Search results for: hypothetical proteins
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1173

Search results for: hypothetical proteins

543 In-silico Analysis of Plumbagin against Cancer Receptors

Authors: Arpita Roy, Navneeta Bharadvaja

Abstract:

Cancer is an uncontrolled growth of abnormal cells in the body. It is one of the most serious diseases on which extensive research work has been going on all over the world. Structure-based drug designing is a computational approach which helps in the identification of potential leads that can be used for the development of a drug. Plumbagin is a naphthoquinone derivative from Plumbago zeylanica roots and belongs to one of the largest and diverse groups of plant metabolites. Anticancer and antiproliferative activities of plumbagin have been observed in animal models as well as in cell cultures. Plumbagin shows inhibitory effects on multiple cancer-signaling proteins; however, the binding mode and the molecular interactions have not yet been elucidated for most of these protein targets. In this investigation, an attempt to provide structural insights into the binding mode of plumbagin against four cancer receptors using molecular docking was performed. Plumbagin showed minimal energy against targeted cancer receptors, therefore suggested its stability and potential towards different cancers. The least binding energies of plumbagin with COX-2, TACE, and CDK6 are -5.39, -4.93, -and 4.81 kcal/mol, respectively. Comparison studies of plumbagin with different receptors showed that it is a promising compound for cancer treatment. It was also found that plumbagin obeys the Lipinski’s Rule of 5 and computed ADMET properties which showed drug likeliness and improved bioavailability. Since plumbagin is from a natural source, it has reduced side effects, and these results would be useful for cancer treatment.

Keywords: cancer, receptor, plumbagin, docking

Procedia PDF Downloads 135
542 Regulation of PKA-Dependent Calcineurin as a Switch in Cell Secretion

Authors: Hani M. M. Alothaid, Louise Robson, Richmond Muimo

Abstract:

This study will investigate cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) dependent calcineurin (Cn), known as protein phosphatase 2 B (PP2B) as well, regulation of chloride ion (Cl⁻) secretion and the release of pro-inflammatory molecules in immune cells such as cytokines. THP-1-derived monocytes, primary human monocytes and the bronchial epithelial cell line (16HBE14o-) were used in this study. The 16HBE14o- cells were chosen as positive control. Hence, to further confirm the expression of cystic fibrosis transmembrane conductance regulator (CFTR), calcium binding protein (S100A10), annexin A2 (AnxA2) and calcineurin A subunit (CnA) in all three cell types, cell lysate was probed against corresponding primary antibodies by immunoblotting. Western blot analyses show the expression of CFTR, AnxA2, CnA and S100A10 in THP-1-derived monocytes and primary human monocytes. In conclusion, CFTR, S100A10, CnA and AnxA2 are expressed in THP-1-derived monocytes and primary human monocytes and regulate Cl⁻ secretion. Also, they may play a role in the pro-inflammatory molecules release. The ongoing work will confirm interaction between these proteins in the cell lines.

Keywords: annexin A2, calcineurin, CFTR, chloride, monocytes, pro-inflammatory molecules, S100A10

Procedia PDF Downloads 227
541 Impact of Corn Gluten Hydrolysate on Seedling Growth

Authors: Jyotika Chopra, Dinesh Goyal

Abstract:

A study was initiated to examine the effects of corn gluten hydrolysate on seedlings growth and its development. Corn gluten is the byproduct of starch industry rich in proteins was hydrolysed by acid and alkali, and the impact of hydrolysate was studied on seed germination of Vigna radiata, Phaseolus vulagris (Fabaceae) and Triticum aestivum and Oryza sativa (Gramineae). For this, the optimum hydrolysis was obtained by 4NHCl and 4M NaOH where insoluble protein in gluten was broken down to glutamic acid, alanine, aspartic acid which was initially confirmed by biuret test, xanthoproteic, solubility and chromatographic tests. The seeds of above families were separately treated with different dilutions of corn gluten hydrolysate ranging from 1-100% to see effects produced by these dilutions on seed germination, plumule, and radical growth. The seedlings were put in the Petri plates and placed in the optimized conditions of temperature (37˚C) and photoperiod of 16:8 hours. The results indicate the plumule of all seeds shows the increase in growth pattern up to 25.75%. Whereas radical shows the increase in growth up to 25.88% till 10% of dilution of corn and wheat gluten hydrolysate with respect to water as blank. Further, there is decrease in growth from 30- 100% of dilutions of both, the hydrolysate indicates the inhibitory effects which unveil about the careful usage of gluten hydrolysate.

Keywords: corn gluten, characterization, hydrolysis, seedling growth

Procedia PDF Downloads 108
540 Protective Effect of hsa-miR-124 against to Bacillus anthracis Toxins on Human Macrophage Cells

Authors: Ali Oztuna, Meral Sarper, Deniz Torun, Fatma Bayrakdar, Selcuk Kilic, Mehmet Baysallar

Abstract:

Bacillus anthracis is one of the biological agents most likely to be used in case of bioterrorist attack as well as being the cause of anthrax. The bacterium's major virulence factors are the anthrax toxins and an antiphagocytic polyglutamic capsule. TEM8 (ANTXR1) and CMG2 (ANTXR2) are ubiquitously expressed type I transmembrane proteins, and ANTXR2 is the major receptor for anthrax toxins. MicroRNAs are 21-24 bp small noncoding RNAs that regulate gene expression by base pairing with the 3' UTR (untranslated regions) of their target mRNAs resulting in mRNA degradation and/or translational repression. MicroRNAs contribute to regulation of most biological processes and influence numerous pathological states like infectious disease. In this study, post-exposure (toxins) protective effect of the hsa-miR-124-3p against Bacillus anthracis was examined. In this context, i) THP-1 and U937 cells were differentiated to MΦ macrophage, ii) miRNA transfection efficiencies were evaluated by flow cytometry and qPCR, iii) protection against Bacillus anthracis toxins were investigated by XTT, cAMP ELISA and MEK2 cleavage assays. Acknowledgements: This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant SBAG-218S467.

Keywords: ANTXR2, hsa-miR-124-3p, MΦ macrophage, THP-1, U937

Procedia PDF Downloads 146
539 Determination of Inactivation and Recovery of Saccharomyces cerevisiae Cells after the Gas-Phase Plasma Treatment

Authors: Z. Herceg, V. Stulic, T. Vukusic, A. Rezek Jambrak

Abstract:

Gas phase plasma treatment is a new nonthermal technology used for food and water decontamination. In this study, we have investigated influence of the gas phase plasma treatment on yeast cells of S. cerevisiae. Sample was composed of 10 mL of yeast suspension and 190 mL of 0.01 M NaNO₃ with a medium conductivity of 100 µS/cm. Samples were treated in a glass reactor with a point- to-plate electrode configuration (high voltage electrode-titanium wire in the gas phase and grounded electrode in the liquid phase). Air or argon were injected into the headspace of the reactor at the gas flow of 5 L/min. Frequency of 60, 90 and 120 Hz, time of 5 and 10 min and positive polarity were defined parameters. Inactivation was higher with the applied higher frequency, longer treatment time and injected argon. Inactivation was not complete which resulted in complete recovery. Cellular leakage (260 nm and 280 nm) was higher with a longer treatment time and higher frequency. Leakage at 280 nm which defines a leakage of proteins was higher than leakage at 260 nm which defines a leakage of nucleic acids. The authors would like to acknowledge the support by Croatian Science Foundation and research project 'Application of electrical discharge plasma for preservation of liquid foods'.

Keywords: Saccharomyces cerevisiae, inactivation, gas-phase plasma treatment, cellular leakage

Procedia PDF Downloads 191
538 Preliminary Study of Material Composition of Wreathed Hornbill (Rhycticeros undulatus) Nest Cover Entrance in Mount Ungaran

Authors: Margareta Rahayuningsih, Siti Alimah, Novita Hermayani, Misbahul Munir

Abstract:

Wreathed Hornbill (Rhycticeros undulatus) was a protected bird that we can found in Mount Ungaran. It is known that the bird have been breeding and nesting on the mountain. The objective of the research was to analysis the materials composition of the Wreathed Hornbill nest wall plaster. The study was carried out in Curug Lawe and Gunung Gentong, Mount Ungaran Central Java. Nest wall plaster samples were collected from nest cavities were used by hornbill but after they left from the nest. The nest tree species on Gunung Gentong was Syzygium antisepticum and Syzigium glabratum on Curug Lawe. Materials analysis used proximate analysis and have been done on Chemistry Laboratory of Semarang State University. The result of proximate analysis showed that the material composition of nest wall plaster such as water, proteins. lipid, carbohydrate, and ash between Curug Lawe and Gunung Gentong was different. Except Carbohidrate, the highest componen showed in the nest wall plaster on Gunung Gentong.

Keywords: Mount Ungaran, nest cover entrance, Rhyticeros undulatus, proximate analysis

Procedia PDF Downloads 240
537 The Evolution of the Strategic Plasma Industry

Authors: Zahra Ghasemi, Fatemeh Babaei

Abstract:

Plasma-derived medicinal products are vital categories of biological therapies. These products are used to treat rare, chronic, severe, and life-threatening conditions, such as bleeding disorders (Hemophilia A and B), hemolytic disease of the fetus and newborn, severe infections, burns and liver diseases, and other diseases caused by the absence or malfunction of certain proteins. In addition, they improve the patient’s quality of life. The process of producing plasma-derived medicinal products begins with the collection of human plasma from healthy donors. This initial stage is complex and is monitored with high precision and sensitivity by global authorities to maintain the quality and safety of the final products as well as the health of the donors. The amount of manufactured plasma-derived medicinal products depends on the availability of its raw material, human plasma, so collecting enough plasma for fractionation is essential. Therefore, adopting a suitable national policy regarding plasma donation, establishing collection centers, and increasing public awareness of the importance of plasma donation will improve any country’s conditions regarding the timely and sufficient supply of these medicines. In this study, we tried to briefly examine the importance of sustainability of the plasma industry and its situation in our beloved country of Iran.

Keywords: plasma, source plasma, plasma-derived medicinal products, fractionation

Procedia PDF Downloads 108
536 Potential Activities of Human Endogenous Retroviral kDNA in Melanoma Pathogenesis and HIV-1 Infection

Authors: Jianli Dong, Fangling Xu, Gengming Huang

Abstract:

Human endogenous retroviral elements (HERVs) comprise approximately 8% of the human genome. They are thought to be germline-integrated genetic remnants of retroviral infections. Although HERV sequences are highly defective, some, especially the K type (HERV-K), have been shown to be expressed and may have biological activities in the pathogenesis of cancer, chronic inflammation and autoimmune diseases. We found that HERV-K GAG and ENV proteins were strongly expressed in pleomorphic melanoma cells. We also detected a critical role of HERV-K ENV in mediating intercellular fusion and colony formation of melanoma cells. Interestingly, we found that levels of HERV-K GAG and ENV expression correlated with the activation of ERK and loss of p16INK4A in melanoma cells, and inhibition of MEK or CDK4, especially in combination, reduced HERV-K expression in melanoma cells. We also performed a reverse transcription-polymerase chain reaction (RT-PCR) assay using DNase I digestion to remove “contaminating” HERV-K genomic DNA and examined HERV-K RNA expression in plasma samples from HIV-1 infected individuals. We found a covariation between HERV-K RNA expression and CD4 cell counts in HIV-1 positive samples. Although a causal link between HERV-K activation and melanoma development, and between HERV-K activation, HIV-1 infection and CD4 cell count have yet to be determined, existing data support the further research efforts in HERV-K.

Keywords: CD4 cell, HERV-K, HIV-1, melanoma

Procedia PDF Downloads 229
535 Immunostimulatory Response of Supplement Feed in Fish against Aeromonas hydrophila

Authors: Shikha Rani, Neeta Sehgal, Vipin Kumar Verma, Om Prakash

Abstract:

Introduction: Fish is an important protein source for humans and has great economic value. Fish cultures are affected due to various anthropogenic activities that lead to bacterial and viral infections. Aeromonas hydrophila is a fish pathogenic bacterium that causes several aquaculture outbreaks throughout the world and leads to huge mortalities. In this study, plants of no commercial value were used to investigate their immunostimulatory, antioxidant, anti-inflammatory, anti-bacterial, and disease resistance potential in fish against Aeromonas hydrophila, through fish feed fortification. Methods: The plant was dried at room temperature in the shade, dissolved in methanol, and analysed for biological compounds through GC-MS/MS. DPPH, FRAP, Phenolic, and flavonoids were estimated following standardized protocols. In silico molecular docking was also performed to validate its broad-spectrum activities based on binding affinity with specific proteins. Fish were divided into four groups (n=6; total 30 in a group): Group 1, non-challenged fish (fed on a non-supplemented diet); Group 2, fish challenged with bacteria (fed on a non-supplemented diet); Group 3 and 4, fish challenged with bacteria (A. hydrophila) and fed on plant supplemented feed at 2.5% and 5%. Blood was collected from the fish on 0, 7th, 14th, 21st, and 28th days. Serum was separated for glutamic-oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase assay (ALP), lysozyme activity assay, superoxide dismutase assay (SOD), lipid peroxidation assay (LPO) and molecular parameters (including cytokine levels) were estimated through ELISA. The phagocytic activity of macrophages from the spleen and head kidney, along with quantitative analysis of immune-related genes, were analysed in different tissue samples. The digestive enzymes (Pepsin, Trypsin, and Chymotrypsin) were also measured to evaluate the effect of plant-supplemented feed on freshwater fish. Results and Discussion: GC-MS/MS analysis of a methanolic extract of plant validated the presence of key compounds having antioxidant, anti-inflammatory, anti-bacterial, anti-inflammatory, and immunomodulatory activities along with disease resistance properties. From biochemical investigations like ABTS, DPPH, and FRAP, the amount of total flavonoids, phenols, and promising binding affinities towards different proteins in molecular docking analysis helped us to realize the potential of this plant that can be used for investigation in the supplemented feed of fish. Measurement liver function tests, ALPs, oxidation-antioxidant enzyme concentrations, and immunoglobulin concentrations in the experimental groups (3 and 4) showed significant improvement as compared to the positive control group. The histopathological evaluation of the liver, spleen, and head kidney supports the biochemical findings. The isolated macrophages from the group fed on supplemented feed showed a higher percentage of phagocytosis and a phagocytic index, indicating an enhanced cell-mediated immune response. Significant improvements in digestive enzymes were also observed in fish fed on supplemented feed, even after weekly challenges with bacteria. Hence, the plant-fortified feed can be recommended as a regular feed to enhance fish immunity and disease resistance against the Aeromonas hydrophila infection after confirmation from the field trial.

Keywords: immunostimulation, antipathogen, plant fortified feed, macrophages, GC-MS/MS, in silico molecular docking

Procedia PDF Downloads 75
534 Impact of Elements of Rock and Water Combination on Landscape Perception: A Visual Landscape Quality Assessment on Kaludiya Pokuna in Sri Lanka

Authors: Clarence Dissanayake, Anishka A. Hettiarachchi

Abstract:

Landscape architecture needs to encompass a placemaking process carefully composing and manipulating landscape elements to address perceptual needs of humans, especially aesthetic, psychological and spiritual. The objective of this qualitative investigation is to inquire the impact of elements of rock and water combination on landscape perception and related feelings, emotions, and behavior. The past empirical studies have assessed the impact of landscape elements in isolation on user preference, yet the combined effect of elements have been less considered. This research was conducted with reference to the verity of qualities of water and rock through a visual landscape quality assessment focusing on landscape qualities derived from five visual concepts (coherence, historicity imageability, naturalness, and ephemera). 'Kaludiya Pokuna' archeological site in Anuradhapura was investigated with a sample of University students (n=19, male 14, female 5, age 20-25) using a five-point Likert scale via a perception based questionnaire and a visitor employed photographic survey (VEP). Two hypothetical questions were taken into investigation concerning biophilic (naturalness) and topophilic (historicity) aspects of humans to prefer a landscape with rock and water. The findings revealed that this combination encourages both biophilic and topophilic aspects, but in varying degrees. The identified hierarchy of visual concepts based on visitor’s preference signify coherence (93%), historicity (89%), imageability (79%), naturalness (75%) and ephemera (70%) respectively. It was further revealed that this combination creates a scenery more coherent dominating information processing aspect of humans to perceive a landscape over the biophilic and topophilic aspects. Different characteristics and secondary landscape effects generated by rock and water combination were found to affect in transforming a space into a place, full filling the aesthetic and spiritual aspects of the visitors. These findings enhance a means of making places for people, resource management and historical landscape conservation. Equalization of gender based participation, taking diverse cases and increasing the sample size with more analytical photographic analysis are recommended to enhance the quality of further research.

Keywords: landscape perception, visitor’s preference, rock and water combination, visual concepts

Procedia PDF Downloads 210
533 Casusation and Criminal Responsibility

Authors: László Schmidt

Abstract:

“Post hoc ergo propter hoc” means after it, therefore because of it. In other words: If event Y followed event X, then event Y must have been caused by event X. The question of causation has long been a central theme in philosophical thought, and many different theories have been put forward. However, causality is an essentially contested concept (ECC), as it has no universally accepted definition and is used differently in everyday, scientific, and legal thinking. In the field of law, the question of causality arises mainly in the context of establishing legal liability: in criminal law and in the rules of civil law on liability for damages arising either from breach of contract or from tort. In the study some philosophical theories of causality will be presented and how these theories correlate with legal causality. It’s quite interesting when philosophical abstractions meet the pragmatic demands of jurisprudence. In Hungarian criminal judicial practice the principle of equivalence of conditions is the generally accepted and applicable standard of causation, where all necessary conditions are considered equivalent and thus a cause. The idea is that without the trigger, the subsequent outcome would not have occurred; all the conditions that led to the subsequent outcome are equivalent. In the case where the trigger that led to the result is accompanied by an additional intervening cause, including an accidental one, independent of the perpetrator, the causal link is not broken, but at most the causal link becomes looser. The importance of the intervening causes in the outcome should be given due weight in the imposition of the sentence. According to court practice if the conduct of the offender sets in motion the causal process which led to the result, it does not exclude his criminal liability and does not interrupt the causal process if other factors, such as the victim's illness, may have contributed to it. The concausa does not break the chain of causation, i.e. the existence of a causal link establish the criminal liability of the offender. Courts also adjudicates that if an act is a cause of the result if the act cannot be omitted without the result being omitted. This essentially assumes a hypothetical elimination procedure, i.e. the act must be omitted in thought and then examined to see whether the result would still occur or whether it would be omitted. On the substantive side, the essential condition for establishing the offence is that the result must be demonstrably connected with the activity committed. The provision on the assessment of the facts beyond reasonable doubt must also apply to the causal link: that is to say, the uncertainty of the causal link between the conduct and the result of the offence precludes the perpetrator from being held liable for the result. Sometimes, however, the courts do not specify in the reasons for their judgments what standard of causation they apply, i.e. on what basis they establish the existence of (legal) causation.

Keywords: causation, Hungarian criminal law, responsibility, philosophy of law

Procedia PDF Downloads 26
532 Strategies to Improve Heat Stress Tolerance in Chickpea and Dissecting the Cross Talk Mechanism

Authors: Renu Yadav, Sanjeev Kumar

Abstract:

In northern India, chickpea (Cicer arietinum L.) come across with terminal high-temperature stress during reproductive stage which leads to reduced yield. Hence, stable production of chickpea will depend on the development of new methods like ‘priming’ which allow improved adaptation to the drought and heat stress. In the present experiment, 11-day chickpea seedling was primed with mild drought stress and put on recovery stage by irrigating and finally 30-day seedlings were exposed to heat stress 38°C (4 hours), 35°C (8 hours) and 32°C (12 hours). To study the effect of combinatorial stress, heat and drought stress was applied simultaneously. Analyses of various physiological parameters like membrane damage assay, photosynthetic pigments, antioxidative enzyme, total sugars were estimated at all stages. To study the effect of heat stress on the metabolites of the plants, GC-MS and HPLC were performed, while at transcriptional level Real-Time PCR of predicted heat stress-related genes was done. It was concluded that the heat stress significantly affected the chickpea plant at physiological and molecular level in all the five varieties. Results also show less damaging effect in primed plants by increasing the activity of antioxidative enzymes and increased expression of heat shock proteins and heat shock factors.

Keywords: chickpea, combinatorial stress, heat stress, oxidative stress, priming, RT-PCR

Procedia PDF Downloads 151
531 Exogenous Ascorbic Acid Increases Resistance to Salt of Carthamus tinctorius

Authors: Banu Aytül Ekmekçi

Abstract:

Salinity stress has negative effects on agricultural yield throughout the world, affecting production whether it is for subsistence or economic gain. This study investigates the inductive role of vitamin C and its application mode in mitigating the detrimental effects of irrigation with diluted (10, 20 and 30 %) NaCl + water on carthamus tinctorius plants. The results show that 10% of salt water exhibited insignificant changes, while the higher levels impaired growth by reducing seed germination, dry weights of shoot and root, water status and chlorophyll contents. However, irrigation with salt water enhanced carotenoids and antioxidant enzyme activities. The detrimental effects of salt water were ameliorated by application of 100 ppm ascorbic acid (vitamin C). The inductive role of vitamin was associated with the improvement of seed germination, growth, plant water status, carotenoids, endogenous ascorbic acid and antioxidant enzyme activities. Moreover, vitamin C alone or in combination with 30% NaCl water increased the intensity of protein bands as well as synthesized additional new proteins with molecular weights of 205, 87, 84, 65 and 45 kDa. This could increase tolerance mechanisms of treated plants towards water salinity.

Keywords: salinity, stress, vitamin c, antioxidant, NaCl, enzyme

Procedia PDF Downloads 508
530 Effect of Microfiltration on the Composition and Ripening of Iranian Fetta Cheese

Authors: M. Dezyani, R. Ezzati belvirdi, M. Shakerian, H. Mirzaei

Abstract:

The effect of Microfiltration (MF) on proteolysis, hardness, and flavor of Feta cheese during 6 mo of aging was determined. Raw skim milk was microfiltered two-fold in two cheese making trials. In trial 1, four vats of cheese were made in 1 d using unconcentrated milk (1X), 1.26X, 1.51X, and 1.82X Concentration Factors (CF). Casein-(CN)-to-fat ratio was constant among treatments. Proteolysis during cheese aging decreased with increasing CF due to either limitation of substrate availability for chymosin due to low moisture in the nonfat substance (MNFS), inhibition of chymosin activity by high molecular weight milk serum proteins, such as α2-macroglobulin, retained in the cheese or low residual chymosin in the cheese. Hardness of fresh cheese increased, and cheese flavor intensity decreased with increasing CF. In trial 2, the 1X and 1.8X CF were compared directly. Changes made in the cheese making procedure for the 1.8X CF (more chymosin and less cooking) increased the MNFS and made proteolysis during aging more comparable for the 1X and 1.8X cheeses. The significant difference in cheese hardness due to CF in trial 1 was eliminated in trial 2. In a triangle test, panelists could not differentiate between the 1X and 1.8X cheeses. Therefore, increasing chymosin and making the composition of the two cheeses more similar allowed production of aged Fetta cheese from milk concentrated up to 1.8X by MF that was not perceived as different from aged feta cheese produced without MF.

Keywords: feta cheese, microfiltration, concentration factor, proteolysis

Procedia PDF Downloads 402
529 Recovery and Εncapsulation of Μarine Derived Antifouling Agents

Authors: Marina Stramarkou, Sofia Papadaki, Maria Kaloupi, Ioannis Batzakas

Abstract:

Biofouling is a complex problem of the aquaculture industry, as it reduces the efficiency of the equipment and causes significant losses of cultured organisms. Nowadays, the current antifouling methods are proved to be labor intensive, have limited lifetime and use toxic substances that result in fish mortality. Several species of marine algae produce a wide variety of biogenic compounds with antibacterial and antifouling properties, which are effective in the prevention and control of biofouling and can be incorporated in antifouling coatings. In the present work, Fucus spiralis, a species of macro algae, and Chlorella vulgaris, a well-known species of microalgae, were used for the isolation and recovery of bioactive compounds, belonging to groups of fatty acids, lipopeptides and amides. The recovery of the compounds was achieved through the application of the ultrasound- assisted extraction, an environmentally friendly method, using green, non-toxic solvents. Moreover, the coating of the antifouling agents was done by innovative encapsulation and coating methods, such as electro-hydrodynamic process. For the encapsulation of the bioactive compounds natural matrices were used, such as polysaccharides and proteins. Water extracts that were incorporated in protein matrices were considered the most efficient antifouling coating.

Keywords: algae, electrospinning, fatty acids, ultrasound-assisted extraction

Procedia PDF Downloads 335
528 Inhibitory Effects of PPARγ Ligand, KR-62980, on Collagen-Stimulated Platelet Activation

Authors: Su Bin Wang, Jin Hee Ahn, Tong-Shin Chang

Abstract:

The peroxisome proliferator-activated receptors (PPARs) are member of nuclear receptor superfamily that act as a ligand-activated transcription factors. Although platelets lack a nucleus, previous studies have shown that PPARγ agonists, rosiglitazone, inhibited platelet activation induced by collagen. In this study, we investigated the inhibitory effects of KR-62980, a newly synthesized PPARγ agonist, on collagen receptor-stimulated platelet activation. The specific tyrosine phosphorylations of key components (Syk, Vav1, Btk and PLCγ2) for collagen receptor signaling pathways were suppressed by KR-62980. KR-62980 also attenuated downstream responses including cytosolic calcium elevation, P-selectin surface exposure, and integrin αIIbβ3 activation. PPARγ was found to associate with multiple proteins within the LAT signaling complex in collagen-stimulated platelets. This association was prevented by KR-62980, indicating a potential mechanism for PPARγ function in collagen-stimulated platelet activation. Furthermore, KR-62980 inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. Collectively, these data suggest that KR-62980 inhibits collagen-stimulated platelet activation and thrombus formation through modulating the collagen receptor signaling pathways.

Keywords: KR-62980, PPARγ, antiplatelet, thrombosis

Procedia PDF Downloads 328
527 Chemical Composition and Antibacterial Activity of Ceratonia siliqua L. Growing in Boumerdes, Algeria

Authors: N. Meziou-Chebouti, A. Merabet, Y. Chebouti N. Behidj

Abstract:

This work is a contribution to the knowledge of physicochemical characteristics of mature carob followed by evaluation of the activity, antimicrobial phenolics leaves and green pods of Ceratonia siliqua L. physicochemical study shows that mature carob it has a considerable content of sugar (50.90%), but poor in proteins (7%), fat (8%) and also has a high mineral content. The results obtained from phenolic extracts of leaves and green pods of Ceratonia siliqua L. show a wealth leaf phenolic extract especially flavonoids (0,545 mg EqQ/g) relative to the extract of green pods (0,226 mgEqQ/g). Polyphenols leaves have a slightly inhibitory effect on the growth of strains: Staphylococcus aureus, Escherichia coli, Klebsiella pneumoiae, Streptococcus sp and Sanmonella enteritidis, a strong inhibitory effect on the growth of Pseudomonas strain aerogenosa. Moreover, polyphenols pod have a slightly inhibitory effect on the growth of Streptococcus sp strains, Pseudomonas and aerogenosa Sanmonella enteritidis, a slightly inhibitory effect on the growth of Klebsiella pneumoniae strains, E. coli and Staphylococcus aureus.

Keywords: antimicrobial activity, bacteria, clove, Ceratonia siliqua, polyphenols

Procedia PDF Downloads 342
526 Physicochemical and Functional Characteristics of Hemp Protein Isolate

Authors: El-Sohaimy Sobhy A., Androsova Natalia, Toshev Abuvali Djabarovec

Abstract:

The conditions of the isolation of proteins from the hemp seeds were optimized in the current work. Moreover, the physicochemical and functional properties of hemp protein isolate were evaluated for its potential application in food manufacturing. The elastin protein is the most predominant protein in the protein profile with a molecular weight of 58.1 KDa, besides albumin, with a molecular weight of 31.5 KDa. The FTIR spectrum detected the absorption peaks of the amide I in 1750 and 1600 cm⁻¹, which pointed to C=O stretching while N-H was stretching at 1650-1580 cm⁻¹. The peak at 3250 was related to N-H stretching of primary aliphatic amine (3400-3300 cm⁻¹), and the N-H stretching for secondary (II) amine appeared at 3350-3310 cm⁻¹. Hemp protein isolate (HPI) was showed high content of arginine (15.52 g/100 g), phenylalanine+tyrosine (9.63 g/100 g), methionine + cysteine (5.49 g/100 g), leucine + isoleucine (5.21 g/100 g) and valine (4.53 g/100 g). It contains a moderate level of threonine (3.29 g/100 g) and lysine (2.50 g/100 g), with the limiting amino acid being a tryptophan (0.22 g/100 g HPI). HPI showed high water-holding capacity (4.5 ± 2.95 ml/g protein) and oil holding capacity (2.33 ± 1.88 ml/g) values. The foaming capacity of HPI was increased with increasing the pH values to reach the maximum value at pH 11 (67.23±3.20 %). The highest emulsion ability index of HPI was noted at pH 9 (91.3±2.57 m2/g) with low stability (19.15±2.03).

Keywords: Cannabis sativa ssp., protein isolate, isolation conditions, amino acid composition, chemical properties, functional properties

Procedia PDF Downloads 168
525 Signaling of Leucine-Rich-Repeat Receptor-Like Kinases in Higher Plants

Authors: Man-Ho Oh

Abstract:

Membrane localized Leucine-Rich-Repeat Receptor-Like Kinases (LRR-RLKs) play crucial roles in plant growth and abiotic/biotic stress responses in higher plants including Arabidopsis and Brassica species. Among several Receptor-Like Kinases (RLKs), Leucine-Rich-Repeat Receptor-Like-Kinases (LRR-RLKs) are the major group of genes that play crucial roles related to growth, development and stress conditions in plant system. Since it is involved in several functional roles, it seems to be very important to investigate their roles in higher plants. We are particularly interested in brassinosteroid (BR) signaling, which is mediated by the BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase and its co-receptor, BRI1-ASSOCIATED KINASE 1 (BAK1). Autophosphorylation of receptor kinases is recognized to be an important process in activation of signaling in higher plants. Although the plant receptors are generally classified as Ser/Thr protein kinases, many other receptor kinases including BRI1 and BAK1 are shown to autophosphorylate on Tyr residues in addition to Ser/Thr. As an interesting result, we determined that several 14-3-3 regulatory proteins bind to BRI1-CD and are phosphorylated by several receptor kinases in vitro, suggesting that BRI1 is critical for diverse signaling.

Keywords: autophosphorylation, brassinosteroid, BRASSINOSTEROID INSENSITIVE 1, BRI1-ASSOCIATED KINASE 1, Leucine-Rich-Repeat Receptor-Like Kinases (LRR-RLKs)

Procedia PDF Downloads 214
524 Preferred Left-Handed Conformation of Glycyls at Pathogenic Sites

Authors: Purva Mishra, Rajesh Potlia, Kuljeet Singh Sandhu

Abstract:

The role of glycyl residues in the protein structure has lingered within the research community for the last several decades. Glycyl residue is the only amino acid that is achiral due to the lack of a side chain and can, therefore, exhibit Ramachandran conformations that are disallowed for L-amino acids. The structural and functional significance of glycyl residues with L-disallowed conformation, however, remains obscure. Through statistical analysis of various datasets, we found that the glycyls with L-disallowed conformations are over-represented at disease-associated sites and tend to be evolutionarily conserved. The mutations of L-disallowed glycyls tend to destabilize the native conformation, reduce protein solubility, and promote inter-molecular aggregations. We uncovered a structural motif referred to as “β-crescent” formed around the L-disallowed glycyl, which prevents β-sheet aggregation by disrupting the alternating pattern of β-pleats. The L-disallowed conformation of glycyls also holds predictive power to infer the pathogenic missense variants. Altogether, our observations highlight that the L-disallowed conformation of glycyls is selected to facilitate native folding and prevent inter-molecular aggregations. The findings may also have implications for designing more stable proteins and prioritizing the genetic lesions implicated in diseases.

Keywords: Ramachandran plot, β-sheet, protein stability, protein aggregation

Procedia PDF Downloads 52
523 Process Optimization of Electrospun Fish Sarcoplasmic Protein Based Nanofibers

Authors: Sena Su, Burak Ozbek, Yesim M. Sahin, Sevil Yucel, Dilek Kazan, Faik N. Oktar, Nazmi Ekren, Oguzhan Gunduz

Abstract:

In recent years, protein, lipid or polysaccharide-based polymers have been used in order to develop biodegradable materials and their chemical nature determines the physical properties of the resulting films. Among these polymers, proteins from different sources have been extensively employed because of their relative abundance, film forming ability, and nutritional qualities. In this study, the biodegradable composite nanofiber films based on fish sarcoplasmic protein (FSP) were prepared via electrospinning technique. Biodegradable polycaprolactone (PCL) was blended with the FSP to obtain hybrid FSP/PCL nanofiber mats with desirable physical properties. Mixture solutions of FSP and PCL were produced at different concentrations and their density, viscosity, electrical conductivity and surface tension were measured. Mechanical properties of electrospun nanofibers were evaluated. Morphology of composite nanofibers was observed using scanning electron microscopy (SEM). Moreover, Fourier transform infrared spectrometer (FTIR) studies were used for analysis chemical composition of composite nanofibers. This study revealed that the FSP based nanofibers have the potential to be used for different applications such as biodegradable packaging, drug delivery, and wound dressing, etc.

Keywords: edible film, electrospinning, fish sarcoplasmic protein, nanofiber

Procedia PDF Downloads 289
522 Development of Nanostructrued Hydrogel for Spatial and Temporal Controlled Release of Active Compounds

Authors: Shaker Alsharif, Xavier Banquy

Abstract:

Controlled drug delivery technology represents one of the most rapidly advancing areas of science in which chemists and chemical engineers are contributing to human health care. Such delivery systems provide numerous advantages compared to conventional dosage forms including improved efficacy, and improved patient compliance and convenience. Such systems often use synthetic polymers as carriers for the drugs. As a result, treatments that would not otherwise be possible are now in conventional use. The role of bilayered vesicles as efficient carriers for drugs, vaccines, diagnostic agents and other bioactive agents have led to a rapid advancement in the liposomal drug delivery system. Moreover, the site avoidance and site-specific drug targeting therapy could be achieved by formulating a liposomal product, so as to reduce the cytotoxicity of many potent therapeutic agents. Our project focuses on developing and building hydrogel with nanoinclusion of liposomes loaded with active compounds such as proteins and growth factors able to release them in a controlled fashion. In order to achieve that, we synthesize several liposomes of two different phospholipids concentrations encapsulating model drug. Then, formulating hydrogel with specific mechanical properties embedding the liposomes to manage the release of active compound.

Keywords: controlled release, hydrogel, liposomes, active compounds

Procedia PDF Downloads 439
521 Synthetic, Characterization and Biological Studies of Bis(Tetrathiomolybdate) Compounds of Pt (II), Pd (II) and Ni (II)

Authors: V. K. Srivastava

Abstract:

The chemistry of compounds containing transition metals bound to sulfur containing ligands has been actively studied. Interest in these compounds arises from the identification of the biological importance of iron-sulfur containing proteins as well as the unusual behaviour of several types of synthetic metal-sulfur complexes. Metal complexes (C₆H₅)₄P)₂ Pt(Mos₄)₂, (C₆H₅)₄P)₂ Pd(MoS₄)₂, (C₆H₅)₄P)₂ Ni(MoS₄)₂ of bioinorganic relevance were investigated. The complexes [M(M'S₄)₂]²⁻ were prepared with high yield and purity as salts of the variety of organic cations. The diamagnetism and spectroscopic properties of these complexes confirmed that their structures are essentially equivalent with two bidentate M'S₄²⁻ ligands coordinated to the central d⁸ metal in a square planer geometry. The interaction of the complexes with CT-DNA was studied. Results showed that metal complexes increased DNA's relative viscosity and quench the fluorescence intensity of EB bound to DNA. In antimicrobial activities, all complexes showed good antimicrobial activity higher than ligand against gram positive, gram negative bacteria and fungi. The antitumor properties have been tested in vitro against two tumor human cell lines, Hela (derived from cervical cancer) and MCF-7 (derived from breast cancer) using metabolic activity tests. Result showed that the complexes are promising chemotherapeutic alternatives in the search of anticancer agents.

Keywords: anti cancer, biocidal, DNA binding, spectra

Procedia PDF Downloads 153
520 Effect of Degree of Phosphorylation on Electrospinning and In vitro Cell Behavior of Phosphorylated Polymers as Biomimetic Materials for Tissue Engineering Applications

Authors: Pallab Datta, Jyotirmoy Chatterjee, Santanu Dhara

Abstract:

Over the past few years, phosphorous containing polymers have received widespread attention for applications such as high performance optical fibers, flame retardant materials, drug delivery and tissue engineering. Being pentavalent, phosphorous can exist in different chemical environments in these polymers which increase their versatility. In human biochemistry, phosphorous based compounds exert their functions both in soluble and insoluble form occurring as inorganic or as organophosphorous compounds. Specifically in case of biomacromolecules, phosphates are critical for functions of DNA, ATP, phosphoproteins, phospholipids, phosphoglycans and several coenzymes. Inspired by the role of phosphorous in functional biomacromolecules, design and synthesis of biomimetic materials are thus carried out by several authors to study macromolecular function or as substitutes in clinical tissue regeneration conditions. In addition, many regulatory signals of the body are controlled by phoshphorylation of key proteins present either in form of growth factors or matrix-bound scaffold proteins. This inspires works on synthesis of phospho-peptidomimetic amino acids for understanding key signaling pathways and this is extended to obtain molecules with potentially useful biological properties. Apart from above applications, phosphate groups bound to polymer backbones have also been demonstrated to improve function of osteoblast cells and augment performance of bone grafts. Despite the advantages of phosphate grafting, however, there is limited understanding on effect of degree of phosphorylation on macromolecular physicochemical and/or biological properties. Such investigations are necessary to effectively translate knowledge of macromolecular biochemistry into relevant clinical products since they directly influence processability of these polymers into suitable scaffold structures and control subsequent biological response. Amongst various techniques for fabrication of biomimetic scaffolds, nanofibrous scaffolds fabricated by electrospinning technique offer some special advantages in resembling the attributes of natural extracellular matrix. Understanding changes in physico-chemical properties of polymers as function of phosphorylation is therefore going to be crucial in development of nanofiber scaffolds based on phosphorylated polymers. The aim of the present work is to investigate the effect of phosphorous grafting on the electrospinning behavior of polymers with aim to obtain biomaterials for bone regeneration applications. For this purpose, phosphorylated derivatives of two polymers of widely different electrospinning behaviors were selected as starting materials. Poly(vinyl alcohol) is a conveniently electrospinnable polymer at different conditions and concentrations. On the other hand, electrospinning of chitosan backbone based polymers have been viewed as a critical challenge. The phosphorylated derivatives of these polymers were synthesized, characterized and electrospinning behavior of various solutions containing these derivatives was compared with electrospinning of pure poly (vinyl alcohol). In PVA, phosphorylation adversely impacted electrospinnability while in NMPC, higher phosphate content widened concentration range for nanofiber formation. Culture of MG-63 cells on electrospun nanofibers, revealed that degree of phosphate modification of a polymer significantly improves cell adhesion or osteoblast function of cultured cells. It is concluded that improvement of cell response parameters of nanofiber scaffolds can be attained as a function of controlled degree of phosphate grafting in polymeric biomaterials with implications for bone tissue engineering applications.

Keywords: bone regeneration, chitosan, electrospinning, phosphorylation

Procedia PDF Downloads 214
519 Residual Dipolar Couplings in NMR Spectroscopy Using Lanthanide Tags

Authors: Elias Akoury

Abstract:

Nuclear Magnetic Resonance (NMR) spectroscopy is an indispensable technique used in structure determination of small and macromolecules to study their physical properties, elucidation of characteristic interactions, dynamics and thermodynamic processes. Quantum mechanics defines the theoretical description of NMR spectroscopy and treatment of the dynamics of nuclear spin systems. The phenomenon of residual dipolar coupling (RDCs) has become a routine tool for accurate structure determination by providing global orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. This offers accessibility of distance-independent angular information and insights to local relaxation. The measurement of RDCs requires an anisotropic orientation medium for the molecules to partially align along the magnetic field. This can be achieved by introduction of liquid crystals or attaching a paramagnetic center. Although anisotropic paramagnetic tags continue to mark achievements in the biomolecular NMR of large proteins, its application in small organic molecules remains unspread. Here, we propose a strategy for the synthesis of a lanthanide tag and the measurement of RDCs in organic molecules using paramagnetic lanthanide complexes.

Keywords: lanthanide tags, NMR spectroscopy, residual dipolar coupling, quantum mechanics of spin dynamics

Procedia PDF Downloads 185
518 A Double Ended AC Series Arc Fault Location Algorithm Based on Currents Estimation and a Fault Map Trace Generation

Authors: Edwin Calderon-Mendoza, Patrick Schweitzer, Serge Weber

Abstract:

Series arc faults appear frequently and unpredictably in low voltage distribution systems. Many methods have been developed to detect this type of faults and commercial protection systems such AFCI (arc fault circuit interrupter) have been used successfully in electrical networks to prevent damage and catastrophic incidents like fires. However, these devices do not allow series arc faults to be located on the line in operating mode. This paper presents a location algorithm for series arc fault in a low-voltage indoor power line in an AC 230 V-50Hz home network. The method is validated through simulations using the MATLAB software. The fault location method uses electrical parameters (resistance, inductance, capacitance, and conductance) of a 49 m indoor power line. The mathematical model of a series arc fault is based on the analysis of the V-I characteristics of the arc and consists basically of two antiparallel diodes and DC voltage sources. In a first step, the arc fault model is inserted at some different positions across the line which is modeled using lumped parameters. At both ends of the line, currents and voltages are recorded for each arc fault generation at different distances. In the second step, a fault map trace is created by using signature coefficients obtained from Kirchhoff equations which allow a virtual decoupling of the line’s mutual capacitance. Each signature coefficient obtained from the subtraction of estimated currents is calculated taking into account the Discrete Fast Fourier Transform of currents and voltages and also the fault distance value. These parameters are then substituted into Kirchhoff equations. In a third step, the same procedure described previously to calculate signature coefficients is employed but this time by considering hypothetical fault distances where the fault can appear. In this step the fault distance is unknown. The iterative calculus from Kirchhoff equations considering stepped variations of the fault distance entails the obtaining of a curve with a linear trend. Finally, the fault distance location is estimated at the intersection of two curves obtained in steps 2 and 3. The series arc fault model is validated by comparing current registered from simulation with real recorded currents. The model of the complete circuit is obtained for a 49m line with a resistive load. Also, 11 different arc fault positions are considered for the map trace generation. By carrying out the complete simulation, the performance of the method and the perspectives of the work will be presented.

Keywords: indoor power line, fault location, fault map trace, series arc fault

Procedia PDF Downloads 130
517 Computational Approach to Identify Novel Chemotherapeutic Agents against Multiple Sclerosis

Authors: Syed Asif Hassan, Tabrej Khan

Abstract:

Multiple sclerosis (MS) is a chronic demyelinating autoimmune disorder, of the central nervous system (CNS). In the present scenario, the current therapies either do not halt the progression of the disease or have side effects which limit the usage of current Disease Modifying Therapies (DMTs) for a longer period of time. Therefore, keeping the current treatment failure schema, we are focusing on screening novel analogues of the available DMTs that specifically bind and inhibit the Sphingosine1-phosphate receptor1 (S1PR1) thereby hindering the lymphocyte propagation toward CNS. The novel drug-like analogs molecule will decrease the frequency of relapses (recurrence of the symptoms associated with MS) with higher efficacy and lower toxicity to human system. In this study, an integrated approach involving ligand-based virtual screening protocol (Ultrafast Shape Recognition with CREDO Atom Types (USRCAT)) to identify the non-toxic drug like analogs of the approved DMTs were employed. The potency of the drug-like analog molecules to cross the Blood Brain Barrier (BBB) was estimated. Besides, molecular docking and simulation using Auto Dock Vina 1.1.2 and GOLD 3.01 were performed using the X-ray crystal structure of Mtb LprG protein to calculate the affinity and specificity of the analogs with the given LprG protein. The docking results were further confirmed by DSX (DrugScore eXtented), a robust program to evaluate the binding energy of ligands bound to the ligand binding domain of the Mtb LprG lipoprotein. The ligand, which has a higher hypothetical affinity, also has greater negative value. Further, the non-specific ligands were screened out using the structural filter proposed by Baell and Holloway. Based on the USRCAT, Lipinski’s values, toxicity and BBB analysis, the drug-like analogs of fingolimod and BG-12 showed that RTL and CHEMBL1771640, respectively are non-toxic and permeable to BBB. The successful docking and DSX analysis showed that RTL and CHEMBL1771640 could bind to the binding pocket of S1PR1 receptor protein of human with greater affinity than as compared to their parent compound (Fingolimod). In this study, we also found that all the drug-like analogs of the standard MS drugs passed the Bell and Holloway filter.

Keywords: antagonist, binding affinity, chemotherapeutics, drug-like, multiple sclerosis, S1PR1 receptor protein

Procedia PDF Downloads 246
516 Increased Retention of Nanoparticle by Small Molecule Inhibitor in Cancer Cells

Authors: Neha Singh

Abstract:

Background: Nowadays, the nanoparticle is gaining unexceptional attention in targeted drug delivery. But before proceeding to this episode of accomplishment, the journey and closure of these nanoparticles inside the cells should be disentangle. Being foreign for the cells, nanoparticles will easily getcleared off without any effective outcome. As the cancer cells withhold these nanoparticles for a longer period of time, more will be the drug’s effect. Chlorpromazine is a cationic amphiphilic drug which is believed to inhibit clathrin-coated pit formation by a reversible translocation of clathrin and its adapter proteins from the plasma membrane to intracellular vesicles. Chlorpromazine has a role in increasing the retention of nanoparticles in cancer cells. The mechanism of action how this small molecule increases the retention of nanoparticles is still uncovered. Method: Polymeric nanoparticle (PLGA) with Cyanine3.5 dye were synthesized by solvent evaporation method and characterized for size and zeta potential. FTIR was also done. Pulse and chase studies with and without inhibitor were done to check the retention of nanoparticle using fluorescence microscopy. Mean fluorescence intensity was measured by ImageJ software. Results: Increased retention of nanoparticle with inhibitor was observed in both pulse and chase studies. Conclusion: Our results demonstrate that by repurposing these small molecule inhibitor, we can increase the retention of nanoparticle at the targeted site.

Keywords: nanoparticle, endocytosis, clathrin inhibitor, cancer cell

Procedia PDF Downloads 96
515 Mycoplasmas and Pathogenesis in Preventive Medicine

Authors: Narin Salehiyan

Abstract:

The later sequencing of the complete genomes of Mycoplasma genitalium and M. pneumoniae has pulled in significant consideration to the atomic science of mycoplasmas, the littlest self-replicating living beings. It shows up that we are presently much closer to the objective of defining, in atomic terms, the complete apparatus of a self-replicating cell. Comparative genomics based on comparison of the genomic cosmetics of mycoplasmal genomes with those of other microbes, has opened better approaches of looking at the developmental history of the mycoplasmas. There's presently strong hereditary bolster for the speculation that mycoplasmas have advanced as a department of gram-positive microbes by a handle of reductive advancement. Amid this prepare, the mycoplasmas misplaced significant parcels of their ancestors’ chromosomes but held the qualities basic for life. In this way, the mycoplasmal genomes carry a tall rate of preserved qualities, incredibly encouraging quality comment. The critical genome compaction that happened in mycoplasmas was made conceivable by receiving a parasitic mode of life. The supply of supplements from their has clearly empowered mycoplasmas to lose, amid advancement, the qualities for numerous assimilative forms. Amid their advancement and adjustment to a parasitic mode of life, the mycoplasmas have created different hereditary frameworks giving a profoundly plastic set of variable surface proteins to avoid the have safe framework.

Keywords: mycoplasma, plasma, pathogen, genome

Procedia PDF Downloads 55
514 Aptitude of a Lactococcus Strain to Grow on Whey Medium

Authors: Souid Wafa, Boudjenah-Haroun Saliha, Khacef Linda

Abstract:

In this work, we focused on the valuation of discharges from the dairy industry. Whey is by-product of dairy industry, which is a formidable pollution factor and contains components (lactose, minerals and proteins) with high nutritional value. Whey is an excellent culture medium for microorganisms. The objective of our work is to investigate the ability of a lactic strain (of the genus Lactococcus) to grow in culture media based on whey of cattle and camels and comparing it with that recorded on M17 as indicator medium. In this study we isolated from a local sample of camel milk a lactic strain (S1).the strain had positive Gram shaped, cocci form and catalase (-). The strain has been purified by the method of streaks on M17 medium. Phenotypic identification allows us to classify this strain in the species: Lactococcus lactis subsp. Cremoris. We subsequently tested the ability of this strain to grow in cattle whey medium and camel whey, both media were deproteinized and unsupplemented. The obtained results revealed that: The cattle and camel whey are appropriate media for the growth of the strain Lactococcus lactis subsp cremoris but is more adapted to grow on a medium rich in lactose as the camel whey. In fact, after 48h and at initial pH 6.8 this strain acidified more camel whey (pH 3.99) than cattle whey (pH 4.8). And biomass produced in the camel whey is 1.50g /1 by contributing to the cattle whey which is 1g / l.

Keywords: cremoris, dairy industry, Lactococcus lactis subsp, medium, whey

Procedia PDF Downloads 354