Search results for: data block
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26030

Search results for: data block

25400 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features

Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova

Abstract:

The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.

Keywords: emotion recognition, facial recognition, signal processing, machine learning

Procedia PDF Downloads 317
25399 A Novel Multi-Block Selective Mapping Scheme for PAPR Reduction in FBMC/OQAM Systems

Authors: Laabidi Mounira, Zayani Rafk, Bouallegue Ridha

Abstract:

Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation (FBMC/OQAM) is presently known as a sustainable alternative to conventional Orthogonal Frequency Division Multiplexing (OFDM) for signal transmission over multi-path fading channels. Like all multicarrier systems, FBMC/OQAM suffers from high Peak to Average Power Ratio (PAPR). Due to the symbol overlap inherent in the FBMC/OQAM system, the direct application of conventional OFDM PAPR reduction scheme is far from being effective. This paper suggests a novel scheme termed Multi-Blocks Selective Mapping (MB-SLM) whose simulation results show that its performance in terms of PAPR reduction is almost identical to that of OFDM system.

Keywords: FBMC/OQAM, multi-blocks, OFDM, PAPR, SLM

Procedia PDF Downloads 463
25398 Cryptosystems in Asymmetric Cryptography for Securing Data on Cloud at Various Critical Levels

Authors: Sartaj Singh, Amar Singh, Ashok Sharma, Sandeep Kaur

Abstract:

With upcoming threats in a digital world, we need to work continuously in the area of security in all aspects, from hardware to software as well as data modelling. The rise in social media activities and hunger for data by various entities leads to cybercrime and more attack on the privacy and security of persons. Cryptography has always been employed to avoid access to important data by using many processes. Symmetric key and asymmetric key cryptography have been used for keeping data secrets at rest as well in transmission mode. Various cryptosystems have evolved from time to time to make the data more secure. In this research article, we are studying various cryptosystems in asymmetric cryptography and their application with usefulness, and much emphasis is given to Elliptic curve cryptography involving algebraic mathematics.

Keywords: cryptography, symmetric key cryptography, asymmetric key cryptography

Procedia PDF Downloads 124
25397 Estimation of the Nutritive Value of Local Forage Cowpea Cultivars in Different Environments

Authors: Salem Alghamdi

Abstract:

Genotypes collected from farmers at a different region of Saudi Arabia as well as from Egyptian cultivar and a new line from Yamen. Seeds of these genotypes were grown in Dirab Agriculture Research Station, (Middle Region) and Al-Ahsa Palms and Dates Research Center (East region), during summer of 2015. Field experiments were laid out in randomized complete block design on the first week of June with three replications. Each experiment plot contained 6 rows 3m in length. Inter- and intra-row spacing was 60 and 25cm, respectively. Seed yield and its components were estimated in addition to qualitative characters on cowpea plants grown only in Dirab using cowpea descriptor from IPGRI, 1982. Seeds for chemical composite and antioxidant contents were analyzed. Highly significant differences were detected between genotypes in both locations and the combined of two locations for seed yield and its components. Mean data clearly show exceeded determine genotypes in seed yield while indeterminate genotypes had higher biological yield that divided cowpea genotypes to two main groups 1- forage genotypes (KSU-CO98, KSU-CO99, KSU-CO100, and KSU-CO104) that were taller and produce higher branches, biological yield and these are suitable to feed on haulm 2- food genotypes (KSU-CO101, KSU-CO102, and KSU-CO103) that produce higher seed yield with lower haulm and also these genotypes characters by high seed index and light seed color. Highly significant differences were recorded for locations in all studied characters except the number of branches, seed index, and biological yield, however, the interaction of genotype x location was significant only for plant height, the number of pods and seed yield per plant.

Keywords: Cowpea, genotypes, antioxidant contents, yield

Procedia PDF Downloads 257
25396 Data Recording for Remote Monitoring of Autonomous Vehicles

Authors: Rong-Terng Juang

Abstract:

Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.

Keywords: autonomous vehicle, data compression, remote monitoring, controller area networks (CAN), Lidar

Procedia PDF Downloads 164
25395 Total Thermal Resistance of Graphene-Oxide-Substrate Stack: Role of Interfacial Thermal Resistance in Heat Flow of 2D Material Based Devices

Authors: Roisul H. Galib, Prabhakar R. Bandaru

Abstract:

In 2D material based device, an interface between 2D materials and substrates often limits the heat flow through the device. In this paper, we quantify the total thermal resistance of a graphene-based device by series resistance model and show that the thermal resistance at the interface of graphene and substrate contributes to more than 50% of the total resistance. Weak Van der Waals interactions at the interface and dissimilar phonon vibrational modes create this thermal resistance, allowing less heat to flow across the interface. We compare our results with commonly used materials and interfaces, demonstrating the role of the interface as a potential application for heat guide or block in a 2D material-based device.

Keywords: 2D material, graphene, thermal conductivity, thermal conductance, thermal resistance

Procedia PDF Downloads 156
25394 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory

Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan

Abstract:

Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.

Keywords: data fusion, Dempster-Shafer theory, data mining, event detection

Procedia PDF Downloads 411
25393 Legal Issues of Collecting and Processing Big Health Data in the Light of European Regulation 679/2016

Authors: Ioannis Iglezakis, Theodoros D. Trokanas, Panagiota Kiortsi

Abstract:

This paper aims to explore major legal issues arising from the collection and processing of Health Big Data in the light of the new European secondary legislation for the protection of personal data of natural persons, placing emphasis on the General Data Protection Regulation 679/2016. Whether Big Health Data can be characterised as ‘personal data’ or not is really the crux of the matter. The legal ambiguity is compounded by the fact that, even though the processing of Big Health Data is premised on the de-identification of the data subject, the possibility of a combination of Big Health Data with other data circulating freely on the web or from other data files cannot be excluded. Another key point is that the application of some provisions of GPDR to Big Health Data may both absolve the data controller of his legal obligations and deprive the data subject of his rights (e.g., the right to be informed), ultimately undermining the fundamental right to the protection of personal data of natural persons. Moreover, data subject’s rights (e.g., the right not to be subject to a decision based solely on automated processing) are heavily impacted by the use of AI, algorithms, and technologies that reclaim health data for further use, resulting in sometimes ambiguous results that have a substantial impact on individuals. On the other hand, as the COVID-19 pandemic has revealed, Big Data analytics can offer crucial sources of information. In this respect, this paper identifies and systematises the legal provisions concerned, offering interpretative solutions that tackle dangers concerning data subject’s rights while embracing the opportunities that Big Health Data has to offer. In addition, particular attention is attached to the scope of ‘consent’ as a legal basis in the collection and processing of Big Health Data, as the application of data analytics in Big Health Data signals the construction of new data and subject’s profiles. Finally, the paper addresses the knotty problem of role assignment (i.e., distinguishing between controller and processor/joint controllers and joint processors) in an era of extensive Big Health data sharing. The findings are the fruit of a current research project conducted by a three-member research team at the Faculty of Law of the Aristotle University of Thessaloniki and funded by the Greek Ministry of Education and Religious Affairs.

Keywords: big health data, data subject rights, GDPR, pandemic

Procedia PDF Downloads 129
25392 Overhead Reduction by Channel Estimation Using Linear Interpolation for Single Carrier Frequency Domain Equalization Transmission

Authors: Min-Su Song, Haeng-Bok Kil, Eui-Rim Jeong

Abstract:

This paper proposes a new method to reduce the overhead by pilots for single carrier frequency domain equalization (SC-FDE) transmission. In the conventional SC-FDE transmission structure, the overhead by transmitting pilot is heavy because the pilot are transmitted at every SC-FDE block. The proposed SC-FDE structure has fewer pilots and many SC-FCE blocks are transmitted between pilots. The channel estimation and equalization is performed at the pilot period and the channels between pilots are estimated through linear interpolation. This reduces the pilot overhead by reducing the pilot transmission compared with the conventional structure, and enables reliable channel estimation and equalization.

Keywords: channel estimation, linear interpolation, pilot overhead, SC-FDE

Procedia PDF Downloads 273
25391 Adaptive Data Approximations Codec (ADAC) for AI/ML-based Cyber-Physical Systems

Authors: Yong-Kyu Jung

Abstract:

The fast growth in information technology has led to de-mands to access/process data. CPSs heavily depend on the time of hardware/software operations and communication over the network (i.e., real-time/parallel operations in CPSs (e.g., autonomous vehicles). Since data processing is an im-portant means to overcome the issue confronting data management, reducing the gap between the technological-growth and the data-complexity and channel-bandwidth. An adaptive perpetual data approximation method is intro-duced to manage the actual entropy of the digital spectrum. An ADAC implemented as an accelerator and/or apps for servers/smart-connected devices adaptively rescales digital contents (avg.62.8%), data processing/access time/energy, encryption/decryption overheads in AI/ML applications (facial ID/recognition).

Keywords: adaptive codec, AI, ML, HPC, cyber-physical, cybersecurity

Procedia PDF Downloads 80
25390 Extended Constraint Mask Based One-Bit Transform for Low-Complexity Fast Motion Estimation

Authors: Oğuzhan Urhan

Abstract:

In this paper, an improved motion estimation (ME) approach based on weighted constrained one-bit transform is proposed for block-based ME employed in video encoders. Binary ME approaches utilize low bit-depth representation of the original image frames with a Boolean exclusive-OR based hardware efficient matching criterion to decrease computational burden of the ME stage. Weighted constrained one-bit transform (WC‑1BT) based approach improves the performance of conventional C-1BT based ME employing 2-bit depth constraint mask instead of a 1-bit depth mask. In this work, the range of constraint mask is further extended to increase ME performance of WC-1BT approach. Experiments reveal that the proposed method provides better ME accuracy compared existing similar ME methods in the literature.

Keywords: fast motion estimation; low-complexity motion estimation, video coding

Procedia PDF Downloads 317
25389 MyAds: A Social Adaptive System for Online Advertisment from Hypotheses to Implementation

Authors: Dana A. Al Qudah, Alexandra I. Critea, Rizik M. H. Al Sayyed, Amer Obeidah

Abstract:

Online advertisement is one of the major incomes for many companies; it has a role in the overall business flow and affects the consumer behavior directly. Unfortunately most users tend to block their ads or ignore them. MyAds is a social adaptive hypermedia system for online advertising and its main goal is to explore how to make online ads more acceptable. In order to achieve such a goal, various technologies and techniques are used. This paper presents a theoretical framework as well as the system architecture for MyAds that was designed based on a set of hypotheses and an exploratory study. The system then was implemented and a pilot experiment was conducted to validate it. The main outcomes suggest that the system has provided personalized ads for users. The main implications suggest that the system can be used for further testing and validating.

Keywords: adaptive hypermedia, e-advertisement, social, hypotheses, exploratory study, framework

Procedia PDF Downloads 413
25388 Real-Time Visualization Using GPU-Accelerated Filtering of LiDAR Data

Authors: Sašo Pečnik, Borut Žalik

Abstract:

This paper presents a real-time visualization technique and filtering of classified LiDAR point clouds. The visualization is capable of displaying filtered information organized in layers by the classification attribute saved within LiDAR data sets. We explain the used data structure and data management, which enables real-time presentation of layered LiDAR data. Real-time visualization is achieved with LOD optimization based on the distance from the observer without loss of quality. The filtering process is done in two steps and is entirely executed on the GPU and implemented using programmable shaders.

Keywords: filtering, graphics, level-of-details, LiDAR, real-time visualization

Procedia PDF Downloads 311
25387 Synthesis and Characterization of Model Amines for Corrosion Applications

Authors: John Vergara, Giuseppe Palmese

Abstract:

Fundamental studies aimed at elucidating the key contributions to corrosion performance are needed to make progress toward effective and environmentally compliant corrosion control. Epoxy/amine systems are typically employed as barrier coatings for corrosion control. However, the hardening agents used for coating applications can be very complex, making fundamental studies of water and oxygen permeability challenging to carry out. Creating model building blocks for epoxy/amine coatings is the first step in carrying out these studies. We will demonstrate the synthesis and characterization of model amine building blocks from saturated fatty acids and simple amines such as diethylenetriamine (DETA) and Bis(3-aminopropyl)amine. The structure-property relationship of thermosets made from these model amines and Diglycidyl ether of bisphenol A (DGBEA) will be discussed.

Keywords: building block, amine, synthesis, characterization

Procedia PDF Downloads 543
25386 Amino Acid Based Biodegradable Amphiphilic Polymers and Micelles as Drug Delivery Systems: Synthesis and Study

Authors: Sophio Kobauri, Vladimir P. Torchilin, David Tugushi, Ramaz Katsarava

Abstract:

Nanotherapy is an actual newest mode of treatment numerous diseases using nanoparticles (NPs) loading with different pharmaceuticals. NPs of biodegradable polymeric micelles (PMs) are gaining increased attention for their numerous and attractive abilities to be used in a variety of applications in the various fields of medicine. The present paper deals with the synthesis of a class of biodegradable micelle-forming polymers, namely ABA triblock-copolymer in which A-blocks represent amino-poly(ethylene glycol) (H2N-PEG) and B-block is biodegradable amino acid-based poly(ester amide) constituted of α-amino acid – L-phenylalanine. The obtained copolymer formed micelles of 70±4 nm size at 10 mg/mL concentration.

Keywords: amino acids, biodegradable poly (ester amide), amphiphilic triblock-copolymer, micelles

Procedia PDF Downloads 192
25385 Estimating Destinations of Bus Passengers Using Smart Card Data

Authors: Hasik Lee, Seung-Young Kho

Abstract:

Nowadays, automatic fare collection (AFC) system is widely used in many countries. However, smart card data from many of cities does not contain alighting information which is necessary to build OD matrices. Therefore, in order to utilize smart card data, destinations of passengers should be estimated. In this paper, kernel density estimation was used to forecast probabilities of alighting stations of bus passengers and applied to smart card data in Seoul, Korea which contains boarding and alighting information. This method was also validated with actual data. In some cases, stochastic method was more accurate than deterministic method. Therefore, it is sufficiently accurate to be used to build OD matrices.

Keywords: destination estimation, Kernel density estimation, smart card data, validation

Procedia PDF Downloads 352
25384 Evaluated Nuclear Data Based Photon Induced Nuclear Reaction Model of GEANT4

Authors: Jae Won Shin

Abstract:

We develop an evaluated nuclear data based photonuclear reaction model of GEANT4 for a more accurate simulation of photon-induced neutron production. The evaluated photonuclear data libraries from the ENDF/B-VII.1 are taken as input. Incident photon energies up to 140 MeV which is the threshold energy for the pion production are considered. For checking the validity of the use of the data-based model, we calculate the photoneutron production cross-sections and yields and compared them with experimental data. The results obtained from the developed model are found to be in good agreement with the experimental data for (γ,xn) reactions.

Keywords: ENDF/B-VII.1, GEANT4, photoneutron, photonuclear reaction

Procedia PDF Downloads 275
25383 Optimizing Communications Overhead in Heterogeneous Distributed Data Streams

Authors: Rashi Bhalla, Russel Pears, M. Asif Naeem

Abstract:

In this 'Information Explosion Era' analyzing data 'a critical commodity' and mining knowledge from vertically distributed data stream incurs huge communication cost. However, an effort to decrease the communication in the distributed environment has an adverse influence on the classification accuracy; therefore, a research challenge lies in maintaining a balance between transmission cost and accuracy. This paper proposes a method based on Bayesian inference to reduce the communication volume in a heterogeneous distributed environment while retaining prediction accuracy. Our experimental evaluation reveals that a significant reduction in communication can be achieved across a diverse range of dataset types.

Keywords: big data, bayesian inference, distributed data stream mining, heterogeneous-distributed data

Procedia PDF Downloads 161
25382 Data Privacy: Stakeholders’ Conflicts in Medical Internet of Things

Authors: Benny Sand, Yotam Lurie, Shlomo Mark

Abstract:

Medical Internet of Things (MIoT), AI, and data privacy are linked forever in a gordian knot. This paper explores the conflicts of interests between the stakeholders regarding data privacy in the MIoT arena. While patients are at home during healthcare hospitalization, MIoT can play a significant role in improving the health of large parts of the population by providing medical teams with tools for collecting data, monitoring patients’ health parameters, and even enabling remote treatment. While the amount of data handled by MIoT devices grows exponentially, different stakeholders have conflicting understandings and concerns regarding this data. The findings of the research indicate that medical teams are not concerned by the violation of data privacy rights of the patients' in-home healthcare, while patients are more troubled and, in many cases, are unaware that their data is being used without their consent. MIoT technology is in its early phases, and hence a mixed qualitative and quantitative research approach will be used, which will include case studies and questionnaires in order to explore this issue and provide alternative solutions.

Keywords: MIoT, data privacy, stakeholders, home healthcare, information privacy, AI

Procedia PDF Downloads 102
25381 Characterization of Performance of Blocks Produced from Dredged Sample

Authors: Adebayo B., Omotehinse A. O.

Abstract:

The performance and characteristics of blocks produced from dredged sample was investigated. Blocks were produced using appropriate mixes of dredged sample and sharp sand. Some geotechnical properties (moisture content, grain size distribution) of the dredged sample (Igbokoda dredged sample) were determined using the British Standard. The physico-mechanical properties (water absorption, density and compressive strength) of blocks produced were evaluated. The dredged sample is classified as a silty material. Seven replacement levels of sharp sand were considered in the study (SS- Sharp Sand and DS – Dredged Sample) was done with constant amount of cement. 1- 85 % DS and 15 % SS, 2- 70 % DS and 30 % SS, 3- 55 % DS and 45 % SS, 4- 50 % DS and 50 % SS, 5- 45 % DS and 55 % SS, 6- 30 % DS and 70 % SS, 7- 15 % DS and 85 % SS and 8 – IS 100 % with cement; 9 – SS 100 % with cement) of different ages (7 days, 14 days, 21 days and 28 days) for the production of blocks. The compressive strength of the blocks produced ranges between 0.52 MPa to 3.0 MPa and considering the mixes, the highest compressive strength was found in mix of 15 % DS and 85 % SS.

Keywords: dredge sample, silt, sharp sand, block, cement

Procedia PDF Downloads 368
25380 Optimizing Data Integration and Management Strategies for Upstream Oil and Gas Operations

Authors: Deepak Singh, Rail Kuliev

Abstract:

The abstract highlights the critical importance of optimizing data integration and management strategies in the upstream oil and gas industry. With its complex and dynamic nature generating vast volumes of data, efficient data integration and management are essential for informed decision-making, cost reduction, and maximizing operational performance. Challenges such as data silos, heterogeneity, real-time data management, and data quality issues are addressed, prompting the proposal of several strategies. These strategies include implementing a centralized data repository, adopting industry-wide data standards, employing master data management (MDM), utilizing real-time data integration technologies, and ensuring data quality assurance. Training and developing the workforce, “reskilling and upskilling” the employees and establishing robust Data Management training programs play an essential role and integral part in this strategy. The article also emphasizes the significance of data governance and best practices, as well as the role of technological advancements such as big data analytics, cloud computing, Internet of Things (IoT), and artificial intelligence (AI) and machine learning (ML). To illustrate the practicality of these strategies, real-world case studies are presented, showcasing successful implementations that improve operational efficiency and decision-making. In present study, by embracing the proposed optimization strategies, leveraging technological advancements, and adhering to best practices, upstream oil and gas companies can harness the full potential of data-driven decision-making, ultimately achieving increased profitability and a competitive edge in the ever-evolving industry.

Keywords: master data management, IoT, AI&ML, cloud Computing, data optimization

Procedia PDF Downloads 71
25379 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method

Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri

Abstract:

Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.

Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method

Procedia PDF Downloads 503
25378 Parallelization by Domain Decomposition for 1-D Sugarcane Equation with Message Passing Interface

Authors: Ewedafe Simon Uzezi

Abstract:

In this paper we presented a method based on Domain Decomposition (DD) for parallelization of 1-D Sugarcane Equation on parallel platform with parallel paradigms on Master-Slave platform using Message Passing Interface (MPI). The 1-D Sugarcane Equation was discretized using explicit method of discretization requiring evaluation nof temporal and spatial distribution of temperature. This platform gives better predictions of the effects of temperature distribution of the sugarcane problem. This work presented parallel overheads with overlapping communication and communication across parallel computers with numerical results across different block sizes with scalability. However, performance improvement strategies from the DD on various mesh sizes were compared experimentally and parallel results show speedup and efficiency for the parallel algorithms design.

Keywords: sugarcane, parallelization, explicit method, domain decomposition, MPI

Procedia PDF Downloads 25
25377 Big Data Strategy for Telco: Network Transformation

Authors: F. Amin, S. Feizi

Abstract:

Big data has the potential to improve the quality of services; enable infrastructure that businesses depend on to adapt continually and efficiently; improve the performance of employees; help organizations better understand customers; and reduce liability risks. Analytics and marketing models of fixed and mobile operators are falling short in combating churn and declining revenue per user. Big Data presents new method to reverse the way and improve profitability. The benefits of Big Data and next-generation network, however, are more exorbitant than improved customer relationship management. Next generation of networks are in a prime position to monetize rich supplies of customer information—while being mindful of legal and privacy issues. As data assets are transformed into new revenue streams will become integral to high performance.

Keywords: big data, next generation networks, network transformation, strategy

Procedia PDF Downloads 361
25376 REDUCER: An Architectural Design Pattern for Reducing Large and Noisy Data Sets

Authors: Apkar Salatian

Abstract:

To relieve the burden of reasoning on a point to point basis, in many domains there is a need to reduce large and noisy data sets into trends for qualitative reasoning. In this paper we propose and describe a new architectural design pattern called REDUCER for reducing large and noisy data sets that can be tailored for particular situations. REDUCER consists of 2 consecutive processes: Filter which takes the original data and removes outliers, inconsistencies or noise; and Compression which takes the filtered data and derives trends in the data. In this seminal article, we also show how REDUCER has successfully been applied to 3 different case studies.

Keywords: design pattern, filtering, compression, architectural design

Procedia PDF Downloads 213
25375 Stronger Together – Micro-Entrepreneurs’ Resilience Development in a Communal Training Space 

Authors: Halonen

Abstract:

Covid-19 pandemic and the succeeding crises have profoundly shaken the accustomed ways of interaction and thereby challenged the customary engagement patterns among entrepreneurs Consequently, this has led to the experience of lack of collegial interaction for some. Networks and relationships are a crucial factor to strengthening resilience, being especially significant in non-ordinary times. This study aims to shed light on entrepreneurs’ resilience development in and through entrepreneurs’ communal and training space. The context for research is a communal training space in a municipality in Finland of which goal is to help entrepreneurs to experience of peer support and community as part of the "tribe" is strengthened, the entrepreneurs' well-being at work, resilience, ability to change, innovativeness and general life management is strengthened. This communal space is regarded as an example of a physical community of practice (CoP) of entrepreneurs. The research aims to highlight the importance of rediscovering the “new normal” communality as itself but as a key building block of resilience. The initial research questions of the study are: RQ1: What is the role of entrepreneurs’ CoP and communal space in nurturing resilience development among them? RQ2: What positive entrepreneurial outcomes can be achieved through established CoP. The data will be gathered starting from the launch of the communality space in September 2023 onwards. It includes participatory observations of training gatherings, interviews with entrepreneurs and utilizes action research as the method. The author has an active role in participating and facilitating the development. The full paper will be finalized by the fall 2024. The idea of the new normal communality in a CoP among entrepreneurs is to be rediscovered due to its positive impact on entrepreneur’s resilience and business success. The other implications of study can extend to wider entrepreneurial ecosystem and other key stakeholders. Especially emphasizing the potential of communality in CoP for fostering entrepreneurs’ resilience and well-being ensuing business growth, community-driven entrepreneurship development and vitality of the case municipality.

Keywords: resilience, resilience development, communal space, community of practice (CoP)

Procedia PDF Downloads 75
25374 Fuzzy Expert Systems Applied to Intelligent Design of Data Centers

Authors: Mario M. Figueroa de la Cruz, Claudia I. Solorzano, Raul Acosta, Ignacio Funes

Abstract:

This technological development project seeks to create a tool that allows companies, in need of implementing a Data Center, intelligently determining factors for allocating resources support cooling and power supply (UPS) in its conception. The results should show clearly the speed, robustness and reliability of a system designed for deployment in environments where they must manage and protect large volumes of data.

Keywords: telecommunications, data center, fuzzy logic, expert systems

Procedia PDF Downloads 345
25373 Genetic Testing and Research in South Africa: The Sharing of Data Across Borders

Authors: Amy Gooden, Meshandren Naidoo

Abstract:

Genetic research is not confined to a particular jurisdiction. Using direct-to-consumer genetic testing (DTC-GT) as an example, this research assesses the status of data sharing into and out of South Africa (SA). While SA laws cover the sending of genetic data out of SA, prohibiting such transfer unless a legal ground exists, the position where genetic data comes into the country depends on the laws of the country from where it is sent – making the legal position less clear.

Keywords: cross-border, data, genetic testing, law, regulation, research, sharing, South Africa

Procedia PDF Downloads 163
25372 Effect of Palm Bunch Ash and Neem (Azardirachta indica A. Juss) Leaf Powder on Termite Infestation in Groundnut Field

Authors: K. O. Ogbedeh, C. P. Ekwe, G. O. Ihejirika, S. A. Dialoke, O. P. Onyewuchi, C. P. Anyanwu, I. E. Kalu

Abstract:

As one of the major pests of field crops, termites attack groundnut at all stages of its development, especially during prolonged dry spell. Effect of palm bunch ash and neem(Azardirachta indica A. Juss) leaf powder on termite infestation in groundnut field in Owerri, Nigeria was investigated in this study. The field trial was carried out in 2016 at the Teaching and Research Farm of the Federal University of Technology, Owerri, Nigeria. The experiment was laid out in a 3x3 Factorial fitted into a Randomized Complete Block Design (RCBD) with three replications. The treatments include three rates of palm bunch ash at 0.0 (control), 1.0 and 2.0tons/ha and three rates of neem leaf powder at 0.0(control), 1.0, 2.0 tons/ha respectively. Data were collected on percentage emergence, termite incidence and termite severity. These were subjected to analysis of variance (ANOVA), and means were separated using least significant difference at 5% level of probability. The result shows that there were no significant (P= 0.05) differences in percentage emergence amongst treatment means due to palm bunch ash and neem leaf powder applications. Contrarily, palm bunch ash at 2.0 tons/ha recorded the least termite incidence especially at twelve weeks after planting (12WAP) with a value of 22.20% while control plot maintained highest values at 6WAP (48.70%) and 12WAP (48.30%) respectively. Also palm bunch ash at 2.0tons/ha depressed termite severity more than other treatments especially at 2 and 4 WAP (0.56) respectively. Control plots on the other hand consistently maintained highest termite severity throughout the trial with the highest value at 2 and 12WAP (1.56). Conclusively, palm bunch ash exhibited highest depressive action against termite on groundnut especially at higher application value (2.0tons/ha).

Keywords: groundnut, incidence, neem, palm, severity, termites

Procedia PDF Downloads 231
25371 Design of a Low Cost Motion Data Acquisition Setup for Mechatronic Systems

Authors: Baris Can Yalcin

Abstract:

Motion sensors have been commonly used as a valuable component in mechatronic systems, however, many mechatronic designs and applications that need motion sensors cost enormous amount of money, especially high-tech systems. Design of a software for communication protocol between data acquisition card and motion sensor is another issue that has to be solved. This study presents how to design a low cost motion data acquisition setup consisting of MPU 6050 motion sensor (gyro and accelerometer in 3 axes) and Arduino Mega2560 microcontroller. Design parameters are calibration of the sensor, identification and communication between sensor and data acquisition card, interpretation of data collected by the sensor.

Keywords: design, mechatronics, motion sensor, data acquisition

Procedia PDF Downloads 588