Search results for: hub genes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 931

Search results for: hub genes

301 Heterologous Expression of a Clostridium thermocellum Proteins and Assembly of Cellulosomes 'in vitro' for Biotechnology Applications

Authors: Jessica Pinheiro Silva, Brenda Rabello De Camargo, Daniel Gusmao De Morais, Eliane Ferreira Noronha

Abstract:

The utilization of lignocellulosic biomass as source of polysaccharides for industrial applications requires an arsenal of enzymes with different mode of action able to hydrolyze its complex and recalcitrant structure. Clostridium thermocellum is gram-positive, thermophilic bacterium producing lignocellulosic hydrolyzing enzymes in the form of multi-enzyme complex, termed celulossomes. This complex has several hydrolytic enzymes attached to a large and enzymically inactive protein known as Cellulosome-integrating protein (CipA), which serves as a scaffolding protein for the complex produced. This attachment occurs through specific interactions between cohesin modules of CipA and dockerin modules in enzymes. The present work aims to construct celulosomes in vitro with the structural protein CipA, a xylanase called Xyn10D and a cellulose called CelJ from C.thermocellum. A mini-scafoldin was constructed from modules derived from CipA containing two cohesion modules. This was cloned and expressed in Escherichia coli. The other two genes were cloned under the control of the alcohol oxidase 1 promoter (AOX1) in the vector pPIC9 and integrated into the genome of the methylotrophic yeast Pichia pastoris GS115. Purification of each protein is being carried out. Further studies regarding enzymatic activity of the cellulosome is going to be evaluated. The cellulosome built in vitro and composed of mini-CipA, CelJ and Xyn10D, can be very interesting for application in industrial processes involving the degradation of plant biomass.

Keywords: cellulosome, CipA, Clostridium thermocellum, cohesin, dockerin, yeast

Procedia PDF Downloads 237
300 Harnessing Deep-Level Metagenomics to Explore the Three Dynamic One Health Areas: Healthcare, Domiciliary and Veterinary

Authors: Christina Killian, Katie Wall, Séamus Fanning, Guerrino Macori

Abstract:

Deep-level metagenomics offers a useful technical approach to explore the three dynamic One Health axes: healthcare, domiciliary and veterinary. There is currently limited understanding of the composition of complex biofilms, natural abundance of AMR genes and gene transfer occurrence in these ecological niches. By using a newly established small-scale complex biofilm model, COMBAT has the potential to provide new information on microbial diversity, antimicrobial resistance (AMR)-encoding gene abundance, and their transfer in complex biofilms of importance to these three One Health axes. Shotgun metagenomics has been used to sample the genomes of all microbes comprising the complex communities found in each biofilm source. A comparative analysis between untreated and biocide-treated biofilms is described. The basic steps include the purification of genomic DNA, followed by library preparation, sequencing, and finally, data analysis. The use of long-read sequencing facilitates the completion of metagenome-assembled genomes (MAG). Samples were sequenced using a PromethION platform, and following quality checks, binning methods, and bespoke bioinformatics pipelines, we describe the recovery of individual MAGs to identify mobile gene elements (MGE) and the corresponding AMR genotypes that map to these structures. High-throughput sequencing strategies have been deployed to characterize these communities. Accurately defining the profiles of these niches is an essential step towards elucidating the impact of the microbiota on each niche biofilm environment and their evolution.

Keywords: COMBAT, biofilm, metagenomics, high-throughput sequencing

Procedia PDF Downloads 61
299 Mutation Profiling of Paediatric Solid Tumours in a Cohort of South African Patients

Authors: L. Lamola, E. Manolas, A. Krause

Abstract:

Background: The incidence of childhood cancer incidence is increasing gradually in low-middle income countries, such as South Africa. Globally, there is an extensive range of familial- and hereditary-cancer syndromes, where underlying germline variants increase the likelihood of developing cancer in childhood. Next-Generation Sequencing (NGS) technologies have been key in determining the occurrence and genetic contribution of germline variants to paediatric cancer development. We aimed to design and evaluate a candidate gene panel specific to inherited cancer-predisposing genes to provide a comprehensive insight into the contribution of germline variants to childhood cancer. Methods: 32 paediatric patients (aged 0-18 years) diagnosed with a malignant tumour were recruited, and biological samples were obtained. After quality control, DNA was sequenced using an ion Ampliseq 50 candidate gene panel design and Ion Torrent S5 technologies. Sequencing variants were called using Ion Torrent Suite software and were subsequently annotated using Ion Reporter and Ensembl's VEP. High priority variants were manually analysed using tools such as MutationTaster, SIFT-INDEL and VarSome. Putative identified candidates were validated via Sanger Sequencing. Results: The patients studied had a variety of cancers, the most common being nephroblastoma (13), followed by osteosarcoma (4) and astrocytoma (3). We identified 10 pathogenic / likely pathogenic variants in 10 patients, most of which were novel. Conclusions: According to the literature, we expected ~10% of our patient population to harbour pathogenic or likely pathogenic germline variants, however, we reported about 3 times (~30%) more than we expected. Majority of the identified variants are novel; this may be because this is the first study of its kind in an understudied South African population.

Keywords: Africa, genetics, germline-variants, paediatric-cancer

Procedia PDF Downloads 141
298 An Evaluation of Different Weed Management Techniques in Organic Arable Systems

Authors: Nicola D. Cannon

Abstract:

A range of field experiments have been conducted since 1991 to 2017 on organic land at the Royal Agricultural University’s Harnhill Manor Farm near Cirencester, UK to explore the impact of different management practices on weed infestation in organic winter and spring wheat. The experiments were designed using randomised complete block and some with split plot arrangements. Sowing date, variety choice, crop height and crop establishment technique have all shown a significant impact on weed infestations. Other techniques have also been investigated but with less clear, but, still often significant effects on weed control including grazing with sheep, undersowing with different legumes and mechanical weeding techniques. Tillage treatments included traditional plough based systems, minimum tillage and direct drilling. Direct drilling had significantly higher weed dry matter than the other two techniques. Taller wheat varieties which do not contain Rht1 or Rht2 had higher weed populations than the wheat without dwarfing genes. Early sown winter wheat had greater weed dry matter than later sown wheat. Grazing with sheep interacted strongly with sowing date, with shorter varieties and also late sowing dates providing much less forage but, grazing did reduce weed biomass in June. Undersowing had mixed impacts which were related to the success of establishment of the undersown legume crop. Weeds are most successfully controlled when a range of techniques are implemented to give the wheat crop the greatest chance of competing with weeds.

Keywords: crop establishment, drilling date, grazing, undersowing, varieties, weeds

Procedia PDF Downloads 186
297 Expression of Tissue Plasminogen Activator in Transgenic Tobacco Plants by Signal Peptides Targeting for Delivery to Apoplast, Endoplasmic Reticulum and Cytosol Spaces

Authors: Sadegh Lotfieblisofla, Arash Khodabakhshi

Abstract:

Tissue plasminogen activator (tPA) as a serine protease plays an important role in the fibrinolytic system and the dissolution of fibrin clots in human body. The production of this drug in plants such as tobacco could reduce its production costs. In this study, expression of tPA gene and protein targeting to different plant cell compartments, using various signal peptides has been investigated. For high level of expression, Kozak sequence was used after CaMV35S in the beginning of the gene. In order to design the final construction, Extensin, KDEL (amino acid sequence including Lys-Asp-Glu-Leu) and SP (γ-zein signal peptide coding sequence) were used as leader signals to conduct this protein into apoplast, endoplasmic reticulum and cytosol spaces, respectively. Cloned human tPA gene under the CaMV (Cauliflower mosaic virus) 35S promoter and NOS (Nopaline Synthase) terminator into pBI121 plasmid was transferred into tobacco explants by Agrobacterium tumefaciens strain LBA4404. The presence and copy number of genes in transgenic tobacco was proved by Southern blotting. Enzymatic activity of the rt-PA protein in transgenic plants compared to non-transgenic plants was confirmed by Zymography assay. The presence and amount of rt-PA recombinant protein in plants was estimated by ELISA analysis on crude protein extract of transgenic tobacco using a specific antibody. The yield of recombinant tPA in transgenic tobacco for SP, KDEL, Extensin signals were counted 0.50, 0.68, 0.69 microgram per milligram of total soluble proteins.

Keywords: tPA, recombinant, transgenic, tobacco

Procedia PDF Downloads 150
296 Function Study of IrMYB55 in Regulating Synthesis of Terpenoids in Isodon Rubescens

Authors: Qingfang Guo

Abstract:

Isodon rubescens is rich in a variety of terpenes such as oridonin. It has important medicinal value. MYB transcription factors are involved in the regulation of plant secondary metabolic pathways. The combined transcriptomics and metabolomics analysis revealed that IrMYB55 might be involved in the regulation of the synthesis of terpenes. The function of IrMYB55 was further verified by establishing of a genetic transformation system by CRISPR/Cas9. Obtaining a virus-mediated Isodon rubescens gene silencing material. The main research results are as follows: (1) Screening IrMYB which can regulate the synthesis of terpenes. Metabolomics and transcriptomics analyses of materials with high (TJ)-and low (FL)-content populations which revealed significant differences in terpene content and IrMYB55 expression. Correlation analysis showed that the expression level of IrMYB55 had a significant correlation with the content of terpenes. (2) Establishment of a genetic transformation system of Isodon rubescens. The IrPDS gene could be knocked out by injection of Isodon rubescens cotyledon, and the transformed material showed obvious albino phenotype. Subsequently, IrMYB55 conversion material was obtained by this method. (3) The IrMYB55 silencing material was obtained. Subcellular localization indicated that IrMYB55 was located in the nucleus, indicating that it might regulate the synthesis of terpenoids through transcription. In summary, IrMYB55 that may regulate the synthesis of oridonin was dug out from the transcriptome and metabolome data. In this study, a genetic transformation system of Isodon rubescens was successfully established. Further studies showed that IrMYB55 regulated the transcription level of genes related to the synthesis of terpenoids, thereby promoting the accumulation of oridonin.

Keywords: isodon rubescens, MYB, oridonin, CRISPR/Cas9

Procedia PDF Downloads 34
295 Altered Expression of Ubiquitin Editing Complex in Ulcerative Colitis

Authors: Ishani Majumdar, Jaishree Paul

Abstract:

Introduction: Ulcerative Colitis (UC) is an inflammatory disease of the colon resulting from an autoimmune response towards individual’s own microbiota. Excessive inflammation is characterized by hyper-activation of NFkB, a transcription factor regulating expression of various pro-inflammatory genes. The ubiquitin editing complex consisting of TNFAIP3, ITCH, RNF11 and TAX1BP1 maintains homeostatic levels of active NFkB through feedback inhibition and assembles in response to various stimuli that activate NFkB. TNFAIP3 deubiquitinates key signaling molecules involved in NFkB activation pathway. ITCH, RNF11 and TAX1BP1 provide substrate specificity, acting as adaptors for TNFAIP3 function. Aim: This study aimed to find expression of members of the ubiquitin editing complex at the transcript level in inflamed colon tissues of UC patients. Materials and Methods: Colonic biopsy samples were collected from 30 UC patients recruited at Department of Gastroenterology, AIIMS (New Delhi). Control group (n= 10) consisted of individuals undergoing examination for functional disorders. Real Time PCR was used to determine relative expression with GAPDH as housekeeping gene. Results: Expression of members of the ubiquitin editing complex was significantly altered during active disease. Expression of TNFAIP3 was upregulated while concomitant decrease in expression of ITCH, RNF11, TAX1BP1 was seen in UC patients. Discussion: This study reveals that increase in expression of TNFAIP3 was unable to control inflammation during active UC. Further, insufficient upregulation of ITCH, RNF11, TAX1BP1 may limit the formation of the ubiquitin complex and contribute to pathogenesis of UC.

Keywords: altered expression, inflammation, ubiquitin editing complex, ulcerative colitis

Procedia PDF Downloads 264
294 Bioinformatic Approaches in Population Genetics and Phylogenetic Studies

Authors: Masoud Sheidai

Abstract:

Biologists with a special field of population genetics and phylogeny have different research tasks such as populations’ genetic variability and divergence, species relatedness, the evolution of genetic and morphological characters, and identification of DNA SNPs with adaptive potential. To tackle these problems and reach a concise conclusion, they must use the proper and efficient statistical and bioinformatic methods as well as suitable genetic and morphological characteristics. In recent years application of different bioinformatic and statistical methods, which are based on various well-documented assumptions, are the proper analytical tools in the hands of researchers. The species delineation is usually carried out with the use of different clustering methods like K-means clustering based on proper distance measures according to the studied features of organisms. A well-defined species are assumed to be separated from the other taxa by molecular barcodes. The species relationships are studied by using molecular markers, which are analyzed by different analytical methods like multidimensional scaling (MDS) and principal coordinate analysis (PCoA). The species population structuring and genetic divergence are usually investigated by PCoA and PCA methods and a network diagram. These are based on bootstrapping of data. The Association of different genes and DNA sequences to ecological and geographical variables is determined by LFMM (Latent factor mixed model) and redundancy analysis (RDA), which are based on Bayesian and distance methods. Molecular and morphological differentiating characters in the studied species may be identified by linear discriminant analysis (DA) and discriminant analysis of principal components (DAPC). We shall illustrate these methods and related conclusions by giving examples from different edible and medicinal plant species.

Keywords: GWAS analysis, K-Means clustering, LFMM, multidimensional scaling, redundancy analysis

Procedia PDF Downloads 128
293 Hybrid Capture Resolves the Phylogeny of the Pantropically Distributed Zanthoxylum (Rutaceae) and Reveals an Old World Origin

Authors: Lee Ping Ang, Salvatore Tomasello, Jun Wen, Marc S. Appelhans

Abstract:

With about 225 species, Zanthoxylum L. is the second most species rich genus in Rutaceae. It is the only genus with a pantropical distribution. Economically, it is used in several Asian countries as traditional medicine and spice. In the past Zanthoxylum was divided into two genera, the temperate Zanthoxylum sensu strictu (s.s.) and the (sub)tropical Fagara, due to the large differences in flower morphology: heterochlamydeous in Fagara and homochlamydeous in Zanthoxylum s.s.. This genus is much under studied and previous phylogenetic studies using Sanger sequencing did not resolve the relationships sufficiently. In this study, we use Hybrid Capture with a specially designed bait set for Zanthoxylum to sequence 347 putatively single-copy genes. The taxon sampling has been largely improved as compared to previous studies and the preliminary results will be based on 371 specimens representing 133 species from all continents and major island groups. Our preliminary results reveal similar tree topology as the previous studies while providing more details to the backbone of the phylogeny. The phylogenetic tree consists of four main clades: A) African/Malagasy clade, B) Z. asiaticum clade - a clade consisting widespread species occurring in (sub)tropical Asia and Africa as well as Madagascar, C) Asian/Pacific clade and D) American clade, which also includes the temperate Asian species. The merging of Fagara and Zanthoxylum is supported by our results and the homochlamydeous flowers of Zanthoxylum s.s. are likely derived from heterochlamydeous flowers. Several of the morphologically defined sections within Zanthoxylum are not monophyletic. The study dissemination will (1) introduce the framework of this project; (2) present preliminary results and (3) the ongoing progress of the study.

Keywords: Zanthoxylum, phylogenomic, hybrid capture, pantropical

Procedia PDF Downloads 79
292 Identifying Pathogenic Mycobacterium Species Using Multiple Gene Phylogenetic Analysis

Authors: Lemar Blake, Chris Oura, Ayanna C. N. Phillips Savage

Abstract:

Improved DNA sequencing technology has greatly enhanced bacterial identification, especially for organisms that are difficult to culture. Mycobacteriosis with consistent hyphema, bilateral exophthalmia, open mouth gape and ocular lesions, were observed in various fish populations at the School of Veterinary Medicine, Aquaculture/Aquatic Animal Health Unit. Objective: To identify the species of Mycobacterium that is affecting aquarium fish at the School of Veterinary Medicine, Aquaculture/Aquatic Animal Health Unit. Method: A total of 13 fish samples were collected and analyzed via: Ziehl-Neelsen, conventional polymerase chain reaction (PCR) and real-time PCR. These tests were carried out simultaneously for confirmation. The following combination of conventional primers: 16s rRNA (564 bp), rpoB (396 bp), sod (408 bp) were used. Concatenation of the gene fragments was carried out to phylogenetically classify the organism. Results: Acid fast non-branching bacilli were detected in all samples from homogenized internal organs. All 13 acid fast samples were positive for Mycobacterium via real-time PCR. Partial gene sequences using all three primer sets were obtained from two samples and demonstrated a novel strain. A strain 99% related to Mycobacterium marinum was also confirmed in one sample, using 16srRNA and rpoB genes. The two novel strains were clustered with the rapid growers and strains that are known to affect humans. Conclusions: Phylogenetic analysis demonstrated two novel Mycobacterium strains with the potential of being zoonotic and one strain 99% related to Mycobacterium marinum.

Keywords: polymerase chain reaction, phylogenetic, DNA sequencing, zoonotic

Procedia PDF Downloads 147
291 Genetic and Phenotypic Variability Among the Vibrio Cholerae O1 Isolates of India

Authors: Sreeja Shaw, Prosenjit Samanta, Asish Kumar Mukhopadhyay

Abstract:

Cholera is still a global public health burden and is caused by Vibrio cholerae O1 and O139 serogroups. Evidence from recent outbreaks in Haiti and Yemen suggested that circulating V. cholerae O1 El Tor variant strains are continuously changing to cause more ruinous outbreaks worldwide, and most of them have emerged from the Indian subcontinents. Therefore, we studied the changing virulence characteristics along with the antibiotic resistance profile of V. cholerae O1strains isolated from seasonal outbreaks in three cholera endemic regions during 2018, Gujarat and Maharashtra in Western India (87 strains), and to compare those features with the isolates of West Bengal in Eastern India (48 strains) collected during the same period. All the strains from Western India were of Ogawa serotype, polymyxin B-sensitive, hemolytic, and contained a large fragment deletion in VSP-II genomic region similar with Yemen outbreak strains and carried more virulent Haitian genetic alleles of major virulence associated genes ctxB, tcpA, and rtxA. Conversely, 14.6% (7/48) of the strains from Eastern India were belong to the Inaba serotype, polymyxin B-resistant, non-hemolytic, harbored intact VSP-II region, classical ctxB, Haitian tcpA, and El Tor rtxA alleles. Interestingly, resistance to tetracycline and chloramphenicol was seen in isolates from both regions, which are not very common among V. cholerae O1 isolates in India. Therefore, this study indicated West Bengal as a diverse region where two different types of El Tor variant hypervirulent strains are co-existed, probably competing for their better environmental survival, which may result in severe irrepressible disease outcome in the future.

Keywords: cholera, vibrio cholerae, polymyxin B, Non-hemolytic, ctxB, tcpA, rtxA, VSP-II

Procedia PDF Downloads 169
290 Metabolic and Phylogenetic Profiling of Rhizobium leguminosarum Strains Isolated from NZ Soils of Varying pH

Authors: Anish Shah, Steve A. Wakelin, Derrick Moot, Aurélie Laugraud, Hayley J. Ridgway

Abstract:

A mixed pasture system of ryegrass-clover is used in New Zealand, where clovers are generally inoculated with commercially available strains of rhizobia. The community of rhizobia living in the soil and the way in which they interact with the plant are affected by different biotic and abiotic factors. In general, bacterial richness and diversity in soil varies by soil pH. pH also affects cell physiology and acts as a master variable that controls the wider soil physiochemical conditions such as P availability, Al release and micronutrient availability. As such, pH can have both primary and secondary effects on soil biology and processes. The aim of this work was to investigate the effect of soil pH on the genetic diversity and metabolic profile of Rhizobium leguminosarum strains nodulating clover. Soils were collected from 12 farms across New Zealand which had a pH(water) range of between 4.9 and 7.5, with four acidic (pH 4.9 – 5.5), four ‘neutral’ (5.8 – 6.1) and four alkaline (6.5 – 7.5) soils. Bacteria were recovered from nodules of Trifolium repens (white clover) and T. subterraneum (subterranean clover) grown in the soils. The strains were cultured and screened against a range of pH-amended media to demonstrate whether they were adapted to pH levels similar to their native soils. The strains which showed high relative growth at a given pH (~20% of those isolated) were selected for metabolic and taxonomic profiling. The Omnilog (Biolog Inc., Hayward, CA) phenotype array was used to perform assays on carbon (C) utilisation for selected strains. DNA was extracted from the strains which had differing C utilisation profiles and PCR products for both forward and reverse primers were sequenced for the following genes: 16S rRNA, recA, nodC, nodD and nifH (symbiotic).

Keywords: bacterial diversity, clover, metabolic and taxonomic profiling, pH adaptation, rhizobia

Procedia PDF Downloads 262
289 Mitigating Ruminal Methanogenesis Through Genomic and Transcriptomic Approaches

Authors: Muhammad Adeel Arshad, Faiz-Ul Hassan, Yanfen Cheng

Abstract:

According to FAO, enteric methane (CH4) production is about 44% of all greenhouse gas emissions from the livestock sector. Ruminants produce CH4 as a result of fermentation of feed in the rumen especially from roughages which yield more CH4 per unit of biomass ingested as compared to concentrates. Efficient ruminal fermentation is not possible without abating CO2 and CH4. Methane abatement strategies are required to curb the predicted rise in emissions associated with greater ruminant production in future to meet ever increasing animal protein requirements. Ecology of ruminal methanogenesis and avenues for its mitigation can be identified through various genomic and transcriptomic techniques. Programs such as Hungate1000 and the Global Rumen Census have been launched to enhance our understanding about global ruminal microbial communities. Through Hungate1000 project, a comprehensive reference set of rumen microbial genome sequences has been developed from cultivated rumen bacteria and methanogenic archaea along with representative rumen anaerobic fungi and ciliate protozoa cultures. But still many species of rumen microbes are underrepresented especially uncultivable microbes. Lack of sequence information specific to the rumen's microbial community has inhibited efforts to use genomic data to identify specific set of species and their target genes involved in methanogenesis. Metagenomic and metatranscriptomic study of entire microbial rumen populations offer new perspectives to understand interaction of methanogens with other rumen microbes and their potential association with total gas and methane production. Deep understanding of methanogenic pathway will help to devise potentially effective strategies to abate methane production while increasing feed efficiency in ruminants.

Keywords: Genome sequences, Hungate1000, methanogens, ruminal fermentation

Procedia PDF Downloads 146
288 Transcriptomic Response of Calmodulin Encoding Gene (CaM) in Pesticide Utilizing Talaromyces Fungal Strains

Authors: M. D. Asemoloye, S. G. Jonathan, A. Rafiq, O. J. Olawuyi, D. O. Adejoye

Abstract:

Calmodulin is one of the intracellular calcium proteins that regulates large spectrum of enzymes and cellular functions including metabolism of cyclic nucleotides and glycogen. The potentials of calmodulin gene in fungi necessitates their genetic response and their strong cassette of enzyme secretions for pesticide degradation. Therefore, this study was carried out to investigate the ‘Transcriptomic’ response of calmodulin encoding genes in Talaromyces fungi in response to 2, 2-dichlorovinyl dimethyl phosphate (DDVP or Dichlorvos) an organophosphate pesticide and γ-Hexachlorocyclohexane (Lindane) an organochlorine pesticide. Fungi strains isolated from rhizosphere from grasses rhizosphere in pesticide polluted sites were subjected to percentage incidence test. Two most frequent fungi were further characterized using ITS gene amplification (ITS1 and ITS4 combinations), they were thereafter subjected to In-vitro DDVP and lindane tolerance tests at different concentrations. They were also screened for presence and expression of calmodulin gene (caM) using RT-PCR technique. The two Talaromyces strains had the highest incidence of 50-72% in pesticide polluted site, they were both identified as Talaromyces astroroseus asemoG and Talaromyces purpurogenum asemoN submitted in NCBI gene-bank with accession numbers KY488464 and KY488468 respectively. T. astroroseus KY488464 tolerated DDVP (1.23±0.023 cm) and lindane (1.11±0.018 cm) at 25 % concentration while T. purpurogenum KY488468 tolerated DDVP (1.33±0.061 cm) and lindane (1.54±0.077 cm) at this concentration. Calmodulin gene was detected in both strains, but RT-PCR expression of caM gene revealed at 900-1000 bp showed an under-expression of caM in T. astrorosues KY488464 but overexpressed in T. purpurogenum KY488464. Thus, the calmodulin gene response of these fungal strains to both pesticides could be considered in monitoring the potentials of fungal strains to pesticide tolerance and bioremediation of pesticide in polluted soil.

Keywords: Calmodulin gene, pesticide, RT-PCR, talaromyces, tolerance

Procedia PDF Downloads 227
287 Microalgae Bacteria Granules, an Alternative Technology to the Conventional Wastewater Treatment: Structural and Metabolic Characterization

Authors: M. Nita-Lazar, E. Manea, C. Bumbac, A. Banciu, C. Stoica

Abstract:

The population and economic growth have generated a significant new number of pollutant compounds which have to be degraded before reaching the environment. The wastewater treatment plants (WWTPs) have been the last barrier between the domestic and/or industrial wastewaters and the environment. At present, the conventional WWTPs have very high operational costs, most of them linked to the aeration process (60-65% from total energy costs related to wastewater treatment). In addition, they have had a low efficiency in pollutants removal such as pharmaceutical and other resilient anthropogenic compounds. In our study, we have been focused on new wastewater treatment strategies to enhance the efficiency of pollutants removal and decrease the wastewater treatment operational costs. The usage of mixed microalgae-bacteria granules technology generated high efficiency and low costs by a better harvesting and less expensive aeration. The intertrophic relationships between microalgae and bacteria have been characterized by the structure of the population community to their metabolic relationships. The results, obtained by microscopic studies, showed well-organized and stratified microalgae-bacteria granules where bacteria have been enveloped in the microalgal structures. Moreover, their population community structure has been modulated as well as their nitrification, denitrification processes (analysis based on qPCR genes expression) by the type of the pollutant compounds and amounts. In conclusion, the understanding and modulation of intertrophic relationships between microalgae and bacteria could be an economical and technological viable alternative to the conventional wastewater treatment. Acknowledgements: This research was supported by grant PN-III-P4-ID-PCE-2016-0865 from the Romanian National Authority for Scientific Research and Innovation CNCS/CCCDI-UEFISCDI.

Keywords: activated sludge, bacteria, granules, microalgae

Procedia PDF Downloads 128
286 Potential Application of Selected Halotolerant PSB Isolated from Rhizospheric Soil of Chenopodium quinoa in Plant Growth Promotion

Authors: Ismail Mahdi, Nidal Fahsi, Mohamed Hafidi, Abdelmounaim Allaoui, Latefa Biskri

Abstract:

To meet the worldwide demand for food, smart management of arable lands is needed. This could be achieved through sustainable approaches such as the use of plant growth-promoting microorganisms including bacteria. Phosphate (P) solubilization is one of the major mechanisms of plant growth promotion by associated bacteria. In the present study, we isolated and screened 14 strains from the rhizosphere of Chenopodium quinoa wild grown in the experimental farm of UM6P and assessed their plant growth promoting properties. Next, they were identified by using 16S rRNA and Cpn60 genes sequencing as Bacillus, Pseudomonas and Enterobacter. These strains showed dispersed capacities to solubilize P (up to 346 mg L−1) following five days of incubation in NBRIP broth. We also assessed their abilities for indole acetic acid (IAA) production (up to 795,3 µg ml−1) and in vitro salt tolerance. Three Bacillus strains QA1, QA2, and S8 tolerated high salt stress induced by NaCl with a maximum tolerable concentration of 8%. Three performant isolates, QA1, S6 and QF11, were further selected for seed germination assay because of their pronounced abilities in terms of P solubilization, IAA production and salt tolerance. The early plant growth potential of tested strains showed that inoculated quinoa seeds displayed greater germination rate and higher seedlings growth under bacterial treatments. The positive effect on seed germination traits strongly suggests that the tested strains are growth promoting, halotolerant and P solubilizing bacteria which could be exploited as biofertilizers.

Keywords: phosphate solubilizing bacteria, IAA, Seed germination, salt tolerance, quinoa

Procedia PDF Downloads 134
285 Possible Mechanism of DM2 Development in OSA Patients Mediated via Rev-Erb-Alpha and NPAS2 Proteins

Authors: Filip Franciszek Karuga, Szymon Turkiewicz, Marta Ditmer, Marcin Sochal, Piotr Białasiewicz, Agata Gabryelska

Abstract:

Circadian rhythm, an internal coordinator of physiological processes is composed of a set of semi-autonomous clocks. Clocks are regulated through the expression of circadian clock genes which form feedback loops, creating an oscillator. The primary loop consists of activators: CLOCK, BMAL1 and repressors: CRY, PER. CLOCK can be substituted by the Neuronal PAS Domain Protein 2 (NPAS2). Orphan nuclear receptor (REV-ERB-α) is a component of the secondary major loop, modulating the expression of BMAL1. Circadian clocks might be disrupted by the obstructive sleep apnea (OSA), which has also been associated with type II diabetes mellitus (DM2). Interestingly, studies suggest that dysregulation of NPAS2 and REV-ERB-α might contribute to the pathophysiology of DM2 as well. The goal of our study was to examine the role of NPAS2 and REV-ERB-α in DM2 in OSA patients. After examination of the clinical data, all participants underwent polysomnography (PSG) to assess their apnea-hypopnea index (AHI). Based on the acquired data participants were assigned to one of 3 groups: OSA (AHI>30, no DM2; n=17 for NPAS2 and 34 for REV-ERB-α), DM2 (AHI>30 + DM2; n=7 for NPAS2 and 15 for REV-ERB-α) and control group (AHI<5, no DM2; n=16 for NPAS2 and 31 for REV-ERB-α). ELISA immunoassay was performed to assess the serum protein level of REV-ERB-α and NPAS2. The only statistically significant difference between groups was observed in NPAS2 protein level (p=0.037). Post-hoc analysis showed significant differences between the OSA and the control group (p=0.017). AHI and NPAS2 level was significantly correlated (r=-0.478, p=0.002) in all groups. A significant correlation was observed between the REV-ERB-α level and sleep efficiency (r=0.617, p=0.005) as well as sleep maintenance efficiency (r=0.645, p=0.003) in the OSA group. We conclude, that NPAS2 is associated with OSA severity and might contribute to metabolic sequelae of this disease. REV-ERB-α on the other hand can influence sleep continuity and efficiency.

Keywords: OSA, diabetes mellitus, endocrinology, chronobiology

Procedia PDF Downloads 157
284 Characterisation of Pasteurella multocida from Asymptomatic Animals

Authors: Rajeev Manhas, M. A. Bhat, A. K. Taku, Dalip Singh, Deep Shikha, Gulzar Bader

Abstract:

The study was aimed to understand the distribution of various serogroups of Pasteurella multocida in bovines, small ruminants, pig, rabbit, and poultry from Jammu, Jammu and Kashmir and to characterize the isolates with respect to LPS synthesizing genes, dermonecrotic toxin gene (toxA) gene and antibiotic resistance. For isolation, the nasopharyngeal swab procedure appeared to be better than nasal swab procedure, particularly in ovine and swine. Out of 200 samples from different animals, isolation of P. multocida could be achieved from pig and sheep (5 each) and from poultry and buffalo (2 each) samples only, which accounted for 14 isolates. Upon molecular serogrouping, 3 isolates from sheep and 2 isolates from poultry were found as serogroup A, 2 isolates from buffalo were confirmed as serogroup B and 5 isolates from pig were found to belong to serogroup D. However, 2 isolates from sheep could not be typed, hence, untypable. All the 14 isolates were subjected to mPCR genotyping. A total of 10 isolates, 5 each from pig and sheep, generated an amplicon specific to genotype L6 and L6 indicates Heddleston serovars 10, 11, 12 and 15. Similarly, 2 isolates from bovines generated an amplicon of genotype L2 which indicates Heddleston serovar 2/5. However, 2 isolates from poultry generated specific amplicon with L1 signifying Heddleston serovar 1, but these isolates also produced multiple bands with primer L5. Only, one isolate of capsular type A from sheep possessed the structural gene, toxA for dermonecrotoxin. There was variability in the antimicrobial susceptibility pattern in sheep isolates, but overall the rate of tetracycline resistance was relatively high (64.28%) in our strains while all the isolates were sensitive to streptomycin. Except for the swine isolates and one toxigenic sheep isolate, the P. multocida isolates from this study were sensitive to quinolones. Although the level of resistance to commercial antibiotics was generally low, the use of tetracycline and erythromycin was not recommended.

Keywords: antibiogram, genotyping, Pasteurella multocida, serogrouping, toxA

Procedia PDF Downloads 453
283 Supplementation of Annatto (Bixa orellana)-Derived δ-Tocotrienol Produced High Number of Morula through Increased Expression of 3-Phosphoinositide-Dependent Protein Kinase-1 (PDK1) in Mice

Authors: S. M. M. Syairah, M. H. Rajikin, A. R. Sharaniza

Abstract:

Several embryonic cellular mechanism including cell cycle, growth and apoptosis are regulated by phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway. The goal of present study is to determine the effects of annatto (Bixa orellana)-derived δ-tocotrienol (δ-TCT) on the regulations of PI3K/Akt genes in murine morula. Twenty four 6-8 week old (23-25g) female balb/c mice were randomly divided into four groups (G1-G4; n=6). Those groups were subjected to the following treatments for 7 consecutive days: G1 (control) received tocopherol stripped corn oil, G2 was given 60 mg/kg/day of δ-TCT mixture (contains 90% delta & 10% gamma isomers), G3 was given 60 mg/kg/day of pure δ-TCT (>98% purity) and G4 received 60 mg/kg/day α-TOC. On Day 8, females were superovulated with 5 IU Pregnant Mare’s Serum Gonadotropin (PMSG) for 48 hours followed with 5 IU human Chorionic Gonadotropin (hCG) before mated with males at the ratio of 1:1. Females were sacrificed by cervical dislocation for embryo collection 48 hours post-coitum. About fifty morula from each group were used in the gene expression analyses using Affymetrix QuantiGene Plex 2.0 Assay. Present data showed a significant increase (p<0.05) in the average number (mean + SEM) of morula produced in G2 (26.0 + 0.45), G3 (23.0 + 0.63) and G4 (25.0 + 0.73) compared to control group (G1 – 16.0 + 0.63). This is parallel with the high expression of PDK1 gene with increase of 2.75-fold (G2), 3.07-fold (G3) and 3.59-fold (G4) compared to G1 (1.78-fold). From the present data, it can be concluded that supplementation with δ-TCT(s) and α-TOC induced high expression of PDK1 in G2-G4 which enhanced the PI3K/Akt signaling activity, resulting in the increased number of morula.

Keywords: delta-tocotrienol, embryonic development, nicotine, vitamin E

Procedia PDF Downloads 429
282 Study of the Influence of Non Genetic Factors Affecting over Nutrition Students in Ayutthaya Province, Thailand

Authors: Thananyada Buapian

Abstract:

Overnutrition is emerging as a morbid disease in developing and Westernized countries. Because of its comorbidity diseases, it is cost-effective to prevent and manage this disease earlier. In Thailand, this alarming disease has long been studied, but the prevalence is still higher than that in the past. Physicians should recognize it well and have a definite direction to face and combat this dangerous disease. Rapid changes in the tremendous figure of overnutrition students indicate that genetic factors are not the primary determinants since human genes have remained unchanged for a century. This study aims to assess the prevalence of overnutrition students and to investigate the non-genetic factors affecting over nutrition students. A cross-sectional school-based survey was conducted. A two-stage sampling was adopted. Respondents included 1,850 students in grades 4 to 6 in Ayutthaya Province. An anthropometric measurement and questionnaire were developed. Childhood over nutrition was defined as a weight-for-height Z-score above +2SD of NCHS/WHO references. About thirty three percent of the children were over nutrition in Ayutthaya province. Stepwise multiple logistic regression analysis showed that 8 statistically significant non genetic factors explain the variation of childhood over nutrition by 18 percent. Sex is the prime factor to explain the variation of childhood over nutrition, followed by duration of light physical activities, duration of moderate physical activities, having been breastfed, the presence of a healthy role model of the caregiver, number of siblings, birth order, and occupation of the caregiver, respectively. Non genetic factors, especially the subjects’ demographic and physical activities, as well as the caregivers’ background and family environment, should be considered in viable approach to remedy this health imbalance in children.

Keywords: non genetic factors, non-genetic, over nutrition, over nutrition students

Procedia PDF Downloads 274
281 Understanding the Prevalence and Expression of Virulence Factors Harbored by Enterotoxigenic Escherichia Coli

Authors: Debjyoti Bhakat, Indranil Mondal, Asish K. Mukhopadayay, Nabendu S. Chatterjee

Abstract:

Enterotoxigenic Escherichia coli is one of the leading causes of diarrhea in infants and travelers in developing countries. Colonization factors play an important role in pathogenesis and are one of the main targets for Enterotoxigenic Escherichia coli (ETEC) vaccine development. However, ETEC vaccines had poorly performed in the past, as the prevalence of colonization factors is region-dependent. There are more than 25 classical colonization factors presently known to be expressed by ETEC, although all are not expressed together. Further, there are other multiple non-classical virulence factors that are also identified. Here the presence and expression of common classical and non-classical virulence factors were studied. Further studies were done on the expression of prevalent colonization factors in different strains. For the prevalence determination, multiplex polymerase chain reaction (PCR) was employed, which was confirmed by simplex PCR. Quantitative RT-PCR was done to study the RNA expression of these virulence factors. Strains negative for colonization factors expression were confirmed by SDS-PAGE. Among the clinical isolates, the most prevalent toxin was est+elt, followed by est and elt, while the pattern was reversed in the control strains. There were 29% and 40% strains negative for any classical colonization factors (CF) or non-classical virulence factors (NCVF) among the clinical and control strains, respectively. Among CF positive ETEC strains, CS6 and CS21 were the prevalent ones in the clinical strains, whereas in control strains, CS6 was the predominant one. For NCVF genes, eatA was the most prevalent among the clinical isolates and etpA for control. CS6 was the most expressed CF, and eatA was the predominantly expressed NCVF for both clinical and controlled ETEC isolates. CS6 expression was more in strains having CS6 alone. Different strains express CS6 at different levels. Not all strains expressed their respective virulence factors. Understanding the prevalent colonization factor, CS6, and its nature of expression will contribute to designing an effective vaccine against ETEC in this region of the globe. The expression pattern of CS6 also will help in examining the relatedness between the ETEC subtypes.

Keywords: classical virulence factors, CS6, diarrhea, enterotoxigenic escherichia coli, expression, non-classical virulence factors

Procedia PDF Downloads 162
280 Genetics of Atopic Dermatitis: Role of Cytokines Genes Polymorphisms

Authors: Ghaleb Bin Huraib, Fahad Al Harthi, Misbahul Arfin, Abdulrahman Al-Asmari

Abstract:

Atopic dermatitis (AD), also known as atopic eczema, is a chronic inflammatory skin disease characterized by severe itching and recurrent relapsing eczema-like skin lesions, affecting up to 20% of children and 10% of adults in industrialized countries. AD is a complex multifactorial disease, and its exact etiology and pathogenesis have not been fully elucidated. The aim of this study was to investigate the impact of gene polymorphisms of T helper cell subtype Th1 and Th2 cytokines, interferon-gamma (IFN-γ), interleukin-6 (IL-6) and transforming growth factor (TGF)-β1on AD susceptibility in a Saudi cohort. One hundred four unrelated patients with AD and 195 healthy controls were genotyped for IFN-γ (874A/T), IL-6 (174G/C) and TGF-β1 (509C/T) polymorphisms using ARMS-PCR and PCR-RFLP technique. The frequency of genotypes AA and AT of IFN-γ (874A/T) differed significantly among patients and controls (P 0.001). The genotype AT was increased while genotype AA was decreased in AD patients as compared to controls. AD patients also had higher frequency of T containing genotypes (AT+TT) than controls (P = 0.001). The frequencies of allele T and A were statistically different in patients and controls (P = 0.04). The frequencies of genotype GG and allele G of IL-6 (174G/C) were significantly higher while genotype GC and allele C were lower in AD patients than controls. There was no significant difference in the frequencies of alleles and genotypes of TGF-β1 (509C/T) polymorphism between patient and control groups. These results showed that susceptibility to AD is influenced by presence or absence of genotypes of IFN-γ (874A/T) and IL-6 (174G/C) polymorphisms. It is concluded that T-allele and T-containing genotypes (AT+TT) of IFN-γ (874A/T) and G-allele and GG genotype ofIL-6 (174G/C) polymorphisms are susceptible to AD in Saudis.On the other hand, the TGF-β1 (509C/T) polymorphism may not be associated with AD risk in Saudi population however further studies with large sample size are required to confirm these findings.

Keywords: atopic dermatitis, interferon-γ, interleukin-6, transforming growth factor-β1, polymorphism

Procedia PDF Downloads 125
279 Induction of HIV-1 Resistance: The New Approaches Based on Gene Modification and Stem Cell Engineering

Authors: Alieh Farshbaf

Abstract:

Introduction: Current anti-retroviral drugs have some restrictions for treatment of HIV-1 infection. The efficacy of retroviral drugs is not same in different infected patients and the virus rebound from latent reservoirs after stopping them. Recently, the engineering of stem cells and gene therapy provide new approaches to eliminate some drug problems by induction of resistance to HIV-1. Literature review: Up to now, AIDS-restriction genes (ARGs) were suitable candidate for gene and cell therapies, such as cc-chemokine receptor-5 (CCR5). In this manner, CCR5 provide effective cure in Berlin and Boston patients by inducing of HIV-1 resistance with allogeneic stem cell transplantation. It is showed that Zinc Finger Nuclease (ZFN) could induce HIV-1 resistance in stem cells of infected patients by homologous recombination or non-end joining mechanism and eliminate virus loading after returning the modified cells. Then, gene modification by HIV restriction factors, as TRIM5, introduced another gene candidate for HIV by interfering in infection process. These gene modifications/editing provided by stem cell futures that improve treatment in refractory disease such as HIV-1. Conclusion: Although stem cell transplantation has some complications, but in compare to retro-viral drugs demonstrated effective cure by elimination of virus loading. On the other hand, gene therapy is cost-effective for an infected patient than retroviral drugs payment in a person life-long. The results of umbilical cord blood stem cell transplantation showed that gene and cell therapy will be applied easier than previous treatment of AIDS with high efficacy.

Keywords: stem cell, AIDS, gene modification, cell engineering

Procedia PDF Downloads 305
278 Improvement of Artemisinin Production by P. indica in Hairy Root Cultures of A. annua L.

Authors: Seema Ahlawat, Parul Saxena, Malik Zainul Abdin

Abstract:

Malaria is a major health problem in many developing countries. The parasite responsible for the vast majority of fatal malaria infections is Plasmodium falciparum. Unfortunately, most Plasmodium strains including P. falciparum have become resistant to most of the antimalarials including chloroquine, mefloquine, etc. To combat this problem, WHO has recommended the use of artemisinin and its derivatives in artemisinin based combination therapy (ACT). Due to its current use in artemisinin based-combination therapy (ACT), its global demand is increasing continuously. But, the relatively low yield of artemisinin in A. annua L. plants and unavailability of economically viable synthetic protocols are the major bottlenecks for its commercial production and clinical use. Chemical synthesis of artemisinin is also very complex and uneconomical. The hairy root system, using the Agrobacterium rhizogenes LBA 9402 strain to enhance the production of artemisinin in A. annua L., is developed in our laboratory. The transgenic nature of hairy root lines and the copy number of trans gene (rol B) were confirmed using PCR and Southern Blot analyses, respectively. The effect of different concentrations of Piriformospora indica on artemisinin production in hairy root cultures were evaluated. 3% P. indica has resulted 1.97 times increase in artemisinin production in comparison to control cultures. The effects of P. indica on artemisinin production was positively correlated with regulatory genes of MVA, MEP and artemisinin biosynthetic pathways, viz. hmgr, ads, cyp71av1, aldh1, dxs, dxr and dbr2 in hairy root cultures of A. annua L. Mass scale cultivation of A. annua L. hairy roots by plant tissue culture technology may be an alternative route for production of artemisinin. A comprehensive investigation of the hairy root system of A. annua L. would help in developing a viable process for the production of artemisinin. The efficiency of the scaling up systems still needs optimization before industrial exploitation becomes viable.

Keywords: A. annua L., artemisinin, hairy root cultures, malaria

Procedia PDF Downloads 419
277 Management of Insect Pests Using Baculovirus Based Biopesticides in India

Authors: Mudasir Gani, Rakesh Kumar Gupta, Kamlesh Bali, Abdul Rouf Wani

Abstract:

The gypsy moth (Lymantria obfuscata) and tent caterpillar (Malacosoma indicum) are serious pests that attack a wide range of fruit and forest trees in Jammu & Kashmir range of North-Western Himalayas in India. Investigations were carried out to isolate and bioprospect naturally occurring nucleopolyhedroviruses (NPVs) as potent biopesticides against these pests. The biological and molecular characterization of NPV isolates from different ecosystems was conducted, and the polh, lef-8 and lef-9 genes were sequenced and subjected to phylogenetic analysis. The L. obfuscata NPV was more closely related to the L. dispar NPV, whereas M. indicum NPV was more closely related to the M. californicum NPV in the NCBI taxonomy database. Among different isolates, Bhaderwah isolates exhibited highest virus activity (LD₅₀ = 250 POBs/larvae) and speed of kill (ST₅₀ = 6.80 days) against L. obfuscata whereas Mahor isolates proved most virulent against M. indicum, with lowest LD₅₀ (257 POBs/larva) and ST₅₀ (6.80 days). The in vivo mass production for highest productivity and quality revealed that the optimum yield was obtained when 3rd instar larvae were inoculated with a viral dose of 1.44 × 105 POBs/larva and allowed to incubate for nine days for L. obfuscata. However, for M. indicum larvae, a viral dose of 2.88 × 10⁶ POBs/larva and incubation period of 10 days were found optimum. It was found that harvesting of moribund larvae yields good quality NPV. The field application of L. obfuscata NPV and M. indicum NPV against the respective host populations on apple and willow with the pre-standardized dosage of 1 × 10¹² POBs/acre reduced the larval population density up to 25-63%.

Keywords: baculoviruses, biopesticides, Lymantria obfuscata, Malacosoma indicum

Procedia PDF Downloads 118
276 Eudesmane-Type Sesquiterpenes from Laggera alata Inhibiting Angiogenesis

Authors: Liang Ning, Chung Hau Yin

Abstract:

Angiogenesis is the process of new blood vessel development. It has been recognized as a therapeutic target for blocking cancer growth four decades ago. Vascular sprouting is initiated by pro-angiogenic factors. Vascular endothelial cell growth factor (VEGF) plays a central role in angiogenic initiation, many patients with cancer or ocular neovascularization have been benefited from anti-VEGF therapy. Emerging approaches impacting in the later stages of vessel remodeling and maturation are expected to improve clinical efficacy. TIE receptor as well as the corresponding angiopoietin ligands, were identified as another endothelial cell specific receptor tyrosine kinase signaling system. Much efforts were made to reduce the activity of angiopoietin-TIE receptor axis. Two eudesmane-type sesquiterpenes from laggera alata, namely, 15-dihydrocostic acid and ilicic acid were found with strong anti-angiogenic properties in zebrafish model. Meanwhile, the mRNA expression levels of VEGFR2 and TIE2 pathway related genes were down-regulated in the sesquiterpenes treated zebrafish embryos. Besides, in human umbilical vein endothelial cells (HUVECs), the sesquiterpenes have the ability to inhibit VEGF-induced HUVECs proliferation and migration at non-toxic concentration. Moreover, angiopoietin-2 induced TIE2 phosphorylation was inhibited by the sesquiterpenes, the inhibitory effect was detected in angiopoietin-1 induced HUVECs proliferation as well. Thus, we hypothesized the anti-angiogenic activity of the compounds may via the inhibition of VEGF and TIE2 related pathways. How the compounds come into play as the pathways inhibitors need to be evaluated in the future.

Keywords: Laggera alata, eudesmane-type sesquiterpene, anti-angiogenesis, VEGF, angiopoietin, TIE2

Procedia PDF Downloads 211
275 Frequency of BCR-ABL Fusion Transcript Types with Chronic Myeloid Leukemia by Multiplex Polymerase Chain Reaction in Srinagarind Hospital, Khon Kaen Thailand

Authors: Kanokon Chaicom, Chitima Sirijerachai, Kanchana Chansung, Pinsuda Klangsang, Boonpeng Palaeng, Prajuab Chaimanee, Pimjai Ananta

Abstract:

Chronic myeloid leukemia (CML) is characterized by the consistent involvement of the Philadelphia chromosome (Ph), which is derived from a reciprocal translocation between chromosome 9 and 22, the main product of the t(9;22) (q34;q11) translocation, is found in the leukemic clone of at least 95% of CML patients. There are two major forms of the BCR/ABL fusion gene, involving ABL exon 2, but including different exons of BCR gene. The transcripts b2a2 (e13a2) or b3a2 (e14a2) code for a p210 protein. Another fusion gene leads to the expression of an e1a2 transcript, which codes for a p190 protein. Other less common fusion genes are b3a3 or b2a3, which codes for a p203 protein and e19a2 (c3a2) transcript, which codes for a p230 protein. Its frequency varies in different populations. In this study, we aimed to report the frequency of BCR-ABL fusion transcript types with CML by multiplex PCR (polymerase chain reaction) in Srinagarind Hospital, Khon Kaen, Thailand. Multiplex PCR for BCR-ABL was performed on 58 patients, to detect different types of BCR-ABL transcripts of the t (9; 22). All patients examined were positive for some type of BCR/ABL rearrangement. The majority of the patients (93.10%) expressed one of the p210 BCR-ABL transcripts, b3a2 and b2a2 transcripts were detected in 53.45% and 39.65% respectively. The expression of an e1a2 transcript showed 3.75%. Co-expression of p210/p230 was detected in 3.45%. Co-expression of p210/p190 was not detected. Multiplex PCR is useful, saves time and reliable in the detection of BCR-ABL transcript types. The frequency of one or other rearrangement in CML varies in different population.

Keywords: chronic myeloid leukemia, BCR-ABL fusion transcript types, multiplex PCR, frequency of BCR-ABL fusion

Procedia PDF Downloads 247
274 Role of Micro-Patterning on Stem Cell-Material Interaction Modulation and Cell Fate

Authors: Lay Poh Tan, Chor Yong Tay, Haiyang Yu

Abstract:

Micro-contact printing is a form of soft lithography that uses the relief patterns on a master polydimethylsiloxane (PDMS) stamp to form patterns of self-assembled monolayers (SAMs) of ink on the surface of a substrate through conformal contact technique. Here, we adopt this method to print proteins of different dimensions on our biodegradable polymer substrates. We started off with printing 20-500 μm scale lanes of fibronectin to engineer the shape of bone marrow derived human mesenchymal stem cell (hMSCs). After 8 hours of culture, the hMSCs adopted elongated shapes, and upon analysis of the gene expressions, genes commonly associated with myogenesis (GATA-4, MyoD1, cTnT and β-MHC) and neurogenesis (NeuroD, Nestin, GFAP, and MAP2) were up-regulated but gene expression associated to osteogenesis (ALPL, RUNX2, and SPARC) were either down modulated or remained at the nominal level. This is the first evidence that cellular morphology control via micropatterning could be used to modulate stem cell fate without external biochemical stimuli. We further our studies to modulate the focal adhesion (FA) instead of the macro shape of cells. Micro-contact printed islands of different smaller dimensions were investigated. We successfully regulated the FAs into dense FAs and elongated FAs by micropatterning. Additionally, the combined effects of hard (40.4 kPa), and intermediate (10.6 kPa) PA gel and FAs patterning on hMSCs differentiation were studied. Results showed that FA and matrix compliance plays an important role in hMSCs differentiation, and there is a cross-talk between different physical stimulants and the significance of these stimuli can only be realized if they are combined at the optimum level.

Keywords: micro-contact printing, polymer substrate, cell-material interaction, stem cell differentiation

Procedia PDF Downloads 175
273 Cognitive Dysfunctioning and the Fronto-Limbic Network in Bipolar Disorder Patients: A Fmri Meta-Analysis

Authors: Rahele Mesbah, Nic Van Der Wee, Manja Koenders, Erik Giltay, Albert Van Hemert, Max De Leeuw

Abstract:

Introduction: Patients with bipolar disorder (BD), characterized by depressive and manic episodes, often suffer from cognitive dysfunction. An up-to-date meta-analysis of functional Magnetic Resonance Imaging (fMRI) studies examining cognitive function in BD is lacking. Objective: The aim of the current fMRI meta-analysis is to investigate brain functioning of bipolar patients compared with healthy subjects within three domains of emotion processing, reward processing, and working memory. Method: Differences in brain regions activation were tested within whole-brain analysis using the activation likelihood estimation (ALE) method. Separate analyses were performed for each cognitive domain. Results: A total of 50 fMRI studies were included: 20 studies used an emotion processing (316 BD and 369 HC) task, 9 studies a reward processing task (215 BD and 213 HC), and 21 studies used a working memory task (503 BD and 445 HC). During emotion processing, BD patients hyperactivated parts of the left amygdala and hippocampus as compared to HC’s, but showed hypoactivation in the inferior frontal gyrus (IFG). Regarding reward processing, BD patients showed hyperactivation in part of the orbitofrontal cortex (OFC). During working memory, BD patients showed increased activity in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC). Conclusions: This meta-analysis revealed evidence for activity disturbances in several brain areas involved in the cognitive functioning of BD patients. Furthermore, most of the found regions are part of the so-called fronto-limbic network which is hypothesized to be affected as a result of BD candidate genes' expression.

Keywords: cognitive functioning, fMRI analysis, bipolar disorder, fronto-limbic network

Procedia PDF Downloads 468
272 Impact of Totiviridae L-A dsRNA Virus on Saccharomyces Cerevisiae Host: Transcriptomic and Proteomic Approach

Authors: Juliana Lukša, Bazilė Ravoitytė, Elena Servienė, Saulius Serva

Abstract:

Totiviridae L-A virus is a persistent Saccharomyces cerevisiae dsRNA virus. It encodes the major structural capsid protein Gag and Gag-Pol fusion protein, responsible for virus replication and encapsulation. These features also enable the copying of satellite dsRNAs (called M dsRNAs) encoding a secreted toxin and immunity to it (known as killer toxin). Viral capsid pore presumably functions in nucleotide uptake and viral mRNA release. During cell division, sporogenesis, and cell fusion, the virions remain intracellular and are transferred to daughter cells. By employing high throughput RNA sequencing data analysis, we describe the influence of solely L-A virus on the expression of genes in three different S. cerevisiae hosts. We provide a new perception into Totiviridae L-A virus-related transcriptional regulation, encompassing multiple bioinformatics analyses. Transcriptional responses to L-A infection were similar to those induced upon stress or availability of nutrients. It also delves into the connection between the cell metabolism and L-A virus-conferred demands to the host transcriptome by uncovering host proteins that may be associated with intact virions. To better understand the virus-host interaction, we applied differential proteomic analysis of virus particle-enriched fractions of yeast strains that harboreither complete killer system (L-A-lus and M-2 virus), M-2 depleted orvirus-free. Our analysis resulted in the identification of host proteins, associated with structural proteins of the virus (Gag and Gag-Pol). This research was funded by the European Social Fund under the No.09.3.3-LMT-K-712-19-0157“Development of Competences of Scientists, other Researchers, and Students through Practical Research Activities” measure.

Keywords: totiviridae, killer virus, proteomics, transcriptomics

Procedia PDF Downloads 150