Search results for: carbon emission reduction pathway
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8845

Search results for: carbon emission reduction pathway

2335 Integrating Best Practices for Construction Waste in Quality Management Systems

Authors: Paola Villoria Sáez, Mercedes Del Río Merino, Jaime Santa Cruz Astorqui, Antonio Rodríguez Sánchez

Abstract:

The Spanish construction industry generates large volumes of waste. However, despite the legislative improvements introduced for construction and demolition waste (CDW), construction waste recycling rate remains well below other European countries and also below the target set for 2020. This situation can be due to many difficulties. i.e.: The difficulty of onsite segregation or the estimation in advance of the total amount generated. Despite these difficulties, the proper management of CDW must be one of the main aspects to be considered by the construction companies. In this sense, some large national companies are implementing Integrated Management Systems (IMS) including not only quality and safety aspects, but also environment issues. However, although this fact is a reality for large construction companies still the vast majority of companies need to adopt this trend. In short, it is common to find in small and medium enterprises a decentralized management system: A single system of quality management, another for system safety management and a third one for environmental management system (EMS). In addition, the EMSs currently used address CDW superficially and are mainly focus on other environmental concerns such as carbon emissions. Therefore, this research determines and implements a specific best practice management system for CDW based on eight procedures in a Spanish Construction company. The main advantages and drawbacks of its implementation are highlighted. Results of this study show that establishing and implementing a CDW management system in building works, improve CDW quantification as the company obtains their own CDW generation ratio. This helps construction stakeholders when developing CDW Management Plans and also helps to achieve a higher adjustment of CDW management costs. Finally, integrating this CDW system with the EMS of the company favors the cohesion of the construction process organization at all stages, establishing responsibilities in the field of waste and providing a greater control over the process.

Keywords: construction and demolition waste, waste management, best practices, waste minimization, building, quality management systems

Procedia PDF Downloads 517
2334 Correction of Frequent English Writing Errors by Using Coded Indirect Corrective Feedback and Error Treatment

Authors: Chaiwat Tantarangsee

Abstract:

The purposes of this study are: 1) to study the frequent English writing errors of students registering the course: Reading and Writing English for Academic Purposes II, and 2) to find out the results of writing error correction by using coded indirect corrective feedback and writing error treatments. Samples include 28 2nd year English Major students, Faculty of Education, Suan Sunandha Rajabhat University. Tool for experimental study includes the lesson plan of the course; Reading and Writing English for Academic Purposes II, and tool for data collection includes 4 writing tests of short texts. The research findings disclose that frequent English writing errors found in this course comprise 7 types of grammatical errors, namely Fragment sentence, Subject-verb agreement, Wrong form of verb tense, Singular or plural noun endings, Run-ons sentence, Wrong form of verb pattern and Lack of parallel structure. Moreover, it is found that the results of writing error correction by using coded indirect corrective feedback and error treatment reveal the overall reduction of the frequent English writing errors and the increase of students’ achievement in the writing of short texts with the significance at .05.

Keywords: coded indirect corrective feedback, error correction, error treatment, frequent English writing errors

Procedia PDF Downloads 221
2333 Fabrication of Glucose/O₂ Microfluidic Biofuel Cell with Double Layer of Electrodes

Authors: Haroon Khan, Chul Min Kim, Sung Yeol Kim, Sanket Goel, Prabhat K. Dwivedi, Ashutosh Sharma, Gyu Man Kim

Abstract:

Enzymatic biofuel cells (EBFCs) have drawn the attention of researchers due to its demanding application in medical implants. In EBFCs, electricity is produced with the help of redox enzymes. In this study, we report the fabrication of membraneless EBFC with new design of electrodes to overcome microchannel related limitations. The device consists of double layer of electrodes on both sides of Y-shaped microchannel to reduce the effect of oxygen depletion layer and diffusion of fuel and oxidant at the end of microchannel. Moreover, the length of microchannel was reduced by half keeping the same area of multiwalled carbon nanotubes (MWCNT) electrodes. Polydimethylsiloxane (PDMS) stencils were used to pattern MWCNT electrodes on etched Indium Tin Oxide (ITO) glass. PDMS casting was used to fabricate microchannel of the device. Both anode and cathode were modified with glucose oxidase and laccase. Furthermore, these enzymes were covalently bound to carboxyl MWCNTs with the help of EDC/NHS. Glucose used as fuel was oxidized by glucose oxidase at anode while oxygen was reduced to water at the cathode side. The resulted devices were investigated with the help of polarization curves obtained from Chronopotentiometry technique by using potentiostat. From results, we conclude that the performance of double layer EBFC is improved 15 % as compared to single layer EBFC delivering maximum power density of 71.25 µW cm-2 at a cell potential of 0.3 V and current density of 250 µA cm-2 at micro channel height of 450-µm and flow rate of 25 ml hr-1. However, the new device was stable only for three days after which its power output was rapidly dropped by 75 %. This work demonstrates that the power output of membraneless EBFC is improved comparatively, but still efforts will be needed to make the device stable over long period of time.

Keywords: EBFC, glucose, MWCNT, microfluidic

Procedia PDF Downloads 309
2332 Development of Lectin-Based Biosensor for Glycoprofiling of Clinical Samples: Focus on Prostate Cancer

Authors: Dominika Pihikova, Stefan Belicky, Tomas Bertok, Roman Sokol, Petra Kubanikova, Jan Tkac

Abstract:

Since aberrant glycosylation is frequently accompanied by both physiological and pathological processes in a human body (cancer, AIDS, inflammatory diseases, etc.), the analysis of tumor-associated glycan patterns have a great potential for the development of novel diagnostic approaches. Moreover, altered glycoforms may assist as a suitable tool for the specificity and sensitivity enhancement in early-stage prostate cancer diagnosis. In this paper we discuss the construction and optimization of ultrasensitive sandwich biosensor platform employing lectin as glycan-binding protein. We focus on the immunoassay development, reduction of non-specific interactions and final glycoprofiling of human serum samples including both prostate cancer (PCa) patients and healthy controls. The fabricated biosensor was measured by label-free electrochemical impedance spectroscopy (EIS) with further lectin microarray verification. Furthermore, we analyzed different biosensor interfaces with atomic force microscopy (AFM) in nanomechanical mapping mode showing a significant differences in the altitude. These preliminary results revealing an elevated content of α-2,3 linked sialic acid in PCa patients comparing with healthy controls. All these experiments are important step towards development of point-of-care devices and discovery of novel glyco-biomarkers applicable in cancer diagnosis.

Keywords: biosensor, glycan, lectin, prostate cancer

Procedia PDF Downloads 354
2331 A Case Study of Decision Making and Adjustment Behaviour of Visually Challenged Adolescents

Authors: Bincy Mathew, B. William Dharma Raja

Abstract:

Successful decision making in a social setting depends on the ability to understand the intentions, emotions and beliefs of others. Children live and grow in the social world. Individuals think to satisfy their curiosity and mush of their social thought is practical, to attain their goal. Children’s thought about their social world influences how they behave towards it. The main purpose of this paper is to review the influence of decision making on adjustment behaviour of visually challenged adolescents. The sample was purposively selected to study the cases of two of the visually challenged adolescents from a Special School, in Tirunelveli, Tamil Nadu, India. The authors appraised the observed behaviour of adjustment in these children. It may be concluded that the social cognitive ability of decision making is at least, to certain extent, influences adjustment behaviour of visually challenged adolescents. Adjustment behaviour attempts to maintain a child’s level of physiological and psychological equilibrium and it is directed towards tension reduction. It involves a state of harmonious relationship existing between the individual and one’s environment so that adjustment is a matter of interaction between the capacities of the individual and the demands of the environment. The study also found that music induces a receptive mood that generally enhances cognitive processing and every decision that the child makes has its brunt on the behaviour. It is solely based on the case study carried out by the authors.

Keywords: social cognition, decision making, adjustment behaviour, adolescents

Procedia PDF Downloads 241
2330 Production of Amorphous Boron Powder via Chemical Vapor Deposition (CVD)

Authors: Meltem Bolluk, Ismail Duman

Abstract:

Boron exhibits the properties of high melting temperature (2273K to 2573 K), high hardness (Mohs: 9,5), low density (2,340 g/cm3), high chemical resistance, high strength, and semiconductivity (band gap:1,6-2,1 eV). These superior properties enable to use it in several high-tech areas from electronics to nuclear industry and especially in high temperature metallurgy. Amorphous boron and crystalline boron have different application areas. Amorphous boron powder (directly amorphous and/or α-rhombohedral) is preferred in rocket firing, airbag inflating and in fabrication of superconducting MgB2 wires. The conventional ways to produce elemental boron with a purity of 85 pct to 95 prc are metallothermic reduction, fused salt electrolysis and mechanochemical synthesis; but the only way to produce high-purity boron powders is Chemical Vapour Deposition (Hot Surface CVD). In this study; amorphous boron powders with a minimum purity of 99,9 prc were synthesized in quartz tubes using BCl3-H2 gas mixture by CVD. Process conditions based on temperature and gas flow rate were determined. Thermodynamical interpretation of BCl3-H2 system for different temperatures and molar rates were performed using Fact Sage software. The characterization of powders was examined by using Xray diffraction (XRD), Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM), Stereo Microscope (SM), Helium gas pycnometer analysis. The purities of final products were determined by titration after lime fusion.

Keywords: amorphous boron, CVD, powder production, powder characterization

Procedia PDF Downloads 198
2329 Damage to Strawberries Caused by Simulated Transport

Authors: G. La Scalia, M. Enea, R. Micale, O. Corona, L. Settanni

Abstract:

The quality and condition of perishable products delivered to the market and their subsequent selling prices are directly affected by the care taken during harvesting and handling. Mechanical injury, in fact, occurs at all stages, from pre-harvest operations through post-harvest handling, packing and transport to the market. The main implications of this damage are the reduction of the product’s quality and economical losses related to the shelf life diminution. For most perishable products, the shelf life is relatively short and it is typically dictated by microbial growth related to the application of dynamic and static loads during transportation. This paper presents the correlation between vibration levels and microbiological growth on strawberries and woodland strawberries and detects the presence of volatile organic compounds (VOC) in order to develop an intelligent logistic unit capable of monitoring VOCs using a specific sensor system. Fresh fruits were exposed to vibrations by means of a vibrating table in a temperature-controlled environment. Microbiological analyses were conducted on samples, taken at different positions along the column of the crates. The values obtained were compared with control samples not exposed to vibrations and the results show that different positions along the column influence the development of bacteria, yeasts and filamentous fungi.

Keywords: microbiological analysis, shelf life, transport damage, volatile organic compounds

Procedia PDF Downloads 410
2328 Buffer Zone a Means of Reduction of Deforestation on Protected Area: A Case Study of Gunung Palung National Park in West Kalimantan, Indonesia

Authors: Dhruba Khatri, Uttam Ghimire, Nabin Kumar Thapalia

Abstract:

Protected area management in Indonesia is based on MAB program and ICDPs have become Indonesia’s main approach to biodiversity conservation since the early 1990s. However, very few ICDPs have realized the importance of biodiversity conservation in Indonesia and significantly enhanced as a result of currently planned project activities. Gunung Palung National Park in West Kalimantan was damaged illegal logging after decentralization. It made clear through the field survey: (1) Agroforestry did not make reduce to deforestation on regional level and (2) local people who engaging illegal logging activities have two characteristics that for their life and for vent of surplus labor in village. From these results, it became clear that a local resident had a bilateral character as an actor of conservation and the deforestation and also it confirmed that a market also was working on both of the conservation and deforestation. Therefore, surplus labor can be the key actors for future program design and at the same time it is necessary corroborative system which central government, local government, and local people are concerned with the process of policy making under the situation that management body of national park and buffer zone was separated.

Keywords: buffer zone, decentralization, Gunung Palung National Park, illegal logging, Indonesia

Procedia PDF Downloads 394
2327 Intelligent Minimal Allocation of Capacitors in Distribution Networks Using Genetic Algorithm

Authors: S. Neelima, P. S. Subramanyam

Abstract:

A distribution system is an interface between the bulk power system and the consumers. Among these systems, radial distributions system is popular because of low cost and simple design. In distribution systems, the voltages at buses reduces when moved away from the substation, also the losses are high. The reason for a decrease in voltage and high losses is the insufficient amount of reactive power, which can be provided by the shunt capacitors. But the placement of the capacitor with an appropriate size is always a challenge. Thus, the optimal capacitor placement problem is to determine the location and size of capacitors to be placed in distribution networks in an efficient way to reduce the power losses and improve the voltage profile of the system. For this purpose, in this paper, two stage methodologies are used. In the first stage, the load flow of pre-compensated distribution system is carried out using ‘dimension reducing distribution load flow algorithm (DRDLFA)’. On the basis of this load flow the potential locations of compensation are computed. In the second stage, Genetic Algorithm (GA) technique is used to determine the optimal location and size of the capacitors such that the cost of the energy loss and capacitor cost to be a minimum. The above method is tested on IEEE 9 and 34 bus system and compared with other methods in the literature.

Keywords: dimension reducing distribution load flow algorithm, DRDLFA, genetic algorithm, electrical distribution network, optimal capacitors placement, voltage profile improvement, loss reduction

Procedia PDF Downloads 373
2326 Field Trips inside Digital Game Environments

Authors: Amani Alsaqqaf, Frederick W. B. Li

Abstract:

Field trips are essential methods of learning in different subjects, and in recent times, there has been a reduction in the number of field trips (FTs) across all learning levels around the world. Virtual field trips (VFTs) in game environments provide FT experience based on the experiential learning theory (ELT). A conceptual framework for designing virtual field trip games (VFTGs) is developed with an aim to support game designers and educators to produce an effective FT experience where technology would enhance education. The conceptual framework quantifies ELT as an internal economy to link learning elements to game mechanics such as feedback loops which leads to facilitating VFTGs design and implementation. This study assesses the conceptual framework for designing VFTGs by investigating the possibility of applying immersive VFTGs in a secondary classroom and compare them with traditional learning that uses video clips and PowerPoint slides from the viewpoint of students’ perceived motivation, presence, and learning. The assessment is achieved by evaluating the learning performance and learner experience of a prototype VFT game, Island of Volcanoes. A quasi-experiment was conducted with 60 secondary school students. The findings of this study are that the VFTG enhanced learning performance to a better level than did the traditional way of learning, and in addition, it provided motivation and a general feeling of presence in the VFTG environment.

Keywords: conceptual framework, game-based learning, game design, virtual field trip game

Procedia PDF Downloads 216
2325 A Study of the Replacement of Natural Coarse Aggregate by Spherically-Shaped and Crushed Waste Cathode Ray Tube Glass in Concrete

Authors: N. N. M. Pauzi, M. R. Karim, M. Jamil, R. Hamid, M. F. M. Zain

Abstract:

The aim of this study is to conduct an experimental investigation on the influence of complete replacement of natural coarse aggregate with spherically-shape and crushed waste cathode ray tube (CRT) glass to the aspect of workability, density, and compressive strength of the concrete. After characterizing the glass, a group of concrete mixes was prepared to contain a 40% spherical CRT glass and 60% crushed CRT glass as a complete (100%) replacement of natural coarse aggregates. From a total of 16 types of concrete mixes, the optimum proportion was selected based on its best performance. The test results showed that the use of spherical and crushed glass that possesses a smooth surface, rounded, irregular and elongated shape, and low water absorption affects the workability of concrete. Due to a higher specific gravity of crushed glass, concrete mixes containing CRT glass had a higher density compared to ordinary concrete. Despite the spherical and crushed CRT glass being stronger than gravel, the results revealed a reduction in compressive strength of the concrete. However, using a lower water to binder (w/b) ratio and a higher superplasticizer (SP) dosage, it is found to enhance the compressive strength of 60.97 MPa at 28 days that is lower by 13% than the control specimen. These findings indicate that waste CRT glass in the form of spherical and crushed could be used as an alternative of coarse aggregate that may pave the way for the disposal of hazardous e-waste.

Keywords: cathode ray tube, glass, coarse aggregate, compressive strength

Procedia PDF Downloads 149
2324 Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay System for Point-of-Care Biomarker Quantification

Authors: Zahrasadat Hosseini, Jie Yuan

Abstract:

Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade, POC diagnostic devices.

Keywords: lab-on-a-chip, point-of-care diagnostics, electrochemical ELISA, biomarker quantification, fast prototyping

Procedia PDF Downloads 66
2323 Fast Prototyping of Precise, Flexible, Multiplexed, Printed Electrochemical Enzyme-Linked Immunosorbent Assay Platform for Point-of-Care Biomarker Quantification

Authors: Zahrasadat Hosseini, Jie Yuan

Abstract:

Point-of-care (POC) diagnostic devices based on lab-on-a-chip (LOC) technology have the potential to revolutionize medical diagnostics. However, the development of an ideal microfluidic system based on LOC technology for diagnostics purposes requires overcoming several obstacles, such as improving sensitivity, selectivity, portability, cost-effectiveness, and prototyping methods. While numerous studies have introduced technologies and systems that advance these criteria, existing systems still have limitations. Electrochemical enzyme-linked immunosorbent assay (e-ELISA) in a LOC device offers numerous advantages, including enhanced sensitivity, decreased turnaround time, minimized sample and analyte consumption, reduced cost, disposability, and suitability for miniaturization, integration, and multiplexing. In this study, we present a novel design and fabrication method for a microfluidic diagnostic platform that integrates screen-printed electrochemical carbon/silver chloride electrodes on flexible printed circuit boards with flexible, multilayer, polydimethylsiloxane (PDMS) microfluidic networks to accurately manipulate and pre-immobilize analytes for performing electrochemical enzyme-linked immunosorbent assay (e-ELISA) for multiplexed quantification of blood serum biomarkers. We further demonstrate fast, cost-effective prototyping, as well as accurate and reliable detection performance of this device for quantification of interleukin-6-spiked samples through electrochemical analytics methods. We anticipate that our invention represents a significant step towards the development of user-friendly, portable, medical-grade POC diagnostic devices.

Keywords: lab-on-a-chip, point-of-care diagnostics, electrochemical ELISA, biomarker quantification, fast prototyping

Procedia PDF Downloads 68
2322 Development of Soil Test Kits to Determine Organic Matter Available Phosphorus and Exchangeable Potassium in Thailand

Authors: Charirat Kusonwiriyawong, Supha Photichan, Wannarut Chutibutr

Abstract:

Soil test kits for rapid analysis of the organic matter, available phosphorus and exchangeable potassium were developed to drive a low-cost field testing kit to farmers. The objective was to provide a decision tool for improving soil fertility. One aspect of soil test kit development was ease of use which is a time requirement for completing organic matter, available phosphorus and exchangeable potassium test in one soil sample. This testing kit required only two extractions and utilized no filtration consuming approximately 15 minutes per sample. Organic matter was principally created by oxidizing carbon KMnO₄ using the standard color chart. In addition, modified single extractant (Mehlich I) was applied to extract available phosphorus and exchangeable potassium. Molybdenum blue method and turbidimetric method using standard color chart were adapted to analyze available phosphorus and exchangeable potassium, respectively. Modified single extractant using in soil test kits were highly significant matching with analytical laboratory results (r=0.959** and 0.945** for available phosphorus and exchangeable potassium, respectively). Linear regressions were statistically calculated between modified single extractant and standard laboratory analysis (y=0.9581x-12.973 for available phosphorus and y=0.5372x+15.283 for exchangeable potassium, respectively). These equations were calibrated to formulate a fertilizer rate recommendation for specific corps. To validate quality, soil test kits were distributed to farmers and extension workers. We found that the accuracy of soil test kits were 71.0%, 63.9% and 65.5% for organic matter, available phosphorus, and exchangeable potassium, respectively. The quantitative survey was also conducted in order to assess their satisfaction with soil test kits. The survey showed that more than 85% of respondents said these testing kits were more convenient, economical and reliable than the other commercial soil test kits. Based upon the finding of this study, soil test kits can be another alternative for providing soil analysis and fertility recommendations when a soil testing laboratory is not available.

Keywords: available phosphorus, exchangeable potassium, modified single extractant, organic matter, soil test kits

Procedia PDF Downloads 123
2321 Numerical Determination of Transition of Cup Height between Hydroforming Processes

Authors: H. Selcuk Halkacı, Mevlüt Türköz, Ekrem Öztürk, Murat Dilmec

Abstract:

Various attempts concerning the low formability issue for lightweight materials like aluminium and magnesium alloys are being investigated in many studies. Advanced forming processes such as hydroforming is one of these attempts. In last decades sheet hydroforming process has an increasing interest, particularly in the automotive and aerospace industries. This process has many advantages such as enhanced formability, the capability to form complex parts, higher dimensional accuracy and surface quality, reduction of tool costs and reduced die wear compared to the conventional sheet metal forming processes. There are two types of sheet hydroforming. One of them is hydromechanical deep drawing (HDD) that is a special drawing process in which pressurized fluid medium is used instead of one of the die half compared to the conventional deep drawing (CDD) process. Another one is sheet hydroforming with die (SHF-D) in which blank is formed with the act of fluid pressure and it takes the shape of die half. In this study, transition of cup height according to cup diameter between the processes was determined by performing simulation of the processes in Finite Element Analysis. Firstly SHF-D process was simulated for 40 mm cup diameter at different cup heights chancing from 10 mm to 30 mm and the cup height to diameter ratio value in which it is not possible to obtain a successful forming was determined. Then the same ratio was checked for a different cup diameter of 60 mm. Then thickness distributions of the cups formed by SHF-D and HDD processes were compared for the cup heights. Consequently, it was found that the thickness distribution in HDD process in the analyses was more uniform.

Keywords: finite element analysis, HDD, hydroforming sheet metal forming, SHF-D

Procedia PDF Downloads 418
2320 Crash Statistics Comparison for Riyadh, Eastern Province, and Qaseem for 2016 and 2017

Authors: Hassan M. Al-Ahmadi

Abstract:

The fatality index (deaths/100 K population) due to road traffic accidents in the Kingdom of Saudi Arabia (KSA) is over 25, according to the World Health Organization Statistics (WHO) statistics, which is much higher than in the neighboring Arab regions. The KSA has implemented measures to mitigate traffic accidents by enforcing road safety regulations. As a result, there has been a slight decline in the frequency of road traffic accidents within the Kingdom. This study was based on the variations in the accidents for three provinces of KSA, i.e., Riyadh, Eastern Province (EP), & Qaseem, for 2016 and 2017 using ANOVA method. Data appropriateness for the ANOVA method was confirmed by the normality and the randomness of residuals. Additionally, the half-normal plot was used to identify the significant terms for the ANOVA analysis. The analysis revealed that the accidents in the EP were significantly higher than in the other two provinces during the analysis period. The monthly variation showed a spike in the accidents from month 7th to 9th month in the EP region and a slight drop in the accidents in the Qaseem and the Riyadh region during the same period, which was attributed to the increased leisure travels from the other regions to the EP. Furthermore, most of the accidents were found to occur in the age group of 18+ and 30+, and also the major reduction of accidents in 2017 as compared to 2016 was found to have occurred in the same group. These findings can be beneficial for developing strategies to further reduce the number of accidents.

Keywords: fatality index, emergency, road traffic accident, safety, leisure travels

Procedia PDF Downloads 15
2319 Industrial Production of the Saudi Future Dwelling: A Saudi Volumetric Solution for Single Family Homes, Leveraging Industry 4.0 with Scalable Automation, Hybrid Structural Insulated Panels Technology and Local Materials

Authors: Bandar Alkahlan

Abstract:

The King Abdulaziz City for Science and Technology (KACST) created the Saudi Future Dwelling (SFD) initiative to identify, localize and commercialize a scalable home manufacturing technology suited to deployment across the Kingdom of Saudi Arabia (KSA). This paper outlines the journey, the creation of the international project delivery team, the product design, the selection of the process technologies, and the outcomes. A target was set to remove 85% of the construction and finishing processes from the building site as these activities could be more efficiently completed in a factory environment. Therefore, integral to the SFD initiative is the successful industrialization of the home building process using appropriate technologies, automation, robotics, and manufacturing logistics. The technologies proposed for the SFD housing system are designed to be energy efficient, economical, fit for purpose from a Saudi cultural perspective, and will minimize the use of concrete, relying mainly on locally available Saudi natural materials derived from the local resource industries. To this end, the building structure is comprised of a hybrid system of structural insulated panels (SIP), combined with a light gauge steel framework manufactured in a large format panel system. The paper traces the investigative process and steps completed by the project team during the selection process. As part of the SFD Project, a pathway was mapped out to include a proof-of-concept prototype housing module and the set-up and commissioning of a lab-factory complete with all production machinery and equipment necessary to simulate a full-scale production environment. The prototype housing module was used to validate and inform current and future product design as well as manufacturing process decisions. A description of the prototype design and manufacture is outlined along with valuable learning derived from the build and how these results were used to enhance the SFD project. The industrial engineering concepts and lab-factory detailed design and layout are described in the paper, along with the shop floor I.T. management strategy. Special attention was paid to showcase all technologies within the lab-factory as part of the engagement strategy with private investors to leverage the SFD project with large scale factories throughout the Kingdom. A detailed analysis is included in the process surrounding the design, specification, and procurement of the manufacturing machinery, equipment, and logistical manipulators required to produce the SFD housing modules. The manufacturing machinery was comprised of a combination of standardized and bespoke equipment from a wide range of international suppliers. The paper describes the selection process, pre-ordering trials and studies, and, in some cases, the requirement for additional research and development by the equipment suppliers in order to achieve the SFD objectives. A set of conclusions is drawn describing the results achieved thus far, along with a list of recommended ongoing operational tests, enhancements, research, and development aimed at achieving full-scale engagement with private sector investment and roll-out of the SFD project across the Kingdom.

Keywords: automation, dwelling, manufacturing, product design

Procedia PDF Downloads 109
2318 Synthesis and Characterization of Some 1, 2, 3-Triazole Derivatives Containing the Chalcone Moiety and Evaluation for their Antimicrobial and Antioxidant Activity

Authors: Desta Gebretekle Shiferaw, Balakrishna Kalluraya

Abstract:

Triazoles are basic five-membered ring heterocycles with an unsaturated, six-delocalized electron ring system. Since the dawn of click chemistry, triazoles have represented a functional heterocyclic core that has been the foundation of medicinal chemistry. The compounds with 1,2,3-triazole rings can be used in several fields, including medicine, organic synthesis, polymer chemistry, fluorescent imaging, horticulture, and industries, to name a few. Besides that, they found it to have health applications in the prevention and reduction of the risk of diseases, such as anti-cancer, antimicrobial, antiviral, and anti-inflammatory properties. Here, we present the synthesis of twelve 1,2,3-triazolyl chalcone derivatives (4a–l), which were produced in high yields by coupling substituted aldehydes and triazolyl acetophenone (3a–d) in ethanol. The title products were characterized by physicochemical, infrared, nuclear magnetic resonance, and mass spectral methods. The in vitro tests were used to evaluate the antioxidant and antimicrobial activity of each of the prepared molecules. The preliminary assessment and 2,2-diphenyl-1-picrylhydrazyl activity of the title compounds showed significantly higher antibacterial activity and moderate-to-good antifungal and antioxidant activities compared to their standards. This work presents the synthesis of triazolyl chalcone derivatives and their biological activity. Based on the findings, these compounds could be used as lead compounds in antimicrobial and antioxidant research in the future.

Keywords: antibacterial activity, antifungal activity, antioxidant activity, chalcone, 1, 2, 3-triazole

Procedia PDF Downloads 102
2317 Globalization and Civil Society Organization of Nigeria: The Business Community

Authors: Mary I. Marire

Abstract:

This seminar examined globalization and civil society organization of Nigeria: The business community. The study examined the effect of globalization on the growth of civil society organizations in Nigeria. It equally evaluated the effect of globalization on the development of Nigerian business environment. The population consists of 562 members of Ohanaeze Ndigbo civil society organisation in Enugu State. The study used the survey approach. The primary sources used were used to administer 290 copies of questionnaire to the sampled members of the group, 282 were returned and accurately filled. The validity of the instrument was tested using content analysis and the result was good. The reliability was tested using the Pearson correlation coefficient (r). It gave a reliability co-efficient of 0.79 which was also good. The hypotheses were analyzed using f-statistics (ANOVA) tool. The findings indicated that that globalization has significant effect on the growth of civil society organizations in Nigeria and development of Nigerian business environment. Based on the findings, the study recommends that efforts should be directed at service delivery and the reduction of corruption to bring about a sustainable socio economic development in Nigeria. This will enable civil society groups to stand the test of time by organizing itself in a manner that will not make them apron or dependent on the government. There is the dire need for government at all levels to show and indeed demonstrate the political will and zeal to cope and meet with the current global realities in its totality.

Keywords: globalization, business environment, civil society, business growth

Procedia PDF Downloads 93
2316 Structural and Functional Characterization of the Transcriptional Regulator Rv1176 of Mycobacterium tuberculosis H37Rv

Authors: Vikash Yadav, Ashish Arora

Abstract:

Microorganisms have self-defense mechanisms to protect themselves from toxic environments. Phenolic acid decarboxylase(pad) is responsible for the defense against toxicity caused by phenolic acids, converting them into less toxic vinyl derivatives. The transcription of the pad gene is regulated by a negative transcription factor, phenolic acid decarboxylase regulators (PadR), in a substrate-inducible manner. The PadR family members share the conserved DNA-binding features and interact with the operator DNA using a winged helix-turn-helix (wHTH) motif, which contains a three-helix motif and a β-stranded wing. The members of this family function as transcriptional regulators that are involved in various cellular survival processes, such as toxin production, detoxification, multidrug resistance, antibiotic biosynthesis, and carbon catabolism. Rv1176 of Mycobacterium tuberculosis H37Rv has been assigned to the PadR family protein that remains to be structurally and functionally uncharacterized. To reveal the structural mechanism by which Rv1176 could regulates effector-responsive transcription, several experiments were performed, including Electrophoretic Mobility Shift Assay (EMSA) for DNA protein interaction, differential scanning calorimetry (DSC) and Differential Scanning Fluorimetry (DSF) for temperature and ligand-dependent protein stability, Circular Dichroism (CD) spectroscopy for secondary structure analysis. Further, to evaluate the functional role of Rv1176, the intracellular survival of recombinant M. smegmatis was examined in murine macrophage cell line J774A.1 and different stressed conditions like oxidative, pH, and nutritive stress. All these studies demonstrated that Rv1176 could behave as a transcription regulator and its expression in recombinant M. smegmatis increases intracellular survival.

Keywords: EMSA, Mycobacterium tuberculosis, PadR family protein, transcriptional regulator

Procedia PDF Downloads 60
2315 Microwave-Assisted Synthesis of Silver Nanoparticles from Dioscorea Deltoidea Callus Extract and Evaluation of Its Antimicrobial Activity

Authors: Mujeeb Mohd, Aqil Mohd, A. K. Najmi, Akhtar MMohd, Vasim Mohd

Abstract:

Dioscorea deltoidea belongs to the Dioscoreaceae family, is usually found in the north-western Himalayas and some other parts of the world up to an altitude of 1000–3000 m. D. deltoidea commonly known as yam and is an extensively used medicinal plant in the indigenous system of medicine. It has been reported to contain dioscine a steroidal glycoside in higher concentration. In the present investigation, silver nanoparticles (AgNPs) have been synthesized by a simple, efficient, environmentally benevolent and economic microwave-assisted method. Callus culture of D. deltoidea was developed and maintained on Murashige and skooge basal medium supplemented with different combination and concentration of plant growth regulators. Aqueous extract of callus culture was used as the reducing and stabilizing agent. The synthesized nanoparticles have been characterized by UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD analysis. The presence of a characteristic surface plasmon resonance (SPR) absorption band at 430 nm in UV–Vis reveals the reduction of silver metal ions into silver nanoparticles. Whereas FTIR analysis was performed to probe the possible functional group involved in the synthesis of AgNPs. Further extract and AgNPs were evaluated for antimicrobial activity against different pathogenic microorganisms.

Keywords: antimicrobial, Dioscorea deltoidea, microwave, silver, nanoparticles

Procedia PDF Downloads 255
2314 A Study of Effect of Yoga on Choice Visual Reaction Time of Soccer Players

Authors: Vikram Singh, Parmod Kumar Sethi

Abstract:

The objective of the study was to study the effectiveness of common yoga protocol on reaction time (choice visual reaction time, measured in milliseconds/seconds) of male football players in the age group of 16 to 21 years. The 40 boys were measured initially on parameters of years of experience, level of participation. They were randomly assigned into two groups i.e. control and experimental. CVRT for both the groups was measured on day-1 and post intervention (common yoga protocol here) was measured after 45 days of training to the experimental group after they had finished with their regular fitness and soccer skill training. One way ANOVA (Univariate analysis) and Independent t-test using SPSS 23 statistical package were applied to get and analyze the results. The experimental yoga protocol group showed a significant reduction in CVRT, whereas the insignificant difference in reaction times was observed for control group after 45 days. The effect size was more than 52% for CVRT indicating that the effect of treatment was large. Power of the study was also found to be high (> .80). There was a significant difference after 45 days of yoga protocol in choice visual reaction time of experimental group (p = .000), t (21.93) = 6.410, p = .000 (two-tailed). The null hypothesis (that there would be no difference in reaction times of control and experimental groups) was rejected. Where p< .05. Therefore alternate hypothesis was accepted.

Keywords: reaction time, yoga protocol, t-test, soccer players

Procedia PDF Downloads 225
2313 Response of Selected Echocardiographic Features to Aerobic Training in Obese Hypertensive Males

Authors: Abeer Ahmed Abdelhameed

Abstract:

The aim of this study was to investigate the effect of aerobic exercises on LV parameters, lipid profile, and anthropometric measurements in hypertensive middle aged male subjects. Thirty obese patients were recruited for the study from the outpatient clinic of National Heart Institute, Egypt. Their ages ranges from 40 to 60 years. All participants underwent an aerobic training program including regular aerobic sub-maximal exercises in the form of treadmill walking and abdominal exercises 3/week for four months, the exercise were individually tailored for each participant depending on the result of cardiopulmonary exercise test. The result showed no significant difference observed in both LVPWT and LVSWT data from pre-test values to post-test values in all subjects after 4 months, with a significant reduction in WHR, systolic blood pressure, TAG and LDL records. Result also revealed a significant increase in HDL, Eƒ, LVEDD and FS records for all participants. The significant improvement in ventricular functions in form of ejection fraction of electrical group more than exercise group after 4 months at the end of the study may be due to the beneficial effect of faradic stimulation in lipolysis of storage adipose tissues, stimulation of lean body mass and muscles and/or thermal effect that improves vascularization.

Keywords: left ventricular parameters, aerobic training, electrical stimulation, lipid profile

Procedia PDF Downloads 237
2312 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing

Procedia PDF Downloads 170
2311 Investigation on 3D Printing of Calcium silicate Bioceramic Slurry for Bone Tissue Engineering

Authors: Amin Jabbari

Abstract:

The state of the art in major 3D printing technologies, such as powder-based and slurry based, has led researchers to investigate the ability to fabricate bone scaffolds for bone tissue engineering using biomaterials. In addition, 3D printing technology can simulate mechanical and biological surface properties and print with high precision complex internal and external structures that match their functional properties. Polymer matrix composites reinforced with particulate bioceramics, hydrogels reinforced with particulate bioceramics, polymers coated with bioceramics, and non-porous bioceramics are among the materials that can be investigated for bone scaffold printing. Furthermore, it was shown that the introduction of high-density micropores into the sparingly dissolvable CSiMg10 and dissolvable CSiMg4 shell layer inevitably leads to a nearly 30% reduction in compressive strength, but such micropores can easily influence the ion release behavior of the scaffolds. Also, biocompatibility tests such as cytotoxicity, hemocompatibility and genotoxicity were tested on printed parts. The printed part was tested in vitro, and after 24-26 h for cytotoxicity, and 4h for hemocompatibility test, the CSiMg4@CSiMg10-p scaffolds were found to have significantly higher osteogenic capability than the other scaffolds of implantation. Overall, these experimental studies demonstrate that 3D printed, additively-manufactured bioceramic calcium (Ca)-silicate scaffolds with appropriate pore dimensions are promising to guide new bone ingrowth.

Keywords: AM, 3D printed implants, bioceramic, tissue engineering

Procedia PDF Downloads 60
2310 Characterization of Double Shockley Stacking Fault in 4H-SiC Epilayer

Authors: Zhe Li, Tao Ju, Liguo Zhang, Zehong Zhang, Baoshun Zhang

Abstract:

In-grow stacking-faults (IGSFs) in 4H-SiC epilayers can cause increased leakage current and reduce the blocking voltage of 4H-SiC power devices. Double Shockley stacking fault (2SSF) is a common type of IGSF with double slips on the basal planes. In this study, a 2SSF in the 4H-SiC epilayer grown by chemical vaper deposition (CVD) is characterized. The nucleation site of the 2SSF is discussed, and a model for the 2SSF nucleation is proposed. Homo-epitaxial 4H-SiC is grown on a commercial 4 degrees off-cut substrate by a home-built hot-wall CVD. Defect-selected-etching (DSE) is conducted with melted KOH at 500 degrees Celsius for 1-2 min. Room temperature cathodoluminescence (CL) is conducted at a 20 kV acceleration voltage. Low-temperature photoluminescence (LTPL) is conducted at 3.6 K with the 325 nm He-Cd laser line. In the CL image, a triangular area with bright contrast is observed. Two partial dislocations (PDs) with a 20-degree angle in between show linear dark contrast on the edges of the IGSF. CL and LTPL spectrums are conducted to verify the IGSF’s type. The CL spectrum shows the maximum photoemission at 2.431 eV and negligible bandgap emission. In the LTPL spectrum, four phonon replicas are found at 2.468 eV, 2.438 eV, 2.420 eV and 2.410 eV, respectively. The Egx is estimated to be 2.512 eV. A shoulder with a red-shift to the main peak in CL, and a slight protrude at the same wavelength in LTPL are verified as the so called Egx- lines. Based on the CL and LTPL results, the IGSF is identified as a 2SSF. Back etching by neutral loop discharge and DSE are conducted to track the origin of the 2SSF, and the nucleation site is found to be a threading screw dislocation (TSD) in this sample. A nucleation mechanism model is proposed for the formation of the 2SSF. Steps introduced by the off-cut and the TSD on the surface are both suggested to be two C-Si bilayers height. The intersections of such two types of steps are along [11-20] direction from the TSD, while a four-bilayer step at each intersection. The nucleation of the 2SSF in the growth is proposed as follows. Firstly, the upper two bilayers of the four-bilayer step grow down and block the lower two at one intersection, and an IGSF is generated. Secondly, the step-flow grows over the IGSF successively, and forms an AC/ABCABC/BA/BC stacking sequence. Then a 2SSF is formed and extends by the step-flow growth. In conclusion, a triangular IGSF is characterized by CL approach. Base on the CL and LTPL spectrums, the estimated Egx is 2.512 eV and the IGSF is identified to be a 2SSF. By back etching, the 2SSF nucleation site is found to be a TSD. A model for the 2SSF nucleation from an intersection of off-cut- and TSD- introduced steps is proposed.

Keywords: cathodoluminescence, defect-selected-etching, double Shockley stacking fault, low-temperature photoluminescence, nucleation model, silicon carbide

Procedia PDF Downloads 296
2309 Multi-Omics Investigation of Ferroptosis-Related Gene Expression in Ovarian Aging and the Impact of Nutritional Intervention

Authors: Chia-Jung Li, Kuan-Hao Tsui

Abstract:

As women age, the quality of their oocytes deteriorates irreversibly, leading to reduced fertility. To better understand the role of Ferroptosis-related genes in ovarian aging, we employed a multi-omics analysis approach, including spatial transcriptomics, single-cell RNA sequencing, human ovarian pathology, and clinical biopsies. Our study identified excess lipid peroxide accumulation in aging germ cells, metal ion accumulation via oxidative reduction, and the interaction between ferroptosis and cellular energy metabolism. We used multi-histological prediction of ferroptosis key genes to evaluate 75 patients with ovarian aging insufficiency and then analyzed changes in hub genes after supplementing with DHEA, Ubiquinol CoQ10, and Cleo-20 T3 for two months. Our results demonstrated a significant increase in TFRC, GPX4, NCOA4, and SLC3A2, which were consistent with our multi-component prediction. We theorized that these supplements increase the mitochondrial tricarboxylic acid cycle (TCA) or electron transport chain (ETC), thereby increasing antioxidant enzyme GPX4 levels and reducing lipid peroxide accumulation and ferroptosis. Overall, our findings suggest that supplementation intervention significantly improves IVF outcomes in senescent cells by enhancing metal ion and energy metabolism and enhancing oocyte quality in aging women.

Keywords: multi-omics, nutrients, ferroptosis, ovarian aging

Procedia PDF Downloads 80
2308 The Effect of Chemical Degradation of a Nonwoven Filter Media Membrane in Polyester

Authors: Rachid El Aidani, Phuong Nguyen-Tri, Toan Vu-Khanh

Abstract:

The filter media in synthetic fibre is the most geotextile materials used in aerosol and drainage filtration, particularly for buildings soil reinforcement in civil engineering due to its appropriated properties and its low cost. However, the current understanding of the durability and stability of this material in real service conditions, especially under severe long-term conditions are completely limited. This study has examined the effects of the chemical aging of a filter media in polyester non-woven under different temperatures (50, 70 and 80˚C) and pH (2. 7 and 12). The effect of aging conditions on mechanical properties, morphology, permeability, thermal stability and molar weigh changes is investigated. The results showed a significant reduction of mechanical properties in term of tensile strength, puncture force and tearing forces of the filter media after chemical aging due to the chemical degradation. The molar mass and mechanical properties changes in different temperature and pH showed a complex dependence of material properties on environmental conditions. The SEM and AFM characterizations showed a significant impact of the thermal aging on the morphological properties of the fibers. Based on the obtained results, the lifetime of the material in different temperatures was determined by the use of the Arrhenius model. These results provide useful information to better understand phenomena occurring during chemical aging of the filter media and may help to predict the service lifetime of this material in real used conditions.

Keywords: nonwoven membrane, chemical aging, mechanical properties, lifetime, filter media

Procedia PDF Downloads 303
2307 Maternal Request: A Minor but Important Contributor to the Rising Rates of Caesarean Section: A Retrospective Observational Study

Authors: Katherine Russell

Abstract:

Background: Over recent decades the number of caesarean sections performed in the UK has continued to rise. The cause of the rising caesarean rate (CSR) is not well understood. However, one of the most heavily cited reasons is an increase in maternal request for caesarean section. Maternal request for caesarean section (CDMR) refers to a caesarean section performed on maternal request with no medical indication. The true rate of caesarean delivery on maternal request in the UK and its contribution to the caesarean section rate is not known. Methods: To elucidate current understanding of the cause of the rising caesarean section rate and the role of CDMR we conducted a systematic review of the literature. To determine the role of CDMR in the CSR at the PRH we conducted a retrospective observational study of the caesarean section rates and CDMR from 2009-2015. Results: We demonstrated a negative correlation between rates of elective sections and CDMR over the study period (-0.123). On average, there were more elective sections performed after 2011 (15.10% of all deliveries) than before 2011 (12.41% of all deliveries); this difference was statistically significant (p = < 0.001). There were more cases of CDMR after 2011 (1.39% of all deliveries) than before 2011 (0.85% of all deliveries). The difference in average rates of CDMR before and after 2011 was statistically significant (p ≤ 0.001). Conclusions: CDMR is only a minor contributor to the CSR at the PRH. However, it remains an important factor because it represents a target for the reduction of the CSR that is more manageable than other, more complex and ubiquitous causes of the rising CSR.

Keywords: cesarean section, maternal request for cesarean section, obstetrics, pre-natal health

Procedia PDF Downloads 90
2306 Effect of Lactic Acid Bacteria Inoculant on Fermentation Quality of Sweet Sorghum Silage

Authors: Azizza Mala, Babo Fadlalla, Elnour Mohamed, Siran Wang, Junfeng Li, Tao Shao

Abstract:

Sweet sorghum is considered one of the best plants for silage production and is now a more important feed crop in many countries worldwide. It is simple to ensile because of its high water-soluble carbohydrates (WSC) concentration and low buffer capacity. This study investigated the effect of adding Pediococcus acidilactici AZZ5 and Lactobacillus plantarum AZZ4 isolated from elephant grass on the fermentation quality of sweet sorghum silage. One commercial bacteria Lactobacillus Plantarum, Ecosyl MTD/1(C.B.)), and two strains were used as additives Pediococcus acidilactici (AZZ5), Lactobacillus plantarum subsp. Plantarum (AZZ4) at 6 log colony forming units (cfu)/g of fresh sweet sorghum grass in laboratory silos (1000g). After 15, 30, and 60 days, the silos for each treatment were opened. All of the isolated strains enhanced the silage quality of sweet sorghum silage compared to the control, as evidenced by significantly (P < 0.05) lower ammonia nitrogen (NH3-N) content and undesirable microbial counts, as well as greater lactic acid (L.A.) contents and lactic acid/acetic acid (LA/AA) ratios. In addition, AZZ4 performed better than all other inoculants during ensiling, as evidenced by a significant (P < 0.05) reduction in pH and ammonia-N contents and a significant increase in lactic acid contents.

Keywords: fermentation, lactobacillus plantarum, lactic acid bacteria, pediococcus acidilactic, sweet sorghum

Procedia PDF Downloads 64