly depends on sodium sulfate concentration and temperature. For the external sulfate attack, the deterioration of various types of cementitious materials under external sulfate ingress is simulated through reactive transport model. The reactive transport model is verified with experimental data in terms of phase assemblage of various cementitious materials with spatial distribution for different sulfate solution. Finally, the reactive transport model is used to predict the long-term performance of cementitious materials exposed to 10% of Na₂SO₄ for 1000 years. The dissolution of cement hydrates and secondary formation of sulfate-bearing products mainly ettringite are the dominant degradation mechanisms, but not the sodium sulfate crystallization.

Keywords: thermodynamic calculations, reactive transport, radioactive waste disposal, PHREEQC

Procedia PDF Downloads 145
1610 The Effects of Land Use Types to Determine the Status of Sustainable River

Authors: Michael Louis Sunaris, Robby Yussac Tallar

Abstract:

The concept of sustainable river is evolving in Indonesia today. Many rivers condition in Indonesia have decreased by quality and quantity. The degradation of this condition is caused by rapid land use change as a result of increased population growth and human activity. It brings the degradation of the existing watersheds including some types of land use that an important factor in determining the status of river sustainability. Therefore, an evaluation method is required to determine the sustainability status of waterbody within watershed. The purpose of this study is to analyze various types of land use in determining the status of river sustainability. This study takes the watersheds of Citarum Upstream as a study area. The results of the analysis prove the index of sustainability status of the river that changes from good to bad or average in the rivers in the study area. The rapid and uncontrolled changes of land use especially in the upper watersheds area are the main causes that happened over time. It was indicated that the cumulative runoff coefficients were increased significantly. These situations indicated that the damage of watersheds has an impact on the water surplus or deficit problem yearly. Therefore, the rivers in Indonesia should be protected and conserved. The sustainability index of the rivers is an index to indicate the condition of watersheds by defining status of rivers in order to achieve sustainable water resource management.

Keywords: land use change, runoff coefficient, a simple index, sustainable river

Procedia PDF Downloads 133
1609 The Isolation of Enterobacter Ludwigii Strain T976 from Nicotiana Tabacum L. Yunyan 97 and Its Application Study

Authors: Gao Qin, Hu Liwei, Dong Xiangzhou, Zhu Qifa, Cheng Tingming, Zhao Limei, Yang Mengmeng, Zhai Zhen, Dai Huaxin, Liang Taibo, Zhang Shixiang, Xue Chaoqun

Abstract:

The functional strain T976 for starch degradation was isolated from Nicotiana tabacum L. Yunyan 97 tobacco leaves, the ratio of starch hydrolysis transparent circle diameter to colony diameter of the strain was 4.14, 16S rDNA sequencing identified these strains as Enterobacter ludwigii. Then Enterobacter ludwigii T976 was fermented and spaying Yunyan 97 plant in vigorous growing stage. The results of once spraying fermentation broth of Enterobacter ludwigii T976 showed that starch content of upper leaves decreased slightly, from 3.77% to 3.1%, the reducing sugar content increased from 4.39% to 5.53%, and the total sugar content increased from 5.82% to 7.39%. The chemical content was also checked after three time spraying. The starch content of middle leaves decreased from 5.63% to 3.74%, while the content of total sugar and reducing sugar decreased slightly. And the starch content of upper leaves decreased from 7.62% to 4.78%, the total sugar and reducing sugar decreased slightly, and starch content of middle leaf decreased from 6.27% to 3.62%, the total sugar and reducing sugar did not change much, and other chemical components were in a suitable range.

Keywords: nicotiana tabacum, yunyan 97, leaf, starch, degradation, enterobacter ludwigii

Procedia PDF Downloads 31
1608 Improved Visible Light Activities for Degrading Pollutants on ZnO-TiO2 Nanocomposites Decorated with C and Fe Nanoparticles

Authors: Yuvraj S. Malghe, Atul B. Lavand

Abstract:

In recent years, semiconductor photocatalytic degradation processes have attracted a lot of attention and are used widely for the destruction of organic pollutants present in waste water. Among various semiconductors, titanium dioxide (TiO2) is the most popular photocatalyst due to its excellent chemical stability, non-toxicity, relatively low cost and high photo-oxidation power. It has been known that zinc oxide (ZnO) with band gap energy 3.2 eV is a suitable alternative to TiO2 due to its high quantum efficiency, however it corrodes in acidic medium. Unfortunately TiO2 and ZnO both are active only in UV light due to their wide band gaps. Sunlight consist about 5-7% UV light, 46% visible light and 47% infrared radiation. In order to utilize major portion of sunlight (visible spectrum), it is necessary to modify the band gap of TiO2 as well as ZnO. This can be done by several ways such as semiconductor coupling, doping the material with metals/non metals. Doping of TiO2 using transition metals like Fe, Co and non-metals such as N, C or S extends its absorption wavelengths from UV to visible region. In the present work, we have synthesized ZnO-TiO2 nanocomposite using reverse microemulsion method. Visible light photocatalytic activity of synthesized nanocomposite was investigated for degradation of aqueous solution of malachite green (MG). To increase the photocatalytic activity of ZnO-TiO2 nanocomposite, it is decorated with C and Fe. Pure, carbon (C) doped and carbon, iron(C, Fe) co-doped nanosized ZnO-TiO2 nanocomposites were synthesized using reverse microemulsion method. These composites were characterized using, X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX), Scanning electron microscopy (SEM), UV visible spectrophotometery and X-ray photoelectron spectroscopy (XPS). Visible light photocatalytic activities of synthesized nanocomposites were investigated for degradation of aqueous malachite green (MG) solution. C, Fe co-doped ZnO-TiO2 nanocomposite exhibit better photocatalytic activity and showed threefold increase in photocatalytic activity. Effect of amount of catalyst, pH and concentration of MG solution on the photodegradation rate is studied. Stability and reusability of photocatalyst is also studied. C, Fe decorated ZnO-TiO2 nanocomposite shows threefold increase in photocatalytic activity.

Keywords: malachite green, nanocomposite, photocatalysis, titanium dioxide, zinc oxide

Procedia PDF Downloads 272
1607 Effect of a Reactive Dye-Resin Complex on Dyeing Properties of Cotton Fabrics

Authors: Nurudeen Afolami Ayeni, Kasali Adewale Bello

Abstract:

Study of the effect of dye-resin complexation on the degree of dye absorption were carried out using Procion Blue MX-R to dye cotton fabric in the presence hexamethylol melamine (MR6) and its phosphate derivative (MPR4) for resination. The highest degree of dye exhaustion was obtained at 400C for 1 hour with the resinated fabric showing more affinity for the dye than the ordinary fibre. Improved fastness properties was recorded which show a relatively higher stability of dye-resin complex formed in the fibre.

Keywords: affinity, cotton, dyeing, reactive dye, resination

Procedia PDF Downloads 293
1606 Evaluation of Cellulase and Xylanase Production by Micrococcus Sp. Isolated from Decaying Lignocellulosic Biomass Obtained from Alice Environment in the Eastern Cape of South Africa

Authors: Z. Mmango, U. Nwodo, L. V. Mabinya, A. I. Okoh

Abstract:

Cellulose and hemicellulose account for a large portion of the world‘s plant biomass. In nature, these polysaccharides are intertwined forming complex materials that requires multiple and expensive treatment processes to free up the raw materials trapped in the matrix. Enzymatic degradation remains as the preferred technique as it is inexpensive and eco-friendly. However, the insufficiencies of enzyme battery systems in the degradation of lignocellulosic complex motivate the search for effective degrading enzymes from bacterial isolates from uncommon environment. The study aimed at the evaluation of actinomycetes isolated from saw dust samples collected from wood factory under bed. Cellulase and xylanase production was screened through organism culture on carboxyl methyl cellulose agar and Birchwood xylan. Halo zone indicating lignocellose utilization was shown by an isolate identified through 16S rRNA gene as Micrococcus luteus. The optimum condition for the production of cellulase and xylanase were incubation temperature of 25 °C, fermentation medium pH 5 and 10, agitation speed of 50 and 200 (rpm) and fermentation incubation time of 96 and 84 (h) respectively. The high cellulose and xylanase activity obtained from this isolate portends industrial relevance.

Keywords: carboxyl methyl cellulose, birchwood xylan, optimization, cellulase, xylanase, micrococcus, DNS method

Procedia PDF Downloads 328
1605 Mesozooplankton in the Straits of Florida: Patterns in Biomass and Distribution

Authors: Sharein El-Tourky, Sharon Smith, Gary Hitchcock

Abstract:

Effective fisheries management is necessarily dependent on the accuracy of fisheries models, which can be limited if they omit critical elements. One critical element in the formulation of these models is the trophic interactions at the larval stage of fish development. At this stage, fish mortality rates are at their peak and survival is often determined by resource limitation. Thus it is crucial to identify and quantify essential prey resources and determine how they vary in abundance and availability. The main resources larval fish consume are mesozooplankton. In the Straits of Florida, little is known about temporal and spatial variability of the mesozooplankton community despite its importance as a spawning ground for fish such as the Blue Marlin. To investigate mesozooplankton distribution patterns in the Straits of Florida, a transect of 16 stations from Miami to the Bahamas was sampled once a month in 2003 and 2004 at four depths. We found marked temporal and spatial variability in mesozooplankton biomass, diversity, and depth distribution. Mesozooplankton biomass peaked on the western boundary of the SOF and decreased gradually across the straits to a minimum at eastern stations. Midcurrent stations appeared to be a region of enhanced year-round variability, but limited seasonality. Examination of dominant zooplankton groups revealed groups could be parsed into 6 clusters based on abundance. Of these zooplankton groups, copepods were the most abundant zooplankton group, with the 20 most abundant species making up 86% of the copepod community. Copepod diversity was lowest at midcurrent stations and highest in the Eastern SOF. Interestingly, one copepods species, previously identified to compose up to 90% of larval blue marlin and sailfish diets in the SOF, had a mean abundance of less than 7%. However, the unique spatial and vertical distribution patterns of this copepod coincide with peak larval fish spawning periods and larval distribution, suggesting an important relationship requiring further investigation.

Keywords: mesozooplankton biodiversity, larval fish diet, food web, Straits of Florida, vertical distribution, spatiotemporal variability, cross-current comparisons, Gulf Stream

Procedia PDF Downloads 534