Search results for: medi-cal data
26514 Common Health Problems of Filipino Overseas Household Service Workers: Implications for Wellness
Authors: Veronica Ramirez
Abstract:
For over 40 years now, the Philippines has been supplying Household Service Workers (HSWs) globally. As a requirement of the Philippine Overseas Employment Agency (POEA), all Filipinos applying for overseas work undergo medical examination and a certificate of good health is submitted to the foreign employer before hiring. However, there are workplace-related health problems that develop during employment such as musculoskeletal strain or injury, back pain, hypertension and other illnesses. Some workers are in good working conditions but are on call more than 12 hours per day. There are also those who experience heavy physical work with short rest periods or time off. They can also be easily exposed to disease outbreaks and epidemics. It was the objective of this study to determine the common health problems of Filipino Overseas Service Workers and analyze their implications to wellness in the workplace. Specifically, it sought to describe the work conditions of HSWs and determine the work-related factors affecting their health. It also identified the medical care they avail of and how they perceive their health and wellness as determinants of well-being. Finally, it proposes ways to promote wellness among HSWs. This study focused on physical illnesses and does not include mental problems experienced by HSWs. Using a questionnaire, primary data were gathered online and through survey of HSW rehires who were retaking Pre-Departure Orientation Seminar at recruitment agencies. The 2010 Health Benefit Availment data from the Overseas Workers Welfare Administration (OWWA) was also utilized. Descriptive analysis was employed on the data gathered. Key stakeholders in the migration industry were also interviewed. Previous research studies, reports and literature on migration and wellness were used as secondary data. The study found that Filipino overseas HSWs are vulnerable to physical injury and experience body pains such as back, hip and shoulder pain. Long hours of work, work hazards and lack of rest due to poor accommodations can aggravate their physical condition. Although health insurance and health care are available, HSWs are not aware how to avail them. On the basis of the findings, a Wellness Program can be designed that include health awareness, health care availment, occupational ergonomics, safety and health, work and leisure balance, developing emotional intelligence, anger management and spirituality.Keywords: health, household service worker, overseas, wellness
Procedia PDF Downloads 25626513 Revolutionizing Traditional Farming Using Big Data/Cloud Computing: A Review on Vertical Farming
Authors: Milind Chaudhari, Suhail Balasinor
Abstract:
Due to massive deforestation and an ever-increasing population, the organic content of the soil is depleting at a much faster rate. Due to this, there is a big chance that the entire food production in the world will drop by 40% in the next two decades. Vertical farming can help in aiding food production by leveraging big data and cloud computing to ensure plants are grown naturally by providing the optimum nutrients sunlight by analyzing millions of data points. This paper outlines the most important parameters in vertical farming and how a combination of big data and AI helps in calculating and analyzing these millions of data points. Finally, the paper outlines how different organizations are controlling the indoor environment by leveraging big data in enhancing food quantity and quality.Keywords: big data, IoT, vertical farming, indoor farming
Procedia PDF Downloads 17326512 Change of Epidemiological Characteristics and Disease Burden of Varicella Due to Implementation of Mass Immunization Program in Taiwan from 2000 to 2012
Authors: En-Tzu Wang, Ting-Ann Wang, Yi-Hui Shen, Yu-Min Chou, Chi-Tai Fang, Chin-Hui Yang
Abstract:
Background and purpose: A mass varicella immunization program was established to provide free 1-dose vaccination for all 1-year-old children throughout Taiwan since 2004. The epidemiological characteristics and disease burden of varicella from 2000 to 2012 was investigated and the results will be essential to refine the national immunization policy. Method: We included patients (n = 17,838–164,245) with ICD-9-CM codes 052 (chickenpox) from the 2000 to 2012 National Health Insurance Database. The age, period, and cohort-specific incidence of varicella were calculated. The hospital admission rate, medical costs and indirect costs from the societal perspective of varicella including travel costs to the medical facility, registration fee, productivity losses of the patients and caregivers were also estimated. Result: There were 979,252 patients for medical treatment due to varicella from 2000 to 2012 in Taiwan. The implementation of a routine childhood varicella vaccination program has resulted in 87% decline in morbidity (881.49 to 115.17 per 100,000). The average age of patients increased from 7.9 years to 16.3 years. The overall varicella-related hospital admission rate was 15.5 per 1000 patients, and peaked in the groups of infants younger than 1 year, adults aged from 20 to 39 years and elders over 70 years. Among patients admitted to hospital, 33.5% of them had one or more complications. Patients with underlying diseases had higher admission rate (241.6 per 1,000) and longer duration of hospital stay (6.61 days vs. 4.76 days). The annual varicella-related medical expense declined after 2002 and the proportion of medical costs for admission has increased to 42%. The annual indirect costs from the societal perspective of varicella were 5.29 to 9.63 times higher than varicella-related medical costs. Every one dollar invested in the varicella immunization program, 2.97 dollars of medical and social costs were saved on average. Conclusion: The dramatic decline in morbidity, hospitalization, medical and social costs of varicella can be directly attributed to the implementation of the mass immunization program. Two-dose vaccination is recommended for both children with underlying diseases and susceptible adults to prevent serious complications and hospitalizations.Keywords: disease burden, epidemiology, medical and social costs, varicella, varicella vaccine
Procedia PDF Downloads 41026511 Data Challenges Facing Implementation of Road Safety Management Systems in Egypt
Authors: A. Anis, W. Bekheet, A. El Hakim
Abstract:
Implementing a Road Safety Management System (SMS) in a crowded developing country such as Egypt is a necessity. Beginning a sustainable SMS requires a comprehensive reliable data system for all information pertinent to road crashes. In this paper, a survey for the available data in Egypt and validating it for using in an SMS in Egypt. The research provides some missing data, and refer to the unavailable data in Egypt, looking forward to the contribution of the scientific society, the authorities, and the public in solving the problem of missing or unreliable crash data. The required data for implementing an SMS in Egypt are divided into three categories; the first is available data such as fatality and injury rates and it is proven in this research that it may be inconsistent and unreliable, the second category of data is not available, but it may be estimated, an example of estimating vehicle cost is available in this research, the third is not available and can be measured case by case such as the functional and geometric properties of a facility. Some inquiries are provided in this research for the scientific society, such as how to improve the links among stakeholders of road safety in order to obtain a consistent, non-biased, and reliable data system.Keywords: road safety management system, road crash, road fatality, road injury
Procedia PDF Downloads 14526510 Non-Medical Prescription and Other Drug Use in Relation to Mental Health and World Beliefs: A Study of College Students
Authors: Sarah P. Wuebbolt, Ashlee N. Sawyer-Mays
Abstract:
Non-medical prescription and other drug (NMPOD) use has been a significant public health issue for the last few decades, with problematic use increasing among university students more recently. The current study focused on associations between NMPOD use and mental health, well-being, and world beliefs among young adults. Young adults (N=513) completed online questionnaires assessing stress, demographic characteristics, self-esteem, NMPOD use, coping mechanisms, and anxiety. A substantial portion of participants reported using cannabis (48.5%, n=249), while smaller portions of participants reported using stimulants (26.7%, n = 137), sedatives (17.2%, n=88), opioids (10.8%, n=55), and hallucinogens (14.4%, n=74). Five hierarchical logistic regressions were performed to determine the independent relationships between mental health, well-being, and world belief factors and NMPOD use for the five classes of substances. After controlling for demographic factors (age, gender, race/ethnicity, sexual orientation, and religious affiliation), depression was associated with increased non-medical stimulant, opioid, and cannabis use; coping self-efficacy was associated with increased hallucinogen use, and attendance of worship services was associated with decreased non-medical cannabis and hallucinogen use. Results suggest that depression was strongly associated with non-medical stimulant, opioid, and cannabis use, and attendance of worship services was protective against cannabis and hallucinogen use. To the best of our knowledge, this is one of the first studies to investigate the relationships between mental health, well-being, world beliefs, and NMPOD use among young adults. The present study illuminates future targets for intervention, such as increased access to mental health diagnosis and treatment and the exploration of the roles of religion and shared community in the prevention of drug use among young adults.Keywords: cannabis, mental health, non-medical prescription and other drug use, world beliefs
Procedia PDF Downloads 6426509 Big Data-Driven Smart Policing: Big Data-Based Patrol Car Dispatching in Abu Dhabi, UAE
Authors: Oualid Walid Ben Ali
Abstract:
Big Data has become one of the buzzwords today. The recent explosion of digital data has led the organization, either private or public, to a new era towards a more efficient decision making. At some point, business decided to use that concept in order to learn what make their clients tick with phrases like ‘sales funnel’ analysis, ‘actionable insights’, and ‘positive business impact’. So, it stands to reason that Big Data was viewed through green (read: money) colored lenses. Somewhere along the line, however someone realized that collecting and processing data doesn’t have to be for business purpose only, but also could be used for other purposes to assist law enforcement or to improve policing or in road safety. This paper presents briefly, how Big Data have been used in the fields of policing order to improve the decision making process in the daily operation of the police. As example, we present a big-data driven system which is sued to accurately dispatch the patrol cars in a geographic environment. The system is also used to allocate, in real-time, the nearest patrol car to the location of an incident. This system has been implemented and applied in the Emirate of Abu Dhabi in the UAE.Keywords: big data, big data analytics, patrol car allocation, dispatching, GIS, intelligent, Abu Dhabi, police, UAE
Procedia PDF Downloads 49026508 Mining Multicity Urban Data for Sustainable Population Relocation
Authors: Xu Du, Aparna S. Varde
Abstract:
In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. Experiments so far reveal that data mining methods discover useful knowledge from the multicity urban data. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.Keywords: data mining, environmental modeling, sustainability, urban planning
Procedia PDF Downloads 30726507 A Numerical Model for Simulation of Blood Flow in Vascular Networks
Authors: Houman Tamaddon, Mehrdad Behnia, Masud Behnia
Abstract:
An accurate study of blood flow is associated with an accurate vascular pattern and geometrical properties of the organ of interest. Due to the complexity of vascular networks and poor accessibility in vivo, it is challenging to reconstruct the entire vasculature of any organ experimentally. The objective of this study is to introduce an innovative approach for the reconstruction of a full vascular tree from available morphometric data. Our method consists of implementing morphometric data on those parts of the vascular tree that are smaller than the resolution of medical imaging methods. This technique reconstructs the entire arterial tree down to the capillaries. Vessels greater than 2 mm are obtained from direct volume and surface analysis using contrast enhanced computed tomography (CT). Vessels smaller than 2mm are reconstructed from available morphometric and distensibility data and rearranged by applying Murray’s Laws. Implementation of morphometric data to reconstruct the branching pattern and applying Murray’s Laws to every vessel bifurcation simultaneously, lead to an accurate vascular tree reconstruction. The reconstruction algorithm generates full arterial tree topography down to the first capillary bifurcation. Geometry of each order of the vascular tree is generated separately to minimize the construction and simulation time. The node-to-node connectivity along with the diameter and length of every vessel segment is established and order numbers, according to the diameter-defined Strahler system, are assigned. During the simulation, we used the averaged flow rate for each order to predict the pressure drop and once the pressure drop is predicted, the flow rate is corrected to match the computed pressure drop for each vessel. The final results for 3 cardiac cycles is presented and compared to the clinical data.Keywords: blood flow, morphometric data, vascular tree, Strahler ordering system
Procedia PDF Downloads 27126506 Real Time Activity Recognition Framework for Health Monitoring Support in Home Environments
Authors: Shaikh Farhad Hossain, Liakot Ali
Abstract:
Technology advances accelerate the quality and type of services provided for health care and especially for monitoring health conditions. Sensors have turned out to be more effective to detect diverse physiological signs and can be worn on the human body utilizing remote correspondence modules. An assortment of programming devices have been created to help in preparing a difference rundown of essential signs by examining and envisioning information produced by different sensors. In this proposition, we presented a Health signs and Activity acknowledgment monitoring system. Utilizing off-the-rack sensors, we executed a movement location system for identifying five sorts of action: falling, lying down, sitting, standing, and walking. The framework collects and analyzes sensory data in real-time, and provides different feedback to the users. In addition, it can generate alerts based on the detected events and store the data collected to a medical server.Keywords: ADL, SVM, TRIL , MEMS
Procedia PDF Downloads 39326505 Phenomenological Analysis on the Experience of Volunteer Activities in Pre-Medical School Students
Authors: S. J. Yune, K. H. Park
Abstract:
The purpose of this study was to understand the experiences of medical students in volunteer activities and to draw implications for medical education. For this purpose, the questionnaire and the reflection essay on the volunteer experience of 54 students in the first year and 57 students in the second year were analyzed and analyzed. As a result, the participation of the students in the volunteer activities was the highest in the first semester and once a month in the second grade. Activities were mostly through volunteer organizations. The essence of the volunteering activities experience revealed through reflection essays was 'I want to avoid with fear' and 'I feel far away' in the recognition before volunteering activities. In terms of knowledge after participating in volunteer activities, 'breaking eggs and getting to know the world' and 'intellectual growth through social experience' appeared. In terms of attitude, it revealed 'deep reflection on me and others', 'understanding of service life'. And in terms of behavior, 'Begin preparing for a life of service' appeared. The results of this study revealed that volunteering activities provide students with opportunities for growth and development. In order to obtain more meaningful results, consciousness education related to social service should be done in advance.Keywords: volunteering activity, pre-medical school student, reflection essay, qualitative analysis
Procedia PDF Downloads 18526504 Model Order Reduction for Frequency Response and Effect of Order of Method for Matching Condition
Authors: Aref Ghafouri, Mohammad javad Mollakazemi, Farhad Asadi
Abstract:
In this paper, model order reduction method is used for approximation in linear and nonlinearity aspects in some experimental data. This method can be used for obtaining offline reduced model for approximation of experimental data and can produce and follow the data and order of system and also it can match to experimental data in some frequency ratios. In this study, the method is compared in different experimental data and influence of choosing of order of the model reduction for obtaining the best and sufficient matching condition for following the data is investigated in format of imaginary and reality part of the frequency response curve and finally the effect and important parameter of number of order reduction in nonlinear experimental data is explained further.Keywords: frequency response, order of model reduction, frequency matching condition, nonlinear experimental data
Procedia PDF Downloads 40026503 An Empirical Study of the Impacts of Big Data on Firm Performance
Authors: Thuan Nguyen
Abstract:
In the present time, data to a data-driven knowledge-based economy is the same as oil to the industrial age hundreds of years ago. Data is everywhere in vast volumes! Big data analytics is expected to help firms not only efficiently improve performance but also completely transform how they should run their business. However, employing the emergent technology successfully is not easy, and assessing the roles of big data in improving firm performance is even much harder. There was a lack of studies that have examined the impacts of big data analytics on organizational performance. This study aimed to fill the gap. The present study suggested using firms’ intellectual capital as a proxy for big data in evaluating its impact on organizational performance. The present study employed the Value Added Intellectual Coefficient method to measure firm intellectual capital, via its three main components: human capital efficiency, structural capital efficiency, and capital employed efficiency, and then used the structural equation modeling technique to model the data and test the models. The financial fundamental and market data of 100 randomly selected publicly listed firms were collected. The results of the tests showed that only human capital efficiency had a significant positive impact on firm profitability, which highlighted the prominent human role in the impact of big data technology.Keywords: big data, big data analytics, intellectual capital, organizational performance, value added intellectual coefficient
Procedia PDF Downloads 24326502 A Comparative Genre-Based Study of Research Articles' Method and Results Sections Authored by Iranian and English Native Speakers
Authors: Mohammad Amin Mozaheb, Mahnaz Saeidi, Saeideh Ahangari, Saeideh Ahangari
Abstract:
The present genre-driven study aims at comparing moves and sub-moves deployed by Iranian and English medical writers while writing their research articles in English. To obtain the goals of the study, the researchers randomly selected a number of medical articles and compared them using Nwogu (1997)’s model. The results of relevant statistical tests, Chi-square tests for goodness of fit, used for comparing the two groups of the articles dubbed IrISI (Iranian ISI articles) and EISI (English ISI articles) have shown that no significant difference exists between the two groups of the articles in terms of the moves and sub-moves used in the method and results sections of them. The findings can be beneficial for people interested in English for Specific Purposes (ESP) and medical experts. The findings can also increase language awareness and genre awareness among researchers who are interested in publishing their research outcomes in ISI-indexed journals in the Islamic Republic of Iran and some other world countries.Keywords: writing, ESP, research articles, medical sciences, language, scientific writing
Procedia PDF Downloads 36626501 Automated Test Data Generation For some types of Algorithm
Authors: Hitesh Tahbildar
Abstract:
The cost of test data generation for a program is computationally very high. In general case, no algorithm to generate test data for all types of algorithms has been found. The cost of generating test data for different types of algorithm is different. Till date, people are emphasizing the need to generate test data for different types of programming constructs rather than different types of algorithms. The test data generation methods have been implemented to find heuristics for different types of algorithms. Some algorithms that includes divide and conquer, backtracking, greedy approach, dynamic programming to find the minimum cost of test data generation have been tested. Our experimental results say that some of these types of algorithm can be used as a necessary condition for selecting heuristics and programming constructs are sufficient condition for selecting our heuristics. Finally we recommend the different heuristics for test data generation to be selected for different types of algorithms.Keywords: ongest path, saturation point, lmax, kL, kS
Procedia PDF Downloads 40326500 A Question of Ethics and Faith
Authors: Madhavi-Priya Singh, Liam Lowe, Farouk Arnaout, Ludmilla Pillay, Giordan Perez, Luke Mischker, Steve Costa
Abstract:
An Emergency Department consultant identified the failure of medical students to complete the task of clerking a patient in its entirety. As six medical students on our first clinical placement, we recognised our own failure and endeavoured to examine why this failure was consistent among all medical students that had been given this task, despite our best motivations as adult learner. Our aim is to understand and investigate the elements which impeded our ability to learn and perform as medical students in the clinical environment, with reference to the prescribed task. We also aim to generate a discussion around the delivery of medical education with potential solutions to these barriers. Six medical students gathered together to have a comprehensive reflective discussion to identify possible factors leading to the failure of the task. First, we thoroughly analysed the delivery of the instructions with reference to the literature to identify potential flaws. We then examined personal, social, ethical, and cultural factors which may have impacted our ability to complete the task in its entirety. Through collation of our shared experiences, with support from discussion in the field of medical education and ethics, we identified two major areas that impacted our ability to complete the set task. First, we experienced an ethical conflict where we believed the inconvenience and potential harm inflicted on patients did not justify the positive impact the patient interaction would have on our medical learning. Second, we identified a lack of confidence stemming from multiple factors, including the conflict between preclinical and clinical learning, perceptions of perfectionism in the culture of medicine, and the influence of upward social comparison. After discussions, we found that the various factors we identified exacerbated the fears and doubts we already had about our own abilities and that of the medical education system. This doubt led us to avoid completing certain aspects of the tasks that were prescribed and further reinforced our vulnerability and perceived incompetence. Exploration of philosophical theories identified the importance of the role of doubt in education. We propose the need for further discussion around incorporating both pedagogic and andragogic teaching styles in clinical medical education and the acceptance of doubt as a driver of our learning. Doubt will continue to permeate our thoughts and actions no matter what. The moral or psychological distress that arises from this is the key motivating factor for our avoidance of tasks. If we accept this doubt and education embraces this doubt, it will no longer linger in the shadows as a negative and restrictive emotion but fuel a brighter dialogue and positive learning experience, ultimately assisting us in achieving our full potential.Keywords: medical education, clinical education, andragogy, pedagogy
Procedia PDF Downloads 12826499 The Perspective on Data Collection Instruments for Younger Learners
Authors: Hatice Kübra Koç
Abstract:
For academia, collecting reliable and valid data is one of the most significant issues for researchers. However, it is not the same procedure for all different target groups; meanwhile, during data collection from teenagers, young adults, or adults, researchers can use common data collection tools such as questionnaires, interviews, and semi-structured interviews; yet, for young learners and very young ones, these reliable and valid data collection tools cannot be easily designed or applied by the researchers. In this study, firstly, common data collection tools are examined for ‘very young’ and ‘young learners’ participant groups since it is thought that the quality and efficiency of an academic study is mainly based on its valid and correct data collection and data analysis procedure. Secondly, two different data collection instruments for very young and young learners are stated as discussing the efficacy of them. Finally, a suggested data collection tool – a performance-based questionnaire- which is specifically developed for ‘very young’ and ‘young learners’ participant groups in the field of teaching English to young learners as a foreign language is presented in this current study. The designing procedure and suggested items/factors for the suggested data collection tool are accordingly revealed at the end of the study to help researchers have studied with young and very learners.Keywords: data collection instruments, performance-based questionnaire, young learners, very young learners
Procedia PDF Downloads 9026498 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors
Authors: Yaxin Bi
Abstract:
Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors
Procedia PDF Downloads 3126497 CAGE Questionnaire as a Screening Tool for Hazardous Drinking in an Acute Admissions Ward: Frequency of Application and Comparison with AUDIT-C Questionnaire
Authors: Ammar Ayad Issa Al-Rifaie, Zuhreya Muazu, Maysam Ali Abdulwahid, Dermot Gleeson
Abstract:
The aim of this audit was to examine the efficiency of alcohol history documentation and screening for hazardous drinkers at the Medical Admission Unit (MAU) of Northern General Hospital (NGH), Sheffield, to identify any potential for enhancing clinical practice. Data were collected from medical clerking sheets, ICE system and directly from 82 patients by three junior medical doctors using both CAGE questionnaire and AUDIT-C tool for newly admitted patients to MAU in NGH, in the period between January and March 2015. Alcohol consumption was documented in around two-third of the patient sample and this was documented fairly accurately by health care professionals. Some used subjective words such as 'social drinking' in the alcohol units’ section of the history. CAGE questionnaire was applied to only four patients and none of the patients had documented advice, education or referral to an alcohol liaison team. AUDIT-C tool had identified 30.4%, while CAGE 10.9%, of patients admitted to the NGH MAU as hazardous drinkers. The amount of alcohol the patient consumes positively correlated with the score of AUDIT-C (Pearson correlation 0.83). Re-audit is planned to be carried out after integrating AUDIT-C tool as labels in the notes and presenting a brief teaching session to junior doctors. Alcohol misuse screening is not adequately undertaken and no appropriate action is being offered to hazardous drinkers. CAGE questionnaire is poorly applied to patients and when satisfactory and adequately used has low sensitivity to detect hazardous drinkers in comparison with AUDIT-C tool. Re-audit of alcohol screening practice after introducing AUDIT-C tool in clerking sheets (as labels) is required to compare the findings and conclude the audit cycle.Keywords: alcohol screening, AUDIT-C, CAGE, hazardous drinking
Procedia PDF Downloads 40826496 Generation of Quasi-Measurement Data for On-Line Process Data Analysis
Authors: Hyun-Woo Cho
Abstract:
For ensuring the safety of a manufacturing process one should quickly identify an assignable cause of a fault in an on-line basis. To this end, many statistical techniques including linear and nonlinear methods have been frequently utilized. However, such methods possessed a major problem of small sample size, which is mostly attributed to the characteristics of empirical models used for reference models. This work presents a new method to overcome the insufficiency of measurement data in the monitoring and diagnosis tasks. Some quasi-measurement data are generated from existing data based on the two indices of similarity and importance. The performance of the method is demonstrated using a real data set. The results turn out that the presented methods are able to handle the insufficiency problem successfully. In addition, it is shown to be quite efficient in terms of computational speed and memory usage, and thus on-line implementation of the method is straightforward for monitoring and diagnosis purposes.Keywords: data analysis, diagnosis, monitoring, process data, quality control
Procedia PDF Downloads 48026495 Management and Evaluation of Developing Medical Device Software in Compliance with Rules
Authors: Arash Sepehri bonab
Abstract:
One of the regions of critical development in medical devices has been the part of the software - as an indispensable component of a therapeutic device, as a standalone device, and more as of late, as applications on portable gadgets. The chance related to a breakdown of the standalone computer program utilized inside healthcare is in itself not a model for its capability or not as a medical device. It is, subsequently, fundamental to clarify a few criteria for the capability of a stand-alone computer program as a medical device. The number of computer program items and therapeutic apps is persistently expanding and so as well is used in wellbeing education (e. g., in clinics and doctors' surgeries) for determination and treatment. Within the last decade, the use of information innovation in healthcare has taken a developing part. In reality, the appropriation of an expanding number of computer devices has driven several benefits related to the method of quiet care and permitted simpler get to social and health care assets. At the same time, this drift gave rise to modern challenges related to the usage of these modern innovations. The program utilized in healthcare can be classified as therapeutic gadgets depending on the way they are utilized and on their useful characteristics. In the event that they are classified as therapeutic gadgets, they must fulfill particular directions. The point of this work is to show a computer program improvement system that can permit the generation of secure and tall, quality restorative gadget computer programs and to highlight the correspondence between each program advancement stage and the fitting standard and/or regulation.Keywords: medical devices, regulation, software, development, healthcare
Procedia PDF Downloads 10626494 Emerging Technology for Business Intelligence Applications
Authors: Hsien-Tsen Wang
Abstract:
Business Intelligence (BI) has long helped organizations make informed decisions based on data-driven insights and gain competitive advantages in the marketplace. In the past two decades, businesses witnessed not only the dramatically increasing volume and heterogeneity of business data but also the emergence of new technologies, such as Artificial Intelligence (AI), Semantic Web (SW), Cloud Computing, and Big Data. It is plausible that the convergence of these technologies would bring more value out of business data by establishing linked data frameworks and connecting in ways that enable advanced analytics and improved data utilization. In this paper, we first review and summarize current BI applications and methodology. Emerging technologies that can be integrated into BI applications are then discussed. Finally, we conclude with a proposed synergy framework that aims at achieving a more flexible, scalable, and intelligent BI solution.Keywords: business intelligence, artificial intelligence, semantic web, big data, cloud computing
Procedia PDF Downloads 9426493 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning
Authors: Pei Yi Lin
Abstract:
Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model
Procedia PDF Downloads 7326492 Using Equipment Telemetry Data for Condition-Based maintenance decisions
Authors: John Q. Todd
Abstract:
Given that modern equipment can provide comprehensive health, status, and error condition data via built-in sensors, maintenance organizations have a new and valuable source of insight to take advantage of. This presentation will expose what these data payloads might look like and how they can be filtered, visualized, calculated into metrics, used for machine learning, and generate alerts for further action.Keywords: condition based maintenance, equipment data, metrics, alerts
Procedia PDF Downloads 18526491 Development and Characterization of Bio-Tribological, Nano- Multilayer Coatings for Medical Tools Application
Authors: L. Major, J. M. Lackner, M. Dyner, B. Major
Abstract:
Development of new generation bio- tribological, multilayer coatings, opens an avenue for fabrication of future high- tech functional surfaces. In the presented work, nano- composite, Cr/CrN+[Cr/ a-C:H implanted by metallic nanocrystals] multilayer coatings have been developed for surface protection of medical tools. Thin films were fabricated by a hybrid Pulsed Laser Deposition technique. Complex microstructure analysis of nano- multilayer coatings, subjected to mechanical and biological tests, were performed by means of transmission electron microscopy (TEM). Microstructure characterization revealed the layered arrangement of Cr23C6 nanoparticles in multilayer structure. Influence of deposition conditions on bio- tribological properties of the coatings were studied. The bio-tests were used as a screening tool for the analyzed nano- multilayer coatings before they could be deposited on medical tools. Bio- medical tests were done using fibroblasts. The mechanical properties of the coatings were investigated by means of a ball-on-disc mechanical test. The microhardness was done using Berkovich indenter. The scratch adhesion test was done using Rockwell indenter. From the bio- tribological point of view, the optimal properties had the C106_1 material.Keywords: bio- tribological coatings, cell- material interaction, hybrid PLD, tribology
Procedia PDF Downloads 37826490 Exploring the Effectiveness of End-Of-Life Patient Decision Add in the ICU
Authors: Ru-Yu Lien, Shih-Hsin Hung, Shu-Fen Lu, Ju-Jen Shie, Wen-Ju Yang, Yuann-Meei Tzeng, Chien-Ying Wang
Abstract:
Background: The quality of care in intensive care units (ICUs) is crucial, especially for terminally ill patients. Shared decision-making (SDM) with families is essential to ensure appropriate care and reduce suffering. Aim: This study explores the effectiveness of an end-of-life decision support Patient Decision Aid (PDA) in an ICU setting. Methods: This study employed a cross-sectional research design conducted in an ICU from August 2020 to June 2023. Participants included family members of end-of-life patients aged 20 or older. A total of 319 participants. Family members of end-of-life patients received the PDA, and data were collected after they made medical decisions. Data collection involved providing family members with a PDA during family meetings. A post-PDA questionnaire with 17 questions assessed PDA effectiveness and anxiety levels. Statistical analysis was performed using SPSS 22.0. Results: The PDA significantly reduced anxiety levels among family members (p < 0.001). It helped them organize their thoughts, prepare for discussions with doctors, and understand critical decision factors. Most importantly, it influenced decision outcomes, with a shift towards palliative care and withdrawal of life-sustaining treatment. Conclusion: This study highlights the importance of family-centered end-of-life care in ICUs. PDAs promote informed decision-making, reduce conflicts, and enhance patient and family involvement. These tools align patient values and goals with medical recommendations, ultimately leading to decisions that prioritize comfort and quality of life. Implementing PDAs in healthcare systems can ensure that patients' care aligns with their values.Keywords: shared decision-making, patient decision aid, end-of-life care, intensive care unit, family-centered care
Procedia PDF Downloads 8526489 Companies and Transplant Tourists to China
Authors: Pavel Porubiak, Lukas Kudlacek
Abstract:
Introduction Transplant tourism is a controversial method of obtaining an organ, and that goes all the more for a country such as China, where sources of evidence point out to the possibility of organs being harvested illegally. This research aimed at listing the individual countries these tourists come from, or which medical companies sell transplant related products in there, with China being used as an example. Materials and methods The methodology of scoping study was used for both parts of the research. The countries from which transplant tourists come to China were identified by a search through existing medical studies in the NCBI PubMed database, listed under the keyword ‘transplantation in China’. The search was not limited by any other criteria, but only the studies available for free – directly on PubMed or a linked source – were used. Other research studies on this topic were considered as well. The companies were identified through multiple methods. The first was an online search focused on medical companies and their products. The Bloomberg Service, used by stock brokers worldwide, was then used to identify the revenue of these companies in individual countries – if data were available – as well as their business presence in China. A search through the U.S. Securities and Exchange Commission was done in the same way. Also a search on the Chinese internet was done, and to obtain more results, a second online search was done as well. The results and discussion The extensive search has identified 14 countries with transplant tourists to China. The search for a similar studies or reports resulted in finding additional six countries. The companies identified by our research also amounted to 20. Eight of them are sourcing China with organ preservation products – of which one is just trying to enter the Chinese market, six with immunosuppressive drugs, four with transplant diagnostics, one with medical robots which Chinese doctors use for transplantation as well, and another one trying to enter the Chinese market with a consumable-type product also related to transplantation. The conclusion The question of the ethicality of transplant tourism may be very pressing, since as the research shows, just the sheer amount of participating countries, sourcing transplant tourists to another one, amounts to 20. The identified companies are facing risks due to the nature of transplantation business in China, as officially executed prisoners are used as sources, and widely cited pieces of evidence point out to illegal organ harvesting. Similar risks and ethical questions are also relevant to the countries sourcing the transplant tourists to China.Keywords: China, illegal organ harvesting, transplant tourism, organ harvesting technology
Procedia PDF Downloads 13326488 Evaluation of the Improve Vacuum Blood Collection Tube for Laboratory Tests
Authors: Yoon Kyung Song, Seung Won Han, Sang Hyun Hwang, Do Hoon Lee
Abstract:
Laboratory tests is a significant part for the diagnosis, prognosis, treatment of diseases. Blood collection is a simple process, but can be a potential cause of pre-analytical errors. Vacuum blood collection tubes used to collect and store the blood specimens is necessary for accurate test results. The purpose of this study was to validate Improve serum separator tube(SST) (Guanzhou Improve Medical Instruments Co., Ltd, China) for routine clinical chemistry laboratory testing. Blood specimens were collected from 100 volunteers in three different serum vacuum tubes (Greiner SST , Becton Dickinson SST , Improve SST). The specimens were evaluated for 16 routine chemistry tests using TBA-200FR NEO (Toshiba Medical Co. JAPAN). The results were statistically analyzed by paired t-test and Bland-Altman plot. For stability test, the initial results for each tube were compared with results of 72 hours preserved specimens. Their clinical availability was evaluated by biological Variation of Ricos data bank. Paired t-test analysis revealed that AST, ALT, K, Cl showed statistically same results but calcium (CA), phosphorus(PHOS), glucose(GLU), BUN, uric acid(UA), cholesterol(CHOL), total protein(TP), albumin(ALB), total bilirubin(TB), ALP, creatinine(CRE), sodium(NA) were different(P < 0.05) between Improve SST and Greiner SST. Also, CA, PHOS, TP, TB, AST, ALT, NA, K, Cl showed statistically the same results but GLU, BUN, UA, CHOL, ALB, ALP, CRE were different between Improve SST and Becton Dickinson SST. All statistically different cases were clinically acceptable by biological Variation of Ricos data bank. Improve SST tubes showed satisfactory results compared with Greiner SST and Becton Dickinson SST. We concluded that the tubes are acceptable for routine clinical chemistry laboratory testing.Keywords: blood collection, Guanzhou Improve, SST, vacuum tube
Procedia PDF Downloads 24326487 Content-Aware Image Augmentation for Medical Imaging Applications
Authors: Filip Rusak, Yulia Arzhaeva, Dadong Wang
Abstract:
Machine learning based Computer-Aided Diagnosis (CAD) is gaining much popularity in medical imaging and diagnostic radiology. However, it requires a large amount of high quality and labeled training image datasets. The training images may come from different sources and be acquired from different radiography machines produced by different manufacturers, digital or digitized copies of film radiographs, with various sizes as well as different pixel intensity distributions. In this paper, a content-aware image augmentation method is presented to deal with these variations. The results of the proposed method have been validated graphically by plotting the removed and added seams of pixels on original images. Two different chest X-ray (CXR) datasets are used in the experiments. The CXRs in the datasets defer in size, some are digital CXRs while the others are digitized from analog CXR films. With the proposed content-aware augmentation method, the Seam Carving algorithm is employed to resize CXRs and the corresponding labels in the form of image masks, followed by histogram matching used to normalize the pixel intensities of digital radiography, based on the pixel intensity values of digitized radiographs. We implemented the algorithms, resized the well-known Montgomery dataset, to the size of the most frequently used Japanese Society of Radiological Technology (JSRT) dataset and normalized our digital CXRs for testing. This work resulted in the unified off-the-shelf CXR dataset composed of radiographs included in both, Montgomery and JSRT datasets. The experimental results show that even though the amount of augmentation is large, our algorithm can preserve the important information in lung fields, local structures, and global visual effect adequately. The proposed method can be used to augment training and testing image data sets so that the trained machine learning model can be used to process CXRs from various sources, and it can be potentially used broadly in any medical imaging applications.Keywords: computer-aided diagnosis, image augmentation, lung segmentation, medical imaging, seam carving
Procedia PDF Downloads 22026486 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning
Authors: Walid Cherif
Abstract:
Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification
Procedia PDF Downloads 46226485 Pain Management Strategies for Effective Coping with Sickle Cell Disease: The Perspective of Patients in Ghana
Authors: V. A. Adzika, D. Ayim-Aboagye, T. Gordh
Abstract:
Background and aims: Prevalence of Sickle Cell Disease (SCD) is high in Ghana but not much is known in terms of research into non-medical strategies for managing and coping with the pain associated with SCD. This study was carried out to examine effective non-medical related strategies patients use to cope and manage their SCD condition. Methods: SCD patients (387) consisting of 180 males and 204 females between 18-65 years old years participated in the study. A cross-sectional research design was used in which participants completed questionnaires on pain, non-medical coping and management strategies, anxiety, and depression. Results of multiple regression analysis showed that socio-demographic characteristics contributed to the variance in the pain associated with SCD. Results: Over 90% of participants reported that pains associated with SCD were the main reason for seeking treatment in SCD crisis. In terms of non-medical related coping strategies, attending a place of worship and praying were the main coping strategies used in SCD crises, suggesting that patients’ beliefs, particularly in a supernatural being, served as a mitigating factor in the process of coping with the pain associated with SCD crisis. Also, avoidance and withdrawal from people and social activities were reported to be strategies used to cope effectively with the pain associated with SCD crisis. Conclusion: This indicates that it is imperative to incorporate non-medical related coping and management strategies, especially religious beliefs and psychosocial factors, to coping and management of the pain associated with SCD.Keywords: anxiety, depression, sickle cell disease, quality of life, socio-demographic characteristics, Ghana
Procedia PDF Downloads 408