Search results for: low Pd loaded catalyst
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1365

Search results for: low Pd loaded catalyst

735 Green Synthesis of Silver Nanoparticles by Olive Leaf Extract: Application in the Colorimetric Detection of Fe+3 Ions

Authors: Nasibeh Azizi Khereshki

Abstract:

Olive leaf (OL) extract as a green reductant agent was utilized for the biogenic synthesis of silver nanoparticles (Ag NPs) for the first time in this study, and then its performance was evaluated for colorimetric detection of Fe3+ in different media. Some analytical methods were used to characterize the nanosensor. The effective sensing parameters were optimized by central composite design (CCD) combined with response surface methodology (RSM) application. Then, the prepared material's applicability in antibacterial and optical chemical sensing for naked-eye detection of Fe3+ ions in aqueous solutions were evaluated. Furthermore, OL-Ag NPs-loaded paper strips were successfully applied to the colorimetric visualization of Fe3+. The colorimetric probe based on OL-AgNPs illustrated excellent selectivity and sensitivity towards Fe3+ ions, with LOD and LOQ of 0.81 μM and 2.7 μM, respectively. In addition, the developed method was applied to detect Fe3+ ions in real water samples and validated with a 95% confidence level against a reference spectroscopic method.

Keywords: Ag NPs, colorimetric detection, Fe(III) ions, green synthesis, olive leaves

Procedia PDF Downloads 77
734 Ultrasonic Irradiation Synthesis of High-Performance Pd@Copper Nanowires/MultiWalled Carbon Nanotubes-Chitosan Electrocatalyst by Galvanic Replacement toward Ethanol Oxidation in Alkaline Media

Authors: Majid Farsadrouh Rashti, Amir Shafiee Kisomi, Parisa Jahani

Abstract:

The direct ethanol fuel cells (DEFCs) are contemplated as a promising energy source because, In addition to being used in portable electronic devices, it is also used for electric vehicles. The synthesis of bimetallic nanostructures due to their novel optical, catalytic and electronic characteristic which is precisely in contrast to their monometallic counterparts is attracting extensive attention. Galvanic replacement (sometimes is named to as cementation or immersion plating) is an uncomplicated and effective technique for making nanostructures (such as core-shell) of different metals, semiconductors, and their application in DEFCs. The replacement of galvanic does not need any external power supply compared to electrodeposition. In addition, it is different from electroless deposition because there is no need for a reducing agent to replace galvanizing. In this paper, a fast method for the palladium (Pd) wire nanostructures synthesis with the great surface area through galvanic replacement reaction utilizing copper nanowires (CuNWS) as a template by the assistance of ultrasound under room temperature condition is proposed. To evaluate the morphology and composition of Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan, emission scanning electron microscopy, energy dispersive X-ray spectroscopy were applied. In order to measure the phase structure of the electrocatalysts were performed via room temperature X-ray powder diffraction (XRD) applying an X-ray diffractometer. Various electrochemical techniques including chronoamperometry and cyclic voltammetry were utilized for the electrocatalytic activity of ethanol electrooxidation and durability in basic solution. Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst demonstrated substantially enhanced performance and long-term stability for ethanol electrooxidation in the basic solution in comparison to commercial Pd/C that demonstrated the potential in utilizing Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan as efficient catalysts towards ethanol oxidation. Noticeably, the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan presented excellent catalytic activities with a peak current density of 320.73 mAcm² which was 9.5 times more than in comparison to Pd/C (34.2133 mAcm²). Additionally, activation energy thermodynamic and kinetic evaluations revealed that the Pd@ Copper nanowires/MultiWalled Carbon nanotubes-Chitosan catalyst has lower compared to Pd/C which leads to a lower energy barrier and an excellent charge transfer rate towards ethanol oxidation.

Keywords: core-shell structure, electrocatalyst, ethanol oxidation, galvanic replacement reaction

Procedia PDF Downloads 147
733 Using Sea Cucumber for Mitigation of Marine Pollution

Authors: A. Al-Yaqout, A. Al-Alawi, T. Al-Said, E. Al-Enezi, M. Al-Roumi

Abstract:

Kuwait’s marine environment suffers from increased organic pollution. Sea cucumbers play an important role in the marine environment. They create a healthier environment for many types of benthic micro-organisms through their slow movement and feeding mechanism on micro-organisms and organic material. A preliminary study has been conducted in Kuwait Institute for Scientific Research to assess the possibility of using sea cucumbers for mitigation of the coastal pollution. Sediments were collected from locations identified to be heavily loaded with organic pollutants. Ten aquaria glass tanks, 65x 40x 30cm will be supplied with 10 cm height (14 kg) of the sediments added in each tank and filled with 70 L of filtered seawater. Two species were used in this study, Stichopus hermanni, and Holothuria atra. Water and sediment samples were analyzed weekly. The results showed promising possibility for using sea cucumber to lower the organic load in sediments.

Keywords: organic pollution, sea cucumbers, mitigation, Stichopus hermanni, Holothuria atra

Procedia PDF Downloads 313
732 Radiofrequency and Near-Infrared Responsive Core-Shell Multifunctional Nanostructures Using Lipid Templates for Cancer Theranostics

Authors: Animesh Pan, Geoffrey D. Bothun

Abstract:

With the development of nanotechnology, research in multifunctional delivery systems has a new pace and dimension. An incipient challenge is to design an all-in-one delivery system that can be used for multiple purposes, including tumor targeting therapy, radio-frequency (RF-), near-infrared (NIR-), light-, or pH-induced controlled release, photothermal therapy (PTT), photodynamic therapy (PDT), and medical diagnosis. In this regard, various inorganic nanoparticles (NPs) are known to show great potential as the 'functional components' because of their fascinating and tunable physicochemical properties and the possibility of multiple theranostic modalities from individual NPs. Magnetic, luminescent, and plasmonic properties are the three most extensively studied and, more importantly biomedically exploitable properties of inorganic NPs. Although successful attempts of combining any two of them above mentioned functionalities have been made, integrating them in one system has remained challenge. Keeping those in mind, controlled designs of complex colloidal nanoparticle system are one of the most significant challenges in nanoscience and nanotechnology. Therefore, systematic and planned studies providing better revelation are demanded. We report a multifunctional delivery platform-based liposome loaded with drug, iron-oxide magnetic nanoparticles (MNPs), and a gold shell on the surface of liposomes, were synthesized using a lipid with polyelectrolyte (layersomes) templating technique. MNPs and the anti-cancer drug doxorubicin (DOX) were co-encapsulated inside liposomes composed by zwitterionic phophatidylcholine and anionic phosphatidylglycerol using reverse phase evaporation (REV) method. The liposomes were coated with positively charge polyelectrolyte (poly-L-lysine) to enrich the interface with gold anion, exposed to a reducing agent to form a gold nanoshell, and then capped with thio-terminated polyethylene glycol (SH-PEG2000). The core-shell nanostructures were characterized by different techniques like; UV-Vis/NIR scanning spectrophotometer, dynamic light scattering (DLS), transmission electron microscope (TEM). This multifunctional system achieves a variety of functions, such as radiofrequency (RF)-triggered release, chemo-hyperthermia, and NIR laser-triggered for photothermal therapy. Herein, we highlight some of the remaining major design challenges in combination with preliminary studies assessing therapeutic objectives. We demonstrate an efficient loading and delivery system to significant cell death of human cancer cells (A549) with therapeutic capabilities. Coupled with RF and NIR excitation to the doxorubicin-loaded core-shell nanostructure helped in securing targeted and controlled drug release to the cancer cells. The present core-shell multifunctional system with their multimodal imaging and therapeutic capabilities would be eminent candidates for cancer theranostics.

Keywords: cancer thernostics, multifunctional nanostructure, photothermal therapy, radiofrequency targeting

Procedia PDF Downloads 128
731 Developments in Corporate Governance: The Case of Vietnam

Authors: Lien T. H. Tran, David A. Holloway

Abstract:

Corporate governance practices have changed significantly across the world in the past three decades. Spectacular corporate failures during this period have acted as a catalyst for the development of codes and guidelines that have resulted in the global acceptance of a ‘best practice’ model. This study assesses the relevance of such a ‘one size fits all model’ for the developing nation state of Vietnam. The findings of this analytical paper is that there are three key elements (government, international institutions and the nature of business) that are pertinent and central to corporate governance developments in the country. We also find that the quality of corporate governance in Vietnam is at a medium level when compared to international practices. Vietnam still has a long way to go to construct and embed effective corporate governance policies and practices and promote ethical business behaviours and sound decision making at board level.

Keywords: corporate governance, government, international institutions, public companies, Vietnam

Procedia PDF Downloads 357
730 Psychodiagnostic Tool Development for Measurement of Social Responsibility in Ukrainian Organizations

Authors: Olena Kovalchuk

Abstract:

How to define the understanding of social responsibility issues by Ukrainian companies is a contravention question. Thus, one of the practical uses of social responsibility is a diagnostic tool development for educational, business or scientific purposes. So the purpose of this research is to develop a tool for measurement of social responsibility in organization. Methodology: A 21-item questionnaire “Organization Social Responsibility Scale” was developed. This tool was adapted for the Ukrainian sample and based on the questionnaire “Perceived Role of Ethics and Social Responsibility” which connects ethical and socially responsible behavior to different aspects of the organizational effectiveness. After surveying the respondents, the factor analysis was made by the method of main compounds with orthogonal rotation VARIMAX. On the basis of the obtained results the 21-item questionnaire was developed (Cronbach’s alpha – 0,768; Inter-Item Correlations – 0,34). Participants: 121 managers at all levels of Ukrainian organizations (57 males; 65 females) took part in the research. Results: Factor analysis showed five ethical dilemmas concerning the social responsibility and profit compatibility in Ukrainian organizations. Below we made an attempt to interpret them: — Social responsibility vs profit. Corporate social responsibility can be a way to reduce operational costs. A firm’s first priority is employees’ morale. Being ethical and socially responsible is the priority of the organization. The most loaded question is "Corporate social responsibility can reduce operational costs". Significant effect of this factor is 0.768. — Profit vs social responsibility. Efficiency is much more important to a firm than ethics or social responsibility. Making the profit is the most important concern for a firm. The dominant question is "Efficiency is much more important to a firm than whether or not the firm is seen as ethical or socially responsible". Significant effect of this factor is 0.793. — A balanced combination of social responsibility and profit. Organization with social responsibility policy is more attractive for its stakeholders. The most loaded question is "Social responsibility and profitability can be compatible". Significant effect of this factor is 0.802. — Role of Social Responsibility in the successful organizational performance. Understanding the value of social responsibility and business ethics. Well-being and welfare of the society. The dominant question is "Good ethics is often good business". Significant effect of this factor is 0.727. — Global vision of social responsibility. Issues related to global social responsibility and sustainability. Innovative approaches to poverty reduction. Awareness of climate change problems. Global vision for successful business. The dominant question is "The overall effectiveness of a business can be determined to a great extent by the degree to which it is ethical and socially responsible". Significant effect of this factor is 0.842. The theoretical contribution. The perspective of the study is to develop a tool for measurement social responsibility in organizations and to test questionnaire’s adequacy for social and cultural context. Practical implications. The research results can be applied for designing a training programme for business school students to form their global vision for successful business as well as the ability to solve ethical dilemmas in managerial practice. Researchers interested in social responsibility issues are welcome to join the project.

Keywords: corporate social responsibility, Cronbach’s alpha, ethical behaviour, psychodiagnostic tool

Procedia PDF Downloads 363
729 Graphene-Oxide-Supported Coal-Layered Double Hydroxides: Synthesis and Characterizations

Authors: Shaeel A. Al Thabaiti, Sulaiman N. Basahel, Salem M. Bawaked, Mohamed Mokhtar

Abstract:

Nanosheets for cobalt-layered double hydroxide (Co-Al-LDH)/GO were successfully synthesized with different Co:M g:Al ratios (0:3:1, 1.5:1.5:1, and 3:0:1). The layered double hydroxide structure and morphology were determined using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Temperature prgrammed reduction (TPR) of Co-Al-LDH showed reduction peaks at lower temperature which indicates the ease reducibility of this particular sample. The thermal behaviour was studied using thermal graviemetric technique (TG), and the BET-surface area was determined using N2 physisorption at -196°C. The C-C coupling reaction was carried out over all the investigated catalysts. The Mg–Al LDH catalyst without Co ions is inactive, but the isomorphic substitution of Mg by Co ions (Co:Mg:Al = 1.5:1.5:1) in the cationic sheet resulted in 88% conversion of iodobenzene under reflux. LDH/GO hybrid is up to 2 times higher activity than for the unsupported LDH.

Keywords: adsorption, co-precipitation, graphene oxide, layer double hydroxide

Procedia PDF Downloads 301
728 Alumina Generated by Electrocoagulation as Adsorbent for the Elimination of the Iron from Drilling Water

Authors: Aimad Oulebsir, Toufik Chaabane, Venkataraman Sivasankar, André Darchen, Titus A. M. Msagati

Abstract:

Currently, the presence of pharmaceutical substances in the environment is an emerging pollution leading to the disruption of ecosystems. Indeed, water loaded with pharmaceutical residues is an issue that has raised the attention of researchers. The aim of this study was to monitor the effectiveness of the alumina electro-generated by the adsorption process the iron of well water for the production of drugs. The Fe2+ was removed from wastewater by adsorption in a batch cell. Performance results of iron removal by alumina electro-generated revealed that the efficiency of the carrier in the method of electro-generated adsorption. The overall Fe2+ of the synthetically solutions and simulated effluent removal efficiencies reached 75% and 65%, respectively. The application of models and isothermal adsorption kinetics complement the results obtained experimentally. Desorption of iron was investigated using a solution of 0.1M NaOH. Regeneration of the tests shows that the adsorbent maintains its capacity after five adsorption/desorption cycles.

Keywords: electrocoagulation, aluminum electrode, electrogenerated alumina, iron, adsorption/desorption

Procedia PDF Downloads 299
727 Development of a New Method for T-Joint Specimens Testing under Shear Loading

Authors: Radek Doubrava, Roman Ruzek

Abstract:

Nonstandard tests are necessary for analyses and verification of new developed structural and technological solutions with application of composite materials. One of the most critical primary structural parts of a typical aerospace structure is T-joint. This structural element is loaded mainly in shear, bending, peel and tension. The paper is focused on the shear loading simulations. The aim of the work is to obtain a representative uniform distribution of shear loads along T-joint during the mechanical testing is. A new design of T-joint test procedure, numerical simulation and optimization of representative boundary conditions are presented. The different conditions and inaccuracies both in simulations and experiments are discussed. The influence of different parameters on stress and strain distributions is demonstrated on T-joint made of CFRP (carbon fiber reinforced plastic). A special test rig designed by VZLU (Aerospace Research and Test Establishment) for T-shear test procedure is presented.

Keywords: T-joint, shear, composite, mechanical testing, finite element analysis, methodology

Procedia PDF Downloads 442
726 FE Analysis of Blade-Disc Dovetail Joints Using Mortar Base Frictional Contact Formulation

Authors: Abbas Moradi, Mohsen Safajoy, Reza Yazdanparast

Abstract:

Analysis of blade-disc dovetail joints is one of the biggest challenges facing designers of aero-engines. To avoid comparatively expensive experimental full-scale tests, numerical methods can be used to simulate loaded disc-blades assembly. Mortar method provides a powerful and flexible tool for solving frictional contact problems. In this study, 2D frictional contact in dovetail has been analysed based on the mortar algorithm. In order to model the friction, the classical law of coulomb and moving friction cone algorithm is applied. The solution is then obtained by solving the resulting set of non-linear equations using an efficient numerical algorithm based on Newton–Raphson Method. The numerical results show that this approach has better convergence rate and accuracy than other proposed numerical methods.

Keywords: computational contact mechanics, dovetail joints, nonlinear FEM, mortar approach

Procedia PDF Downloads 352
725 Antimicrobial Properties of SEBS Compounds with Zinc Oxide and Zinc Ions

Authors: Douglas N. Simões, Michele Pittol, Vanda F. Ribeiro, Daiane Tomacheski, Ruth M. C. Santana

Abstract:

The increasing demand of thermoplastic elastomers is related to the wide range of applications, such as automotive, footwear, wire and cable industries, adhesives and medical devices, cell phones, sporting goods, toys and others. These materials are susceptible to microbial attack. Moisture and organic matter present in some areas (such as shower area and sink), provide favorable conditions for microbial proliferation, which contributes to the spread of diseases and reduces the product life cycle. Compounds based on SEBS copolymers, poly(styrene-b-(ethylene-co-butylene)-b-styrene, are a class of thermoplastic elastomers (TPE), fully recyclable and largely used in domestic appliances like bath mats and tooth brushes (soft touch). Zinc oxide and zinc ions loaded in personal and home care products have become common in the last years due to its biocidal effect. In that sense, the aim of this study was to evaluate the effect of zinc as antimicrobial agent in compounds based on SEBS/polypropylene/oil/ calcite for use as refrigerator seals (gaskets), bath mats and sink squeegee. Two zinc oxides from different suppliers (ZnO-Pe and ZnO-WR) and one masterbatch of zinc ions (M-Zn-ion) were used in proportions of 0%, 1%, 3% and 5%. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The extrusion parameters were kept constant for all materials. Tests specimens were prepared using the injection molding machine. A compound with no antimicrobial additive (standard) was also tested. Compounds were characterized by physical (density), mechanical (hardness and tensile properties) and rheological properties (melt flow rate - MFR). The Japan Industrial Standard (JIS) Z 2801:2010 was applied to evaluate antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The Brazilian Association of Technical Standards (ABNT) NBR 15275:2014 were used to evaluate antifungal properties against Aspergillus niger (A. niger), Aureobasidium pullulans (A. pullulans), Candida albicans (C. albicans), and Penicillium chrysogenum (P. chrysogenum). The microbiological assay showed a reduction over 42% in E. coli and over 49% in S. aureus population. The tests with fungi showed inconclusive results because the sample without zinc also demonstrated an inhibition of fungal development when tested against A. pullulans, C. albicans and P. chrysogenum. In addition, the zinc loaded samples showed worse results than the standard sample when tested against A. niger. The zinc addition did not show significant variation in mechanical properties. However, the density values increased with the rise in ZnO additives concentration, and had a little decrease in M-Zn-ion samples. Also, there were differences in the MFR results in all compounds compared to the standard.

Keywords: antimicrobial, home device, SEBS, zinc

Procedia PDF Downloads 324
724 Ultraviolet Lasing from Vertically-Aligned ZnO Nanowall Array

Authors: Masahiro Takahashi, Kosuke Harada, Shihomi Nakao, Mitsuhiro Higashihata, Hiroshi Ikenoue, Daisuke Nakamura, Tatsuo Okada

Abstract:

Zinc oxide (ZnO) is one of the light emitting materials in ultraviolet (UV) region. In addition, ZnO nanostructures are also attracting increasing research interest as building blocks for UV optoelectronic applications. We have succeeded in synthesizing vertically-aligned ZnO nanostructures by laser interference patterning, which is catalyst-free and non-contact technique. In this study, vertically-aligned ZnO nanowall arrays were synthesized using two-beam interference. The maximum height and average thickness of the ZnO nanowalls were about 4.5 µm and 200 nm, respectively. UV lasing from a piece of the ZnO nanowall was obtained under the third harmonic of a Q-switched Nd:YAG laser excitation, and the estimated threshold power density for lasing was about 150 kW/cm2. Furthermore, UV lasing from the vertically-aligned ZnO nanowall was also achieved. The results indicate that ZnO nanowalls can be applied to random laser.

Keywords: zinc oxide, nanowall, interference laser, UV lasing

Procedia PDF Downloads 504
723 Centrifuge Modeling of Monopiles Subjected to Lateral Monotonic Loading

Authors: H. R. Khodaei, M. Moradi, A. H. Tajik

Abstract:

The type of foundation commonly used today for berthing dolphins is a set of tubular steel piles with large diameters, which are known as monopiles. The design of these monopiles is based on the theories related with laterally loaded piles. One of the most common methods to analyze and design the piles subjected to lateral loads is the p-y curves. In the present study, centrifuge tests are conducted in order to obtain the p-y curves. Series of tests were designed in order to investigate the scaling laws in the centrifuge for monotonic loading. Also, two important parameters, the embedded depth L of the pile in the soil and free length e of the pile, as well as their ratios were studied via five experimental tests. Finally, the p-y curves of API are presented to be compared with the curves obtained from the tests so that the differences could be demonstrated. The results show that the p-y curves proposed by API highly overestimate the lateral load bearing capacity. It suggests that these curves need correction and modification for each site as the soil conditions change.

Keywords: centrifuge modeling, monopile, lateral loading, p-y curves

Procedia PDF Downloads 246
722 Adsorption and Desorption of Emerging Water Contaminants on Activated Carbon Fabrics

Authors: S. Delpeux-Ouldriane, M. Gineys, S. Masson, N. Cohaut, L. Reinert, L. Duclaux, F. Béguin

Abstract:

Nowadays, a wide variety of organic contaminants are present at trace concentrations in wastewater effluents. In order to face these pollution problems, the implementation of the REACH European regulation has defined lists of targeted pollutants to be eliminated selectively in water. It therefore implies the development of innovative and more efficient remediation techniques. In this sense, adsorption processes can be successfully used to achieve the removal of organic compounds in waste water treatment processes, especially at low pollutant concentration. Especially, activated carbons possessing a highly developed porosity demonstrate high adsorption capacities. More specifically, carbon cloths show high adsorption rates, an easily handling, a good mechanical integrity and regeneration potentialities. When loaded with pollutants, these materials can be indeed regenerated using an electrochemical polarization.

Keywords: nanoporous carbons, activated carbon cloths, adsorption, micropollutants, emerging contaminants, regeneration, electrochemistry

Procedia PDF Downloads 401
721 Polyacrylate Modified Copper Nanoparticles with Controlled Size

Authors: Robert Prucek, Aleš Panáček, Jan Filip, Libor Kvítek, Radek Zbořil

Abstract:

The preparation of Cu nanoparticles (NPs) through the reduction of copper ions by sodium borohydride in the presence of sodium polyacrylate with a molecular weight of 1200 is reported. Cu NPs were synthesized at a concentration of copper salt equal to 2.5, 5, and 10 mM, and at a molar ratio of copper ions and monomeric unit of polyacrylate equal to 1:2. The as-prepared Cu NPs have diameters of about 2.5–3 nm for copper concentrations of 2.5 and 5 mM, and 6 nm for copper concentration of 10 mM. Depending on the copper salt concentration and concentration of additionally added polyacrylate to Cu particle dispersion, primarily formed NPs grow through the process of aggregation and/or coalescence into clusters and/or particles with a diameter between 20–100 nm. The amount of additionally added sodium polyacrylate influences the stability of Cu particles against air oxidation. The catalytic efficiency of the prepared Cu particles for the reduction of 4-nitrophenol is discussed.

Keywords: copper, nanoparticles, sodium polyacrylate, catalyst, 4-nitrophenol

Procedia PDF Downloads 277
720 Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Sources

Authors: Annisa Ulfah Pristya, Andi Setiawan

Abstract:

Electricity is the primary requirement today's world, including Indonesia. This is because electricity is a source of electrical energy that is flexible to use. Fossil energy sources are the major energy source that is used as a source of energy power plants. Unfortunately, this conversion process impacts on the depletion of fossil fuel reserves and causes an increase in the amount of CO2 in the atmosphere, disrupting health, ozone depletion, and the greenhouse effect. Solutions have been applied are solar cells, ocean wave power, the wind, water, and so forth. However, low efficiency and complicated treatment led to most people and industry in Indonesia still using fossil fuels. Referring to this Fuel Cell was developed. Fuel Cells are electrochemical technology that continuously converts chemical energy into electrical energy for the fuel and oxidizer are the efficiency is considerably higher than the previous natural source of electrical energy, which is 40-60%. However, Fuel Cells still have some weaknesses in terms of the use of an expensive platinum catalyst which is limited and not environmentally friendly. Because of it, required the simultaneous source of electrical energy and environmentally friendly. On the other hand, Indonesia is a rich country in marine sediments and organic content that is never exhausted. Stacking the organic component can be an alternative energy source continued development of fuel cell is A Microbial Fuel Cell. Microbial Fuel Cells (MFC) is a tool that uses bacteria to generate electricity from organic and non-organic compounds. MFC same tools as usual fuel cell composed of an anode, cathode and electrolyte. Its main advantage is the catalyst in the microbial fuel cell is a microorganism and working conditions carried out in neutral solution, low temperatures, and environmentally friendly than previous fuel cells (Chemistry Fuel Cell). However, when compared to Chemistry Fuel Cell, MFC only have an efficiency of 40%. Therefore, the authors provide a solution in the form of Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Source. Nano-MFC has the advantage of an effective, high efficiency, cheap and environmental friendly. Related stakeholders that helped are government ministers, especially Energy Minister, the Institute for Research, as well as the industry as a production executive facilitator. strategic steps undertaken to achieve that begin from conduct preliminary research, then lab scale testing, and dissemination and build cooperation with related parties (MOU), conduct last research and its applications in the field, then do the licensing and production of Nano-MFC on an industrial scale and publications to the public.

Keywords: CNT, efficiency, electric, microorganisms, sediment

Procedia PDF Downloads 407
719 The Nonlinear Research on Rotational Stiffness of Cuplock Joint

Authors: Liuyu Zhang, Di Mo, Qiang Yan, Min Liu

Abstract:

As the important equipment in the construction field, cuplock scaffold plays an important role in the construction process. As a scaffold connecting member, cuplock joint is of great importance. In order to explore the rotational stiffness nonlinear characteristics changing features of different structural forms of cuplock joint in different tightening torque condition under different conditions of load, ANSYS is used to establish four kinds of cuplock joint models with different forces to simulate the real force situation. By setting the different load conditions which means the cuplock is loaded at a certain distance from the cuplock joint in a certain direction until the cuplock is damaged and considering the gap between the cross bar joint and the vertical bar, the differences in the influence of the structural form and tightening torque on the rotation stiffness of the cuplock under different load conditions are compared. It is significantly important to improve the accuracy of calculating bearing capacity and stability of the cuplock steel pipe scaffold.

Keywords: cuplock joint, highway tunnel, non-linear characteristics, rotational stiffness, scaffold stability, theoretical analysis

Procedia PDF Downloads 122
718 On One New Solving Approach of the Plane Mixed Problem for an Elastic Semistrip

Authors: Natalia D. Vaysfel’d, Zinaida Y. Zhuravlova

Abstract:

The loaded plane elastic semistrip, the lateral boundaries of which are fixed, is considered. The integral transformations are applied directly to Lame’s equations. It leads to one dimensional boundary value problem in the transformations’ domain which is formulated as a vector one. With the help of the matrix differential calculation’s apparatus and apparatus of Green matrix function the exact solution of a vector problem is constructed. After the satisfying the boundary condition at the semi strip’s edge the problem is reduced to the solving of the integral singular equation with regard of the unknown stress at the semis trip’s edge. The equation is solved with the orthogonal polynomials method that takes into consideration the real singularities of the solution at the ends of integration interval. The normal stress at the edge of the semis trip were calculated and analyzed.

Keywords: semi strip, Green's Matrix, fourier transformation, orthogonal polynomials method

Procedia PDF Downloads 431
717 Study the Efficiency of Some Homopolymers as Lube Oil Additives

Authors: Amal M. Nassar, Nehal S. Ahmed, Rasha S. Kamal

Abstract:

Some lube oil additives improve the base oil performance such as viscosity index improvers and pour point depressants which are the most important type of additives. In the present work, some homopolymeric additives were prepared by esterification of acrylic acid with different alcohols (1-dodecyl, 1-hexadecyl, and 1-octadecyl )and then homopolymerization of the prepared esters with different ratio of benzoyl peroxide catalyst (0.25%& 0.5 % and 1%). Structure of the prepared esters was confirmed by Infra-Red Spectroscopy. The molecular weights of the prepared homopolymers were determined by using Gel Permeation Chromatograph. The efficiency of the prepared homopolymers as viscosity index improvers and pour point depressants for lube oil was the investigation. It was found that all the prepared homopolymers are effective as viscosity index improvers and pour point depressants.

Keywords: lube oil additives, homopolymerization, viscosity index improver, pour point depressant

Procedia PDF Downloads 232
716 Experimental Investigations to Measure Surface Fatigue Wear in Journal Bearing by Using Vibration Signal Analysis

Authors: Amarnath M., Ramachandra C. G., H. Chelladurai, P..Sateesh Kumar, K. Santhosh Kumar

Abstract:

Journal bearings are extensively used sliding contact machine elements to support radial/axial loaded rotors used in various applications viz. automobile crankshaft, turbine propeller shaft, rope conveyer, heavy duty electric motors. The primary reasons for the failures of these bearings include unstable lubricant film, oil degradation, misalignment, etc. This paper describes the results of experimental investigations carried out to detect surface fatigue wear developed on load bearing the contact surfaces of journal bearing. The test bearing was subjected to fatigue load cycles over a period of 600 hours. The vibration signals were acquired from the journal bearing at regular intervals of 100 hrs. These signals were post-processed by using the vibration analysis technique to obtain diagnostic information of wear propagated in the journal-bearing system.

Keywords: fatigue, journal bearing, sound signals, vibration signals, wear

Procedia PDF Downloads 81
715 Multiparticulate SR Formulation of Dexketoprofen Trometamol by Wurster Coating Technique

Authors: Bhupendra G. Prajapati, Alpesh R. Patel

Abstract:

The aim of this research work is to develop sustained release multi-particulates dosage form of Dexketoprofen trometamol, which is the pharmacologically active isomer of ketoprofen. The objective is to utilization of active enantiomer with minimal dose and administration frequency, extended release multi-particulates dosage form development for better patience compliance was explored. Drug loaded and sustained release coated pellets were prepared by fluidized bed coating principle by wurster coater. Microcrystalline cellulose as core pellets, povidone as binder and talc as anti-tacking agents were selected during drug loading while Kollicoat SR 30D as sustained release polymer, triethyl citrate as plasticizer and micronized talc as an anti-adherent were used in sustained release coating. Binder optimization trial in drug loading showed that there was increase in process efficiency with increase in the binder concentration. 5 and 7.5%w/w concentration of Povidone K30 with respect to drug amount gave more than 90% process efficiency while higher amount of rejects (agglomerates) were observed for drug layering trial batch taken with 7.5% binder. So for drug loading, optimum Povidone concentration was selected as 5% of drug substance quantity since this trial had good process feasibility and good adhesion of the drug onto the MCC pellets. 2% w/w concentration of talc with respect to total drug layering solid mass shows better anti-tacking property to remove unnecessary static charge as well as agglomeration generation during spraying process. Optimized drug loaded pellets were coated for sustained release coating from 16 to 28% w/w coating to get desired drug release profile and results suggested that 22% w/w coating weight gain is necessary to get the required drug release profile. Three critical process parameters of Wurster coating for sustained release were further statistically optimized for desired quality target product profile attributes like agglomerates formation, process efficiency, and drug release profile using central composite design (CCD) by Minitab software. Results show that derived design space consisting 1.0 to 1.2 bar atomization air pressure, 7.8 to 10.0 gm/min spray rate and 29-34°C product bed temperature gave pre-defined drug product quality attributes. Scanning Image microscopy study results were also dictate that optimized batch pellets had very narrow particle size distribution and smooth surface which were ideal properties for reproducible drug release profile. The study also focused on optimized dexketoprofen trometamol pellets formulation retain its quality attributes while administering with common vehicle, a liquid (water) or semisolid food (apple sauce). Conclusion: Sustained release multi-particulates were successfully developed for dexketoprofen trometamol which may be useful to improve acceptability and palatability of a dosage form for better patient compliance.

Keywords: dexketoprofen trometamol, pellets, fluid bed technology, central composite design

Procedia PDF Downloads 136
714 3D Nanostructured Assembly of 2D Transition Metal Chalcogenide/Graphene as High Performance Electrocatalysts

Authors: Sunil P. Lonkar, Vishnu V. Pillai, Saeed Alhassan

Abstract:

Design and development of highly efficient, inexpensive, and long-term stable earth-abundant electrocatalysts hold tremendous promise for hydrogen evolution reaction (HER) in water electrolysis. The 2D transition metal dichalcogenides, especially molybdenum disulfide attracted a great deal of interests due to its high electrocatalytic activity. However, due to its poor electrical conductivity and limited exposed active sites, the performance of these catalysts is limited. In this context, a facile and scalable synthesis method for fabrication nanostructured electrocatalysts composed 3D graphene porous aerogels supported with MoS₂ and WS₂ is highly desired. Here we developed a highly active and stable electrocatalyst catalyst for the HER by growing it into a 3D porous architecture on conducting graphene. The resulting nanohybrids were thoroughly investigated by means of several characterization techniques to understand structure and properties. Moreover, the HER performance of these 3D catalysts is expected to greatly improve in compared to other, well-known catalysts which mainly benefits from the improved electrical conductivity of the by graphene and porous structures of the support. This technologically scalable process can afford efficient electrocatalysts for hydrogen evolution reactions (HER) and hydrodesulfurization catalysts for sulfur-rich petroleum fuels. Owing to the lower cost and higher performance, the resulting materials holds high potential for various energy and catalysis applications. In typical hydrothermal method, sonicated GO aqueous dispersion (5 mg mL⁻¹) was mixed with ammonium tetrathiomolybdate (ATTM) and tungsten molybdate was treated in a sealed Teflon autoclave at 200 ◦C for 4h. After cooling, a black solid macroporous hydrogel was recovered washed under running de-ionized water to remove any by products and metal ions. The obtained hydrogels were then freeze-dried for 24 h and was further subjected to thermal annealing driven crystallization at 600 ◦C for 2h to ensure complete thermal reduction of RGO into graphene and formation of highly crystalline MoS₂ and WoS₂ phases. The resulting 3D nanohybrids were characterized to understand the structure and properties. The SEM-EDS clearly reveals the formation of highly porous material with a uniform distribution of MoS₂ and WS₂ phases. In conclusion, a novice strategy for fabrication of 3D nanostructured MoS₂-WS₂/graphene is presented. The characterizations revealed that the in-situ formed promoters uniformly dispersed on to few layered MoS₂¬-WS₂ nanosheets that are well-supported on graphene surface. The resulting 3D hybrids hold high promise as potential electrocatalyst and hydrodesulfurization catalyst.

Keywords: electrocatalysts, graphene, transition metal chalcogenide, 3D assembly

Procedia PDF Downloads 136
713 Topical Delivery of Griseofulvin via Lipid Nanoparticles

Authors: Yann Jean Tan, Hui Meng Er, Choy Sin Lee, Shew Fung Wong, Wen Huei Lim

Abstract:

Griseofulvin is a long standing fungistatic agent against dermatophytosis. Nevertheless, it has several drawbacks such as poor and highly variable bio availability, long duration of treatment, systemic side effects and drug interactions. Targeted treatment for the superficial skin infection, dermatophytosis via topical route could be beneficial. Nevertheless, griseofulvin is only available in the form of oral preparation. Hence, it generates interest in developing a topical formulation for griseofulvin, by using lipid nano particle as the vehicle. Lipid nanoparticle is a submicron colloidal carrier with a core that is solid in nature (lipid). It has combined advantages of various traditional carriers and is a promising vehicle for topical delivery. The griseofulvin loaded lipid nano particles produced using high pressure homogenization method were characterized and investigated for its skin targeting effect in vitro. It has a mean particle size of 179.8±4.9 nm with polydispersity index of 0.306±0.011. Besides, it showed higher skin permeation and better skin targeting effect compared to the griseofulvin suspension.

Keywords: lipid nanoparticles, griseofulvin, topical, dermatophytosis

Procedia PDF Downloads 458
712 Synthesis of Biolubricant Base Stock from Palm Methyl Ester

Authors: Nur Sulihatimarsyila Abd Wafti, Harrison Lik Nang Lau, Nabilah Kamaliah Mustaffa, Nur Azreena Idris

Abstract:

The use of biolubricant has gained its popularity over the last decade. Base stock produced using methyl ester and trimethylolethane (TME) can be potentially used for biolubricant production due to its biodegradability, non-toxicity and good thermal stability. The synthesis of biolubricant base stock e.g. triester (TE) via transesterification of palm methyl ester and TME in the presence of sodium methoxide as the catalyst was conducted. Factors influencing the reaction conditions were investigated including reaction time, temperature and pressure. The palm-based biolubricant base stock produced was analysed for its monoester (ME), diester (DE) and TE contents using gas chromatography as well as its lubricating properties such as viscosity, viscosity index, oxidation stability, and density. The resulting base stock containing 90 wt% TE was successfully synthesized.

Keywords: biolubricant, methyl ester, triester transesterification, lubricating properties

Procedia PDF Downloads 445
711 Branding a Powerful Catalyst for Rural Economic Development

Authors: Mojtaba Borhani

Abstract:

By employing the unique characteristics of a region, its economy, climate, geography, and culture, rural communities can create distinctive products. This approach not only boosts economic opportunities but also promotes sustainable growth and preserves cultural heritage. A strategic focus on branding and intellectual property (IP) is essential. By developing strong brands, rural areas can differentiate their products, increase their market value, and build consumer loyalty. Moreover, IP protection safeguards the creative and innovative output of rural communities, incentivizing further development. Rural branding can serve as a cornerstone for community empowerment. It can help to prevent rural exodus by providing economic incentives and a strong sense of place. Additionally, by protecting traditional knowledge and cultural expressions, branding contributes to the long-term sustainability of rural livelihoods.

Keywords: intellectual property, regional branding, sustainable development, rural economy

Procedia PDF Downloads 24
710 Application of Low Frequency Ac Magnetic Field for Controlled Delivery of Drugs by Magnetic Nanoparticles

Authors: K. Yu Vlasova, M. A. Abakumov, H. Wishwarsao, M. Sokolsky, N. V. Nukolova, A. G. Majouga, Y. I. Golovin, N. L. Klyachko, A. V. Kabanov

Abstract:

Introduction:Nowadays pharmaceutical medicine is aimed to create systems for combined therapy, diagnostic, drug delivery and controlled release of active molecules to target cells. Magnetic nanoparticles (MNPs) are used to achieve this aim. MNPs can be applied in molecular diagnostics, magnetic resonance imaging (T1/T2 contrast agents), drug delivery, hyperthermia and could improve therapeutic effect of drugs. The most common drug containers, containing MNPs, are liposomes, micelles and polymeric molecules bonded to the MNPs surface. Usually superparamagnetic nanoparticles are used (the general diameter is about 5-6 nm) and all effects of high frequency magnetic field (MF) application are based on Neel relaxation resulting in heating of surrounded media. In this work we try to develop a new method to improve drug release from MNPs under super low frequency MF. We suppose that under low frequency MF exposures the Brown’s relaxation dominates and MNPs rotation could occur leading to conformation changes and release of bioactive molecules immobilized on MNPs surface.The aim of this work was to synthesize different systems with active drug (biopolymers coated MNPs nanoclusters with immobilized enzymes and doxorubicin (Dox) loaded magnetic liposomes/micelles) and investigate the effect of super low frequency MF on these drug containers. Methods: We have synthesized MNPs of magnetite with magnetic core diameter 7-12 nm . The MNPs were coated with block-copolymer of polylysine and polyethylene glycol. Superoxide dismutase 1 (SOD1) was electrostatically adsorbed on the surface of the clusters. Liposomes were prepared as follow: MNPs, phosphatidylcholine and cholesterol were dispersed in chloroform, dried to get film and then dispersed in distillated water, sonicated. Dox was added to the solution, pH was adjusted to 7.4 and excess of drug was removed by centrifugation through 3 kDa filters. Results: Polylysine coated MNPs formed nanosized clusters (as observed by TEM) with intensity average diameter of 112±5 nm and zeta potential 12±3 mV. After low frequency AC MF exposure we observed change of immobilized enzyme activity and hydrodynamic size of clusters. We suppose that the biomolecules (enzymes) are released from the MNPs surface followed with additional aggregation of complexes at the MF in medium. Centrifugation of the nanosuspension after AC MF exposures resulted in increase of positive charge of clusters and change in enzyme concentration in comparison with control sample without MF, thus confirming desorption of negatively charged enzyme from the positively charged surface of MNPs. Dox loaded magnetic liposomes had average diameter of 160±8 nm and polydispersity index (PDI) 0.25±0.07. Liposomes were stable in DW and PBS at pH=7.4 at 370C during a week. After MF application (10 min of exposure, 50 Hz, 230 mT) diameter of liposomes raised to 190±10 nm and PDI was 0.38±0.05. We explain this by destroying and/or reorganization of lipid bilayer, that leads to changes in release of drug in comparison with control without MF exposure. Conclusion: A new application of low frequency AC MF for drug delivery and controlled drug release was shown. Investigation was supported by RSF-14-13-00731 grant, K1-2014-022 grant.

Keywords: magnetic nanoparticles, low frequency magnetic field, drug delivery, controlled drug release

Procedia PDF Downloads 481
709 Study of Dispersion of Silica and Chitosan Nanoparticles into Gelatin Film

Authors: Mohit Batra, Noel Sarkar, Jayeeta Mitra

Abstract:

In this study silica nanoparticles were synthesized using different methods and different silica sources namely Tetraethyl ortho silicate (TEOS), Sodium Silicate, Rice husk while chitosan nanoparticles were prepared with ionic gelation method using Sodium tripolyphosphate (TPP). Size and texture of silica nanoparticles were studied using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) along with the effect of change in concentration of various reagents in different synthesis processes. Size and dispersion of Silica nanoparticles prepared from TEOS using stobber’s method were found better than other methods while nanoparticles prepared using rice husk were cheaper than other ones. Catalyst found to play a very significant role in controlling the size of nanoparticles in all methods.

Keywords: silica nanoparticles, gelatin, bio-nanocomposites, SEM, TEM, chitosan

Procedia PDF Downloads 315
708 Low Temperature Synthesis of Styrene via Catalytic Dehydrogenation of Ethylbenzene Using Vanadia Support SnO₂ Catalysts

Authors: S. Said, Samira M. Abdel-Azim, Aya M. Matloob

Abstract:

Nowadays, one of the most important industries is how to prepare a starting material like (styrene) which is used for the preparation of many petrochemical products in simple and inexpensive ways. Oxidative dehydrogenation of ethylbenzene (using CO2 as a soft oxidant) can solve this issue when using highly effective catalysts like SnO₂ and its nanocomposites (V₂Ox/SnO₂.) This study shows the effect of different synthesis methods of SnO₂ either by ethylene glycol or MOF then, uses the impregnation method for the preparation of its nanocomposite catalysts (V₂Ox/SnO₂.). The prepared catalysts were characterized by using different analytical techniques like XRD, BET, FTIR, TGA, XPS, and H₂-TPR. Oxidative dehydrogenation experimental results demonstrated that the composite V loading of 1 and 5 wt.% V₂Ox/SnO₂ (MOF &EG) catalyst exhibited extraordinarily high catalytic performance with selectivity toward styrene formation > 90% at 500oC, which can be attributed to the superior surface, textural, and structural properties of nanocomposites catalysts.

Keywords: SnO₂, vanadium oxide, ethylbenzene dehydrogenation, styrene, CO₂

Procedia PDF Downloads 24
707 Exergy: An Effective Tool to Quantify Sustainable Development of Biodiesel Production

Authors: Mahmoud Karimi, Golmohammad Khoobbakht

Abstract:

This study focuses on the exergy flow analysis in the transesterification of waste cooking oil with methanol to decrease the consumption of materials and energy and promote the use of renewable resources. The exergy analysis performed is based on the thermodynamic performance parameters namely exergy destruction and exergy efficiency to investigate the effects of variable parameters on renewability of transesterification. The experiment variables were methanol to WCO ratio, catalyst concentration and reaction temperature in the transesterification reaction. The optimum condition with yield of 90.2% and exergy efficiency of 95.2% was obtained at methanol to oil molar ratio of 8:1, 1 wt.% of KOH, at 55 °C. In this condition, the total waste exergy was found to be 45.4 MJ for 1 kg biodiesel production. However high yield in the optimal condition resulted high exergy efficiency in the transesterification of WCO with methanol.

Keywords: biodiesel, exergy, thermodynamic analysis, transesterification, waste cooking oil

Procedia PDF Downloads 193
706 Liquid Fuel Production via Catalytic Pyrolysis of Waste Oil

Authors: Malee Santikunaporn, Neera Wongtyanuwat, Channarong Asavatesanupap

Abstract:

Pyrolysis of waste oil is an effective process to produce high quality liquid fuels. In this work, pyrolysis experiments of waste oil over Y zeolite were carried out in a semi-batch reactor under a flow of nitrogen at atmospheric pressure and at different reaction temperatures (350-450 oC). The products were gas, liquid fuel, and residue. Only liquid fuel was further characterized for its composition and properties by using gas chromatography, thermogravimetric analyzer, and bomb calorimeter. Experimental results indicated that the pyrolysis reaction temperature significantly affected both yield and composition distribution of pyrolysis oil. An increase in reaction temperature resulted in increased fuel yield, especially gasoline fraction. To obtain high amount of fuel, the optimal reaction temperature should be higher than 350 oC. A presence of Y zeolite in the system enhanced the cracking activity. In addition, the pyrolysis oil yield is proportional to the catalyst quantity.

Keywords: gasoline, diesel, pyrolysis, waste oil, Y zeolite

Procedia PDF Downloads 198