Search results for: artificial skin
2498 A Comparative Study on Automatic Feature Classification Methods of Remote Sensing Images
Authors: Lee Jeong Min, Lee Mi Hee, Eo Yang Dam
Abstract:
Geospatial feature extraction is a very important issue in the remote sensing research. In the meantime, the image classification based on statistical techniques, but, in recent years, data mining and machine learning techniques for automated image processing technology is being applied to remote sensing it has focused on improved results generated possibility. In this study, artificial neural network and decision tree technique is applied to classify the high-resolution satellite images, as compared to the MLC processing result is a statistical technique and an analysis of the pros and cons between each of the techniques.Keywords: remote sensing, artificial neural network, decision tree, maximum likelihood classification
Procedia PDF Downloads 3472497 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model
Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong
Abstract:
In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.Keywords: artificial neural network, Taguchi method, real estate valuation model, investors
Procedia PDF Downloads 4892496 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network
Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard
Abstract:
Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the points specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.Keywords: artificial neural networks, milling process, rotational speed, temperature
Procedia PDF Downloads 4052495 Two Day Ahead Short Term Load Forecasting Neural Network Based
Authors: Firas M. Tuaimah
Abstract:
This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity. The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.Keywords: short-term load forecasting, artificial neural networks, back propagation learning, hourly load demand
Procedia PDF Downloads 4642494 Current Status of Ir-192 Brachytherapy in Bangladesh
Authors: M. Safiqul Islam, Md Arafat Hossain Sarkar
Abstract:
Brachytherapy is one of the most important cancer treatment management systems in radiotherapy department. Brachytherapy treatment is moved into High Dose Rate (HDR) after loader from Low Dose Rate (LDR) after loader due to radiation protection advantage. HDR Brachytherapy is a highly multipurpose system for enhancing cure and achieving palliation in many common cancers disease of developing countries. High-dose rate (HDR) Brachytherapy is a type of internal radiation therapy that delivers radiation from implants placed close to or inside, the tumor(s) in the body. This procedure is very effective at providing localized radiation to the tumor site while minimizing the patient’s whole body dose. Brachytherapy has proven to be a highly successful treatment for cancers of the prostate, cervix, endometrium, breast, skin, bronchus, esophagus, and head and neck, as well as soft tissue sarcomas and several other types of cancer. For the time being in our country we have 10 new HDR Remote after loading Brachytherapy. Right now 4 HDR Brachytherapy is already installed and running for patient’s treatment out of 10 HDR Brachytherapy. Ir-192 source is more comfortable than Co-60. In that case people or expert personnel prefer Ir-192 source for different kind of cancer patients. Ir-192 are economically, more flexible and familiar in our country.Keywords: Ir-192, brachytherapy, cancer treatment, prostate, cervix, endometrium, breast, skin, bronchus, esophagus, soft tissue sarcomas
Procedia PDF Downloads 4312493 The Effect of Applying Surgical Safety Checklist on Surgical Team’s Knowledge and Performance in Operating Room
Authors: Soheir Weheida, Amal E. Shehata, Samira E. Aboalizm
Abstract:
The aim of this study was to examine the effect of surgical safety checklist on surgical team’s knowledge and performance in operating room. Subjects: A convenience sample 151 (48 head nurse, 45 nurse, 37 surgeon and 21 anesthesiologist) which available in operating room at two different hospitals was included in the study. Setting: The study was carried out at operating room in Menoufia University and Shebin Elkom Teaching Hospitals, Egypt. Tools: I: Surgical safety: Surgical team knowledge assessment structure interview schedule. II: WHO surgical safety observational Checklist. III: Post Surgery Culture Survey scale. Results: There was statistical significant improvement of knowledge mean score and performance about surgical safety especially in post and follow up than pre intervention, before patients entering the operating, before induction of anesthesia, skin incision and post skin closure and before patient leaves operating room, P values (P < 0.001). Improvement of communication post intervention than pre intervention between surgical team’s (4.74 ± 0.540). About two thirds (73.5 %) of studied sample strongly agreed on surgical safety in operating room. Conclusions: Implementation of surgical safety checklist has a positive effect on improving knowledge, performance and communication between surgical teams and these seems to have a positive effect on improve patient safety in the operating room.Keywords: knowledge, operating room, performance, surgical safety checklist
Procedia PDF Downloads 3342492 Pregnancy and Birth Experience, Opinions regarding the Delivery Method of the Patients' Vaginal Deliveries
Authors: Umran Erciyes, Filiz Okumus
Abstract:
The purpose of this study was the determination of factors which impact the pregnancy, birth experience and the opinions regarding the delivery type of the puerperants, after vaginal birth. This descriptive study includes 349 patients who gave births with normal birth in one of the hospital in İstanbul in May- November 2014. After birth, we interview with these women face to face. The descriptive information form and Perception of Birth Scale were used as data collection tool. SPSS (Statistical Package for the Social Sciences) was used for statistical analysis. The average age of patients was 27.13, and the average score was 76.93±20.22. The patients are primary school graduate, and they do not have a job. They expressed an income outcome equality. More than half of women did not get educated before birth. Among educated patients, few women got educated overcoming the pain during labor process. As the time spent in the hospital for the birth increases, the birth perception of mothers is affected negatively. %86.8 of participants gave assisted delivery. Spontaneous vaginal birth has positive effects on birth perception. Establishing a vascular access, induction of labor performing enema, restriction of orally intake and movement, fundal pressure, episiotomy, nor to perform skin to skin contact with the baby after birth has adverse effects on the birth perceptions.Keywords: antenatal care, birth experience, perception of birth, vaginal birth
Procedia PDF Downloads 4372491 Energy Efficient Lighting in Educational Buildings through the Example of a High School in Istanbul
Authors: Nihan Gurel Ulusan
Abstract:
It is obvious that electrical energy, which is an inseparable part of modern day’s human and also the most important power source of our age, should be generated on a level that will suffice the nation’s requirements. The electrical energy used for a sustainable architectural design should be reduced as much as possible. Designing the buildings as energy efficient systems which aim at reducing the artificial illumination loads has been a current subject of our times as a result of concepts gaining importance like conscious consumption of energy sources, environment-friendly designs and sustainability. Reducing the consumption of electrical energy regarding the artificial lighting carries great significance, especially in the volumes which are used all day long like the educational buildings. Starting out with such an aim in this paper, the educational buildings are explored in terms of energy efficient lighting. Firstly, illumination techniques, illumination systems, light sources, luminaries, illumination controls and 'efficient energy' usage in lighting are mentioned. In addition, natural and artificial lighting systems used in educational buildings and also the spaces building up these kind buildings are examined in terms of energy efficient lighting. Lastly, the illumination properties of the school sample chosen for this study, Kağıthane Anadolu Lisesi, a typical high school in Istanbul, is observed. Suggestions are made in order to improve the system by evaluating the illumination properties of the classes with the survey carried out with the users.Keywords: educational buildings, energy efficient, illumination techniques, lighting
Procedia PDF Downloads 2812490 Artificial Intelligence and Machine Vision-Based Defect Detection Methodology for Solid Rocket Motor Propellant Grains
Authors: Sandip Suman
Abstract:
Mechanical defects (cracks, voids, irregularities) in rocket motor propellant are not new and it is induced due to various reasons, which could be an improper manufacturing process, lot-to-lot variation in chemicals or just the natural aging of the products. These defects are normally identified during the examination of radiographic films by quality inspectors. However, a lot of times, these defects are under or over-classified by human inspectors, which leads to unpredictable performance during lot acceptance tests and significant economic loss. The human eye can only visualize larger cracks and defects in the radiographs, and it is almost impossible to visualize every small defect through the human eye. A different artificial intelligence-based machine vision methodology has been proposed in this work to identify and classify the structural defects in the radiographic films of rocket motors with solid propellant. The proposed methodology can extract the features of defects, characterize them, and make intelligent decisions for acceptance or rejection as per the customer requirements. This will automatize the defect detection process during manufacturing with human-like intelligence. It will also significantly reduce production downtime and help to restore processes in the least possible time. The proposed methodology is highly scalable and can easily be transferred to various products and processes.Keywords: artificial intelligence, machine vision, defect detection, rocket motor propellant grains
Procedia PDF Downloads 982489 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model
Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao
Abstract:
Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization
Procedia PDF Downloads 1282488 Therapeutic Effects of Guar Gum Nanoparticles in Oxazolone-Induced Atopic Dermatitis
Authors: Nandita Ghosh, Shinjini Mitra, Ena Ray Banerjee
Abstract:
Atopic dermatitis (AD) is a chronic disease of the skin, involving itchy, reddish, and scaly lesions. It mainly affects children and has a high prevalence in developing countries. The AD may occur due to environmental or genetic factors. There is no permanent cure for the AD. Currently, all therapeutic strategies involve methods to simply alleviate the symptoms, and include lotions and corticosteroids, which have adverse effects. Use of phytochemicals and natural products has not yet been exploited fully. The particle used in this study is derived from Cyamopsis tetragonoloba, an edible polysaccharide with a galactomannan component. The mannose component mainly increases its specificity towards cellular uptake by mannose receptors, highly expressed by the macrophage. The aim of this study was to determine the therapeutic effect of guar gum nanoparticles (GN) in vitro and in vivo in the AD. To assess the wound healing capacity of the guar gum nanoparticle (GN), we first treated adherent NIH3T3 cells, with a scratch injury, with GN. GN successfully healed the wound caused by the scratch. In the in vivo experiment, Balb/c mice ear were topically treated with oxazolone (oxa) to induce AD and then were topically treated with GN. The ear thickness was increased significantly till day 28 on the treatment of Oxa. The GN application showed a significant decrease in the thickness as assessed on day 28. The total cell count of skin cells showed fold increase when treated with oxa, was again decreased on topical application of GN on the affected skin. The eosinophil count, as assessed by Giemsa staining was also increased when treated with oxa, GN application led to a significant decrease. The IgE level was assessed in the serum samples which showed that GN helped in restoring the alleviated IgE level. The T helper cells and the macrophage population showed increased percentage when treated with oxa, the GN application. This was examined by flow cytometry. The H&E staining of the ear tissue showed epidermal thickness in the oxa treated mice, GN application showed reduced cellular filtration followed by epidermal thickness. Thus our assays showed that GN was successful in alleviating the disease caused by Oxa when administered topically.Keywords: allergen, inflammation, nanodrug, wound
Procedia PDF Downloads 2432487 Iontophoretic Drug Transport of Some Anti-Diabetic Agents
Authors: Ashish Jain, Satish Nayak
Abstract:
Transdermal iontophoretic drug delivery system is viable drug delivery platform technology and has a strong market worldwide. Transdermal drug delivery system is particularly desirable for therapeutic agents that need prolonged administration at controlled plasma level. This makes appropriateness to antihypertensive and anti-diabetic agents for their transdermal development. Controlled zero order absorption, easily termination of drug delivery and easy to administration also support for popularity of transdermal delivery. In this current research iontophoretic delivery of various anti diabetic agents like glipizide, glibenclamide and glimepiride were carried out. The experiments were carried out at different drug concentrations and different current densities using cathodal iontophoresis. Diffusion cell for iontophoretic permeation study was modified according to Glikfield Design. Pig skin was used for in vitro permeation study and for the in-vivo study New Zealand rabbits were used. At all concentration level iontophoresis showed enhanced permeation rate compared to passive controls. Iontophoretic transports of selected drugs were found to be increased with the current densities. Results showed that target permeation rate for selected drugs could be achieved with the aid of iontophoresis by increasing the area in an appreciable range.Keywords: transdermal, iontophoresis, pig skin, rabbits, glipizide, glibeclamide
Procedia PDF Downloads 3842486 F-IVT Actuation System to Power Artificial Knee Joint
Authors: Alò Roberta, Bottiglione Francesco, Mantriota Giacomo
Abstract:
The efficiency of the actuation system of lower limb exoskeletons and of active orthoses is a significant aspect of the design of such devices because it affects their efficacy. F-IVT is an innovative actuation system to power artificial knee joint with energy recovery capabilities. Its key and non-conventional elements are a flywheel, that acts as a mechanical energy storage system, and an Infinitely Variable Transmission (IVT). The design of the F-IVT can be optimized for a certain walking condition, resulting in a heavy reduction of both the electric energy consumption and of the electric peak power. In this work, by means of simulations of level ground walking at different speeds, it is demonstrated how F-IVT is still an advantageous actuator, even when it does not work in nominal conditions.Keywords: active orthoses, actuators, lower extremity exoskeletons, knee joint
Procedia PDF Downloads 6012485 Neonatal Subcutaneous Fat Necrosis with Severe Hypercalcemia: Case Report
Authors: Atitallah Sofien, Bouyahia Olfa, Krifi farah, Missaoui Nada, Ben Rabeh Rania, Yahyaoui Salem, Mazigh Sonia, Boukthir Samir
Abstract:
Introduction: Subcutaneous fat necrosis of the newborn (SCFN) is a rare acute hypodermatitis characterized by skin lesions in the form of infiltrated, hard plaques and subcutaneous nodules, with a purplish-red color, occurring between the first and sixth week of life. SCFN is generally a benign condition that spontaneously regresses without sequelae, but it can be complicated by severe hypercalcemia. Methodology: This is a retrospective case report of neonatal subcutaneous fat necrosis complicated with severe hypercalcemia and nephrocalcinosis. Results: This is a case of a female newborn with a family history of a hypothyroid mother on Levothyrox, born to non-consanguineous parents and from a well-monitored pregnancy. The newborn was delivered by cesarean section at 39 weeks gestation due to severe preeclampsia. She was admitted to the Neonatal Intensive Care Unit at 1 hour of life for the management of grade 1 perinatal asphyxia and immediate neonatal respiratory distress related to transient respiratory distress. Hospitalization was complicated by a healthcare-associated infection, requiring intravenous antibiotics for ten days, with a good clinical and biological response. On the 20th day of life, she developed skin lesions in the form of indurated purplish-red nodules on the back and on both arms. A SCFN was suspected. A calcium level test was conducted, which returned a result of 3 mmol/L. The rest of the phosphocalcic assessment was normal, with early signs of nephrocalcinosis observed on renal ultrasound. The diagnosis of SCFN complicated by nephrocalcinosis associated with severe hypercalcemia was made, and the condition improved with intravenous hydration and corticosteroid therapy. Conclusion: SCFN is a rare and generally benign hypodermatitis in newborns with an etiology that is still poorly understood. Despite its benign nature, SCFN can be complicated by hypercalcemia, which can sometimes be life-threatening. Therefore, it is important to conduct a thorough skin examination of newborns, especially those with risk factors, to detect and correct any potential hypercalcemia.Keywords: subcutaneous fat necrosis, newborn, hypercalcemia, nephrocalcinosis
Procedia PDF Downloads 582484 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection
Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner
Abstract:
Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.
Procedia PDF Downloads 2232483 A Cross-Cultural Approach for Communication with Biological and Non-Biological Intelligences
Authors: Thomas Schalow
Abstract:
This paper posits the need to take a cross-cultural approach to communication with non-human cultures and intelligences in order to meet the following three imminent contingencies: communicating with sentient biological intelligences, communicating with extraterrestrial intelligences, and communicating with artificial super-intelligences. The paper begins with a discussion of how intelligence emerges. It disputes some common assumptions we maintain about consciousness, intention, and language. The paper next explores cross-cultural communication among humans, including non-sapiens species. The next argument made is that we need to become much more serious about communicating with the non-human, intelligent life forms that already exist around us here on Earth. There is an urgent need to broaden our definition of communication and reach out to the other sentient life forms that inhabit our world. The paper next examines the science and philosophy behind CETI (communication with extraterrestrial intelligences) and how it has proven useful, even in the absence of contact with alien life. However, CETI’s assumptions and methodology need to be revised and based on the cross-cultural approach to communication proposed in this paper if we are truly serious about finding and communicating with life beyond Earth. The final theme explored in this paper is communication with non-biological super-intelligences using a cross-cultural communication approach. This will present a serious challenge for humanity, as we have never been truly compelled to converse with other species, and our failure to seriously consider such intercourse has left us largely unprepared to deal with communication in a future that will be mediated and controlled by computer algorithms. Fortunately, our experience dealing with other human cultures can provide us with a framework for this communication. The basic assumptions behind intercultural communication can be applied to the many types of communication envisioned in this paper if we are willing to recognize that we are in fact dealing with other cultures when we interact with other species, alien life, and artificial super-intelligence. The ideas considered in this paper will require a new mindset for humanity, but a new disposition will prepare us to face the challenges posed by a future dominated by artificial intelligence.Keywords: artificial intelligence, CETI, communication, culture, language
Procedia PDF Downloads 3582482 Reliability and Validity for Measurement of Body Composition: A Field Method
Authors: Ahmad Hashim, Zarizi Ab Rahman
Abstract:
Measurement of body composition via a field method has the most popular instruments which are used to estimate the percentage of body fat. Among the instruments used are the Body Mass Index, Bio Impedance Analysis and Skinfold Test. All three of these instruments do not involve high costs, do not require high technical skills, are mobile, save time, and are suitable for use in large populations. Because all three instruments can estimate the percentage of body fat, but it is important to identify the most appropriate instruments and have high reliability. Hence, this study was conducted to determine the reliability and convergent validity of the instruments. A total of 40 students, males and females aged between 13 and 14 years participated in this study. The study found that the test retest and Pearson correlation coefficient of reliability for the three instruments is very high, r = .99. While the inter class reliability also are at high level with r = .99 for Body Mass Index and Bio Impedance Analysis, r = .96 for Skin fold test. Intra class reliability coefficient for these three instruments is too high for Body Mass Index r = .99, Bio Impedance Analysis r = .97, and Skin fold Test r = .90. However, Standard Error of Measurement value for all three instruments indicates the Body Mass Index is the most appropriate instrument with a mean value of .000672 compared with other instruments. The findings show that the Body Mass Index is an instrument which is the most accurate and reliable in estimating body fat percentage for the population studied.Keywords: reliability, validity, body mass index, bio impedance analysis and skinfold test
Procedia PDF Downloads 3352481 Comparative Study od Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast
Authors: Nabilah Filzah Mohd Radzuan, Andi Putra, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Precipitation forecast is important to avoid natural disaster incident which can cause losses in the involved area. This paper reviews three techniques logistic regression, decision tree, and random forest which are used in making precipitation forecast. These combination techniques through the vector auto-regression (VAR) model help in finding the advantages and strengths of each technique in the forecast process. The data-set contains variables of the rain’s domain. Adaptation of artificial intelligence techniques involved in rain domain enables the forecast process to be easier and systematic for precipitation forecast.Keywords: logistic regression, decisions tree, random forest, VAR model
Procedia PDF Downloads 4462480 Impact of Natural and Artificial Disasters, Lackadaisical and Semantic Approach in Risk Management, and Mitigation Implication for Sustainable Goals in Nigeria, from 2009 to 2022
Authors: Wisdom Robert Duruji, Moses Kanayochukwu Ifoh, Efeoghene Edward Esiemunobo
Abstract:
This study examines the impact of natural and artificial disasters, lackadaisical and semantic approach in risk management, and mitigation implication for sustainable development goals in Nigeria, from 2009 to 2022. The study utilizes a range of research methods to achieve its objectives. These include literature review, website knowledge, Google search, news media information, academic journals, field-work and on-site observations. These diverse methods allow for a comprehensive analysis on the impact and the implications being study. The study finds that paradigm shift from remediating seismic, flooding, environmental pollution and degradation natural disasters by Nigeria Emergency Management Agency (NEMA), to political and charity organization; has plunged risk reduction strategies to embezzling opportunities. However, this lackadaisical and semantic approach in natural disaster mitigation, invariably replicates artificial disasters in Nigeria through: Boko Haram terrorist organization, Fulani herdsmen and farmers conflicts, political violence, kidnapping for ransom, ethnic conflicts, Religious dichotomy, insurgency, secession protagonists, unknown-gun-men, and banditry. This study also, finds that some Africans still engage in self-imposed slavery through human trafficking, by nefariously stow-away to Europe; through Libya, Sahara desert and Mediterranean sea; in search for job opportunities, due to ineptitude in governance by their leaders; a perilous journey that enhanced artificial disasters in Nigeria. That artificial disaster fatality in Nigeria increased from about 5,655 in 2009 to 114,318 in 2018; and to 157,643 in 2022. However, financial and material loss of about $9.29 billion was incurred in Nigeria due to natural disaster, while about $70.59 billion was accrued due to artificial disaster; from 2009 to 2018. Although disaster risk mitigation and politics can synergistically support sustainable development goals; however, they are different entities, and need for distinct separations in Nigeria, as in reality and perception. This study concluded that referendum should be conducted in Nigeria, to ascertain its current status as a nation. Therefore it is recommended that Nigerian governments should refine its naturally endowed crude oil locally; to end fuel subsidy scam, corruption and poverty in Nigeria!Keywords: corruption, crude oil, environmental risk analysis, Nigeria, referendum, terrorism
Procedia PDF Downloads 422479 An Automated Optimal Robotic Assembly Sequence Planning Using Artificial Bee Colony Algorithm
Authors: Balamurali Gunji, B. B. V. L. Deepak, B. B. Biswal, Amrutha Rout, Golak Bihari Mohanta
Abstract:
Robots play an important role in the operations like pick and place, assembly, spot welding and much more in manufacturing industries. Out of those, assembly is a very important process in manufacturing, where 20% of manufacturing cost is wholly occupied by the assembly process. To do the assembly task effectively, Assembly Sequences Planning (ASP) is required. ASP is one of the multi-objective non-deterministic optimization problems, achieving the optimal assembly sequence involves huge search space and highly complex in nature. Many researchers have followed different algorithms to solve ASP problem, which they have several limitations like the local optimal solution, huge search space, and execution time is more, complexity in applying the algorithm, etc. By keeping the above limitations in mind, in this paper, a new automated optimal robotic assembly sequence planning using Artificial Bee Colony (ABC) Algorithm is proposed. In this algorithm, automatic extraction of assembly predicates is done using Computer Aided Design (CAD) interface instead of extracting the assembly predicates manually. Due to this, the time of extraction of assembly predicates to obtain the feasible assembly sequence is reduced. The fitness evaluation of the obtained feasible sequence is carried out using ABC algorithm to generate the optimal assembly sequence. The proposed methodology is applied to different industrial products and compared the results with past literature.Keywords: assembly sequence planning, CAD, artificial Bee colony algorithm, assembly predicates
Procedia PDF Downloads 2372478 Artificial Intelligence in Disease Diagnosis
Authors: Shalini Tripathi, Pardeep Kumar
Abstract:
The method of translating observed symptoms into disease names is known as disease diagnosis. The ability to solve clinical problems in a complex manner is critical to a doctor's effectiveness in providing health care. The accuracy of his or her expertise is crucial to the survival and well-being of his or her patients. Artificial Intelligence (AI) has a huge economic influence depending on how well it is applied. In the medical sector, human brain-simulated intellect can help not only with classification accuracy, but also with reducing diagnostic time, cost and pain associated with pathologies tests. In light of AI's present and prospective applications in the biomedical, we will identify them in the paper based on potential benefits and risks, social and ethical consequences and issues that might be contentious but have not been thoroughly discussed in publications and literature. Current apps, personal tracking tools, genetic tests and editing programmes, customizable models, web environments, virtual reality (VR) technologies and surgical robotics will all be investigated in this study. While AI holds a lot of potential in medical diagnostics, it is still a very new method, and many clinicians are uncertain about its reliability, specificity and how it can be integrated into clinical practice without jeopardising clinical expertise. To validate their effectiveness, more systemic refinement of these implementations, as well as training of physicians and healthcare facilities on how to effectively incorporate these strategies into clinical practice, will be needed.Keywords: Artificial Intelligence, medical diagnosis, virtual reality, healthcare ethical implications
Procedia PDF Downloads 1322477 ChatGPT as a “Foreign Language Teacher”: Attitudes of Tunisian English Language Learners
Authors: Leila Najeh Bel'Kiry
Abstract:
Artificial intelligence (AI) brought about many language robots, with ChatGPT being the most sophisticated thanks to its human-like linguistic capabilities. This aspect raises the idea of using ChatGPT in learning foreign languages. Starting from the premise that positions ChatGPT as a mediator between the language and the leaner, functioning as a “ghost teacher" offering a peaceful and secure learning space, this study aims to explore the attitudes of Tunisian students of English towards ChatGPT as a “Foreign Language Teacher” . Forty-five students, in their third year of fundamental English at Tunisian universities and high institutes, completed a Likert scale questionnaire consisting of thirty-two items and covering various aspects of language (phonology, morphology, syntax, semantics, and pragmatics). A scale ranging from 'Strongly Disagree,' 'Disagree,' 'Undecided,' 'Agree,' to 'Strongly Agree.' is used to assess the attitudes of the participants towards the integration of ChaGPTin learning a foreign language. Results indicate generally positive attitudes towards the reliance on ChatGPT in learning foreign languages, particularly some compounds of language like syntax, phonology, and morphology. However, learners show insecurity towards ChatGPT when it comes to pragmatics and semantics, where the artificial model may fail when dealing with deeper contextual and nuanced language levels.Keywords: artificial language model, attitudes, foreign language learning, ChatGPT, linguistic capabilities, Tunisian English language learners
Procedia PDF Downloads 642476 Applying Sequential Pattern Mining to Generate Block for Scheduling Problems
Authors: Meng-Hui Chen, Chen-Yu Kao, Chia-Yu Hsu, Pei-Chann Chang
Abstract:
The main idea in this paper is using sequential pattern mining to find the information which is helpful for finding high performance solutions. By combining this information, it is defined as blocks. Using the blocks to generate artificial chromosomes (ACs) could improve the structure of solutions. Estimation of Distribution Algorithms (EDAs) is adapted to solve the combinatorial problems. Nevertheless many of these approaches are advantageous for this application, but only some of them are used to enhance the efficiency of application. Generating ACs uses patterns and EDAs could increase the diversity. According to the experimental result, the algorithm which we proposed has a better performance to solve the permutation flow-shop problems.Keywords: combinatorial problems, sequential pattern mining, estimationof distribution algorithms, artificial chromosomes
Procedia PDF Downloads 6112475 Hardware Implementation for the Contact Force Reconstruction in Tactile Sensor Arrays
Authors: María-Luisa Pinto-Salamanca, Wilson-Javier Pérez-Holguín
Abstract:
Reconstruction of contact forces is a fundamental technique for analyzing the properties of a touched object and is essential for regulating the grip force in slip control loops. This is based on the processing of the distribution, intensity, and direction of the forces during the capture of the sensors. Currently, efficient hardware alternatives have been used more frequently in different fields of application, allowing the implementation of computationally complex algorithms, as is the case with tactile signal processing. The use of hardware for smart tactile sensing systems is a research area that promises to improve the processing time and portability requirements of applications such as artificial skin and robotics, among others. The literature review shows that hardware implementations are present today in almost all stages of smart tactile detection systems except in the force reconstruction process, a stage in which they have been less applied. This work presents a hardware implementation of a model-driven reported in the literature for the contact force reconstruction of flat and rigid tactile sensor arrays from normal stress data. From the analysis of a software implementation of such a model, this implementation proposes the parallelization of tasks that facilitate the execution of matrix operations and a two-dimensional optimization function to obtain a vector force by each taxel in the array. This work seeks to take advantage of the parallel hardware characteristics of Field Programmable Gate Arrays, FPGAs, and the possibility of applying appropriate techniques for algorithms parallelization using as a guide the rules of generalization, efficiency, and scalability in the tactile decoding process and considering the low latency, low power consumption, and real-time execution as the main parameters of design. The results show a maximum estimation error of 32% in the tangential forces and 22% in the normal forces with respect to the simulation by the Finite Element Modeling (FEM) technique of Hertzian and non-Hertzian contact events, over sensor arrays of 10×10 taxels of different sizes. The hardware implementation was carried out on an MPSoC XCZU9EG-2FFVB1156 platform of Xilinx® that allows the reconstruction of force vectors following a scalable approach, from the information captured by means of tactile sensor arrays composed of up to 48 × 48 taxels that use various transduction technologies. The proposed implementation demonstrates a reduction in estimation time of x / 180 compared to software implementations. Despite the relatively high values of the estimation errors, the information provided by this implementation on the tangential and normal tractions and the triaxial reconstruction of forces allows to adequately reconstruct the tactile properties of the touched object, which are similar to those obtained in the software implementation and in the two FEM simulations taken as reference. Although errors could be reduced, the proposed implementation is useful for decoding contact forces for portable tactile sensing systems, thus helping to expand electronic skin applications in robotic and biomedical contexts.Keywords: contact forces reconstruction, forces estimation, tactile sensor array, hardware implementation
Procedia PDF Downloads 1952474 Estimation of Residual Stresses in Thick Walled Cylinder by Radial Basis Artificial Neural
Authors: Mohammad Heidari
Abstract:
In this paper a method for high strength steel is proposed of residual stresses in autofrettaged tubes by combination of artificial neural networks is presented. Many different thick walled cylinders that were subjected to different conditions were studied. At first, the residual stress is calculated by analytical solution. Then by changing of the parameters that influenced in residual stresses such as percentage of autofrettage, internal pressure, wall ratio of cylinder, material property of cylinder, bauschinger and hardening effect factor, a neural network is created. These parameters are the input of network. The output of network is residual stress. Numerical data, employed for training the network and capabilities of the model in predicting the residual stress has been verified. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 2.75% in predicting residual stress of thick wall cylinder. Further analysis of residual stress of thick wall cylinder under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.Keywords: thick walled cylinder, residual stress, radial basis, artificial neural network
Procedia PDF Downloads 4162473 AI-Based Technologies for Improving Patient Safety and Quality of Care
Authors: Tewelde Gebreslassie Gebreanenia, Frie Ayalew Yimam, Seada Hussen Adem
Abstract:
Patient safety and quality of care are essential goals of health care delivery, but they are often compromised by human errors, system failures, or resource constraints. In a variety of healthcare contexts, artificial intelligence (AI), a quickly developing field, can provide fresh approaches to enhancing patient safety and treatment quality. Artificial Intelligence (AI) has the potential to decrease errors and enhance patient outcomes by carrying out tasks that would typically require human intelligence. These tasks include the detection and prevention of adverse events, monitoring and warning patients and clinicians about changes in vital signs, symptoms, or risks, offering individualized and evidence-based recommendations for diagnosis, treatment, or prevention, and assessing and enhancing the effectiveness of health care systems and services. This study examines the state-of-the-art and potential future applications of AI-based technologies for enhancing patient safety and care quality, as well as the opportunities and problems they present for patients, policymakers, researchers, and healthcare providers. In order to ensure the safe, efficient, and responsible application of AI in healthcare, the paper also addresses the ethical, legal, social, and technical challenges that must be addressed and regulated.Keywords: artificial intelligence, health care, human intelligence, patient safty, quality of care
Procedia PDF Downloads 782472 Emerging Technology for Business Intelligence Applications
Authors: Hsien-Tsen Wang
Abstract:
Business Intelligence (BI) has long helped organizations make informed decisions based on data-driven insights and gain competitive advantages in the marketplace. In the past two decades, businesses witnessed not only the dramatically increasing volume and heterogeneity of business data but also the emergence of new technologies, such as Artificial Intelligence (AI), Semantic Web (SW), Cloud Computing, and Big Data. It is plausible that the convergence of these technologies would bring more value out of business data by establishing linked data frameworks and connecting in ways that enable advanced analytics and improved data utilization. In this paper, we first review and summarize current BI applications and methodology. Emerging technologies that can be integrated into BI applications are then discussed. Finally, we conclude with a proposed synergy framework that aims at achieving a more flexible, scalable, and intelligent BI solution.Keywords: business intelligence, artificial intelligence, semantic web, big data, cloud computing
Procedia PDF Downloads 942471 On a Transient Magnetohydrodynamics Heat Transfer Within Radiative Porous Channel Due to Convective Boundary Condition
Authors: Bashiru Abdullahi, Isah Bala Yabo, Ibrahim Yakubu Seini
Abstract:
In this paper, the steady/transient MHD heat transfer within radiative porous channel due to convective boundary conditions is considered. The solution of the steady-state and that of the transient version were conveyed by Perturbation and Finite difference methods respectively. The heat transfer mechanism of the present work ascertains the influence of Biot number〖(B〗_i1), magnetizing parameter (M), radiation parameter(R), temperature difference, suction/injection(S) Grashof number (Gr) and time (t) on velocity (u), temperature(θ), skin friction(τ), and Nusselt number (Nu). The results established were discussed with the help of a line graph. It was found that the velocity, temperature, and skin friction decay with increasing suction/injection and magnetizing parameters while the Nusselt number upsurges with suction/injection at y = 0 and falls at y =1. The steady-state solution was in perfect agreement with the transient version for a significant value of time t. It is interesting to report that the Biot number has a cogent influence consequently, as its values upsurge the result of the present work slant the extended literature.Keywords: heat transfer, thermal radiation, porous channel, MHD, transient, convective boundary condition
Procedia PDF Downloads 1212470 Developing an AI-Driven Application for Real-Time Emotion Recognition from Human Vocal Patterns
Authors: Sayor Ajfar Aaron, Mushfiqur Rahman, Sajjat Hossain Abir, Ashif Newaz
Abstract:
This study delves into the development of an artificial intelligence application designed for real-time emotion recognition from human vocal patterns. Utilizing advanced machine learning algorithms, including deep learning and neural networks, the paper highlights both the technical challenges and potential opportunities in accurately interpreting emotional cues from speech. Key findings demonstrate the critical role of diverse training datasets and the impact of ambient noise on recognition accuracy, offering insights into future directions for improving robustness and applicability in real-world scenarios.Keywords: artificial intelligence, convolutional neural network, emotion recognition, vocal patterns
Procedia PDF Downloads 522469 Synergizing Additive Manufacturing and Artificial Intelligence: Analyzing and Predicting the Mechanical Behavior of 3D-Printed CF-PETG Composites
Authors: Sirine Sayed, Mostapha Tarfaoui, Abdelmalek Toumi, Youssef Qarssis, Mohamed Daly, Chokri Bouraoui
Abstract:
This paper delves into the combination of additive manufacturing (AM) and artificial intelligence (AI) to solve challenges related to the mechanical behavior of AM-produced parts. The article highlights the fundamentals and benefits of additive manufacturing, including creating complex geometries, optimizing material use, and streamlining manufacturing processes. The paper also addresses the challenges associated with additive manufacturing, such as ensuring stable mechanical performance and material properties. The role of AI in improving the static behavior of AM-produced parts, including machine learning, especially the neural network, is to make regression models to analyze the large amounts of data generated during experimental tests. It investigates the potential synergies between AM and AI to achieve enhanced functions and personalized mechanical properties. The mechanical behavior of parts produced using additive manufacturing methods can be further improved using design optimization, structural analysis, and AI-based adaptive manufacturing. The article concludes by emphasizing the importance of integrating AM and AI to enhance mechanical operations, increase reliability, and perform advanced functions, paving the way for innovative applications in different fields.Keywords: additive manufacturing, mechanical behavior, artificial intelligence, machine learning, neural networks, reliability, advanced functionalities
Procedia PDF Downloads 10