Search results for: Arable Crop Production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8092

Search results for: Arable Crop Production

1642 A Study of Surface of Titanium Targets for Neutron Generators

Authors: Alexey Yu. Postnikov, Nikolay T. Kazakovskiy, Valery V. Mokrushin, Irina A. Tsareva, Andrey A. Potekhin, Valentina N. Golubeva, Yuliya V. Potekhina, Maxim V. Tsarev

Abstract:

The development of tritium and deuterium targets for neutron tubes and generators is a part of the activities in All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF). These items contain a metal substrate (for example, copper) with a titanium film with a few microns thickness deposited on it. Then these metal films are saturated with tritium, deuterium or their mixtures. The significant problem in neutron tubes and neutron generators is the characterization of substrate surface before a deposition of titanium film on it, and analysis of the deposited titanium film’s surface before hydrogenation and after a saturation of the film with hydrogen isotopes. The performance effectiveness of neutron tube and generator also depends on upon the quality parameters of the surface of the initial substrate, deposited metal film and hydrogenated target. The objective of our work is to study the target prototype samples, that have differ by various approaches to the preliminary chemical processing of a copper substrate, and to analyze the integrity of titanium film after its saturation with deuterium. The research results of copper substrate and the surface of deposited titanium film with the use of electron microscopy, X-ray spectral microanalysis and laser-spark methods of analyses are presented. The causes of surface defects appearance have been identified. The distribution of deuterium and some impurities (oxygen and nitrogen) along the surface and across the height of the hydrogenated film in the target has been established. This allows us to evaluate the composition homogeneity of the samples and consequently to estimate the quality of hydrogenated samples. As the result of this work the propositions on the advancement of production technology and characterization of target’s surface have been presented.

Keywords: tritium and deuterium targets, titanium film, laser-spark methods, electron microscopy

Procedia PDF Downloads 442
1641 Exoskeleton-Enhanced Manufacturing: A Study Exploring Psychological and Physical Effects on Assembly Operators' Wellbeing

Authors: Iveta Eimontaite, Sarah R. Fletcher, Michele Surico, Alfio Minissale, Fabio F. Abba

Abstract:

Industry 4.0 offers possibilities for increased production volumes and greater efficiency whilst at the same time presenting new opportunities and challenges for the human workforce. Exoskeletons have been used in healthcare and are now starting to be adopted in manufacturing. The potential benefits of reducing fatigue and physical strain are attractive prospects of the technology for industry; however, the novelty of exoskeletons and surrounding ethical issues raise concerns amongst the stakeholders. The current case study investigated the introduction of an upper body exoskeleton designed to support posture but not increase physical strength in a factory over three time points: before the exoskeleton was introduced, and one and two months post-introduction once operators had experienced working with it. The main focus was to evaluate changes in operators' workload, situation awareness, technology self-efficacy, and physical discomfort following the introduction of the exoskeleton. After using the exoskeleton over two months, operators reported a decrease in temporal demand and an increase in performance of the NASA TLX instrument. Furthermore, over the second month, operators' self-reported technology self-efficacy scores increased, but at the same time, their situation awareness decreased. Interestingly, operators' physical discomfort after using the exoskeleton for two months increased from not uncomfortable to quite uncomfortable in the shoulder, arm, and middle back regions. The results suggest that self-perceived task efficiency improved; however, increased discomfort and decreased situation awareness scores indicate that two months might not be long enough for the exoskeleton to be integrated into operators’ mental body schema. The paper will discuss further implications and suggestions for exoskeleton introduction to manufacturing environments.

Keywords: exoskeleton, manufacturing, mental workload, physical discomfort, situation awareness, technology self-efficacy

Procedia PDF Downloads 132
1640 Fenton Sludge's Catalytic Ability with Synergistic Effects During Reuse for Landfill Leachate Treatment

Authors: Mohd Salim Mahtab, Izharul Haq Farooqi, Anwar Khursheed

Abstract:

Advanced oxidation processes (AOPs) based on Fenton are versatile options for treating complex wastewaters containing refractory compounds. However, the classical Fenton process (CFP) has limitations, such as high sludge production and reagent dosage, which limit its broad use and result in secondary contamination. As a result, long-term solutions are required for process intensification and the removal of these impediments. This study shows that Fenton sludge could serve as a catalyst in the Fe³⁺/Fe²⁺ reductive pathway, allowing non-regenerated sludge to be reused for complex wastewater treatment, such as landfill leachate treatment, even in the absence of Fenton's reagents. Experiments with and without pH adjustments in stages I and II demonstrated that an acidic pH is desirable. Humic compounds in leachate could improve the cycle of Fe³⁺/Fe²⁺ under optimal conditions, and the chemical oxygen demand (COD) removal efficiency was 22±2% and 62±2%% in stages I and II, respectively. Furthermore, excellent total suspended solids (TSS) removal (> 95%) and color removal (> 80%) were obtained in stage II. The processes underlying synergistic (oxidation/coagulation/adsorption) effects were addressed. The design of the experiment (DOE) is growing increasingly popular and has thus been implemented in the chemical, water, and environmental domains. The relevance of the statistical model for the desired response was validated using the explicitly stated optimal conditions. The operational factors, characteristics of reused sludge, toxicity analysis, cost calculation, and future research objectives were also discussed. Reusing non-regenerated Fenton sludge, according to the study's findings, can minimize hazardous solid toxic emissions and total treatment costs.

Keywords: advanced oxidation processes, catalysis, Fe³⁺/Fe²⁺ cycle, fenton sludge

Procedia PDF Downloads 89
1639 Monitoring of Cannabis Cultivation with High-Resolution Images

Authors: Levent Basayigit, Sinan Demir, Burhan Kara, Yusuf Ucar

Abstract:

Cannabis is mostly used for drug production. In some countries, an excessive amount of illegal cannabis is cultivated and sold. Most of the illegal cannabis cultivation occurs on the lands far from settlements. In farmlands, it is cultivated with other crops. In this method, cannabis is surrounded by tall plants like corn and sunflower. It is also cultivated with tall crops as the mixed culture. The common method of the determination of the illegal cultivation areas is to investigate the information obtained from people. This method is not sufficient for the determination of illegal cultivation in remote areas. For this reason, more effective methods are needed for the determination of illegal cultivation. Remote Sensing is one of the most important technologies to monitor the plant growth on the land. The aim of this study is to monitor cannabis cultivation area using satellite imagery. The main purpose of this study was to develop an applicable method for monitoring the cannabis cultivation. For this purpose, cannabis was grown as single or surrounded by the corn and sunflower in plots. The morphological characteristics of cannabis were recorded two times per month during the vegetation period. The spectral signature library was created with the spectroradiometer. The parcels were monitored with high-resolution satellite imagery. With the processing of satellite imagery, the cultivation areas of cannabis were classified. To separate the Cannabis plots from the other plants, the multiresolution segmentation algorithm was found to be the most successful for classification. WorldView Improved Vegetative Index (WV-VI) classification was the most accurate method for monitoring the plant density. As a result, an object-based classification method and vegetation indices were sufficient for monitoring the cannabis cultivation in multi-temporal Earthwiev images.

Keywords: Cannabis, drug, remote sensing, object-based classification

Procedia PDF Downloads 272
1638 Development, Testing, and Application of a Low-Cost Technology Sulphur Dioxide Monitor as a Tool for use in a Volcanic Emissions Monitoring Network

Authors: Viveka Jackson, Erouscilla Joseph, Denise Beckles, Thomas Christopher

Abstract:

Sulphur Dioxide (SO2) has been defined as a non-flammable, non-explosive, colourless gas, having a pungent, irritating odour, and is one of the main gases emitted from volcanoes. Sulphur dioxide has been recorded in concentrations hazardous to humans (0.25 – 0.5 ppm (~650 – 1300 μg/m3), downwind of many volcanoes and hence warrants constant air-quality monitoring around these sites. It has been linked to an increase in chronic respiratory disease attributed to long-term exposures and alteration in lung and other physiological functions attributed to short-term exposures. Sulphur Springs in Saint Lucia is a highly active geothermal area, located within the Soufrière Volcanic Centre, and is a park widely visited by tourists and locals. It is also a current source of continuous volcanic emissions via its many fumaroles and bubbling pools, warranting concern by residents and visitors to the park regarding the effects of exposure to these gases. In this study, we introduce a novel SO2 measurement system for the monitoring and quantification of ambient levels of airborne volcanic SO2 using low-cost technology. This work involves the extensive production of low-cost SO2 monitors/samplers, as well as field examination in tandem with standard commercial samplers (SO2 diffusion tubes). It also incorporates community involvement in the volcanic monitoring process as non-professional users of the instrument. We intend to present the preliminary monitoring results obtained from the low-cost samplers, to identify the areas in the Park exposed to high concentrations of ambient SO2, and to assess the feasibility of the instrument for non-professional use and application in volcanic settings

Keywords: ambient SO2, community-based monitoring, risk-reduction, sulphur springs, low-cost

Procedia PDF Downloads 467
1637 Assessment of Growth Variation and Phytoextraction Potential of Four Salix Varieties Grown in Zn Contaminated Soil Amended with Lime and Wood Ash

Authors: Mir Md Abdus Salam, Muhammad Mohsin, Pertti Pulkkinen, Paavo Pelkonen, Ari Pappinen

Abstract:

Soils contaminated with metals, e.g., copper (Cu), zinc (Zn) and nickel (Ni) are one of the main global environmental problems. Zn is an important element for plant growth, but excess levels may become a threat to plant survival. Soils polluted with metals may also pose risks and hazards to human health. Afforestation based on short rotation Salix crops may be a good solution for the reduction of metals toxicity levels in the soil and in ecosystem restoration of severely polluted sites. In a greenhouse experiment, plant growth and zinc (Zn) uptake by four Salix cultivars grown in Zn contaminated soils collected from a mining area in Finland were tested to assess their suitability for phytoextraction. The sequential extraction technique and inductively coupled plasma‒mass spectrometry (ICP–MS) were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The cultivars displayed resistance to heavily polluted soils throughout the whole experiment. After uptake, the total mean Zn concentrations ranged from 776 to 1823 mg kg⁻¹. The average uptake percentage of Zn across all cultivars and treatments ranged from 97 to 223%. Lime and wood ash addition showed a significant effect on plant dry biomass growth and metal uptake percentage of Zn in most of the cultivars. The results revealed that Salix cultivars have the potential to accumulate and take up significant amounts of Zn. Ecological restoration of polluted soils could be environmentally favorable in conjunction with economically profitable practices, such as forestry and bioenergy production. As such, the utilization of Salix for phytoextraction and bioenergy purposes is of considerable interest.

Keywords: lime, phytoextraction, Salix, wood ash, zinc

Procedia PDF Downloads 156
1636 Potential of Palm Oil Mill Effluent in Algae Cultivation for Biodiesel Production

Authors: Nur Azreena Idris, Soh Kheang Loh, Harrison Lau Lik Nang, Yuen May Choo, Eminour Muzalina Mustafa, Vijaysri Vello, Cheng Yau Tan, Siew Moi Phang

Abstract:

It is estimated that about 0.65-0.67 m3 of palm oil mill effluent (POME) is generated when one tonne of fresh fruit bunches is processed. Owning to the high content of nutrients in POME, it has high potential as a medium for microalgae growth. This study attempted determining the growth rate, biomass productivity and biochemical composition of microalgae (Chlorella sp.) grown in different POME concentrations i.e. 6.25%, 12.5%, 25% and 50% at outdoor conditions using a 200-mL capacity high rate algae pond (HRAP) and 2 closed photobioreactors (PBRs) i.e. annular and flat panel. The strain, Chlorella sp. grown on 12.5% of POME in flat panel PBR exhibited the highest specific growth rate of 0.32/day and biomass productivity (27.1 mg/L/day) followed by those in HRAP and annular PBR. It further showed that a good growth of Chlorella sp. in 12.5% of POME could sufficiently reduce the nutrients of POME such as phosphate (PO4), nitrate (NO3), nitrite (NO2) and chemical oxygen demand (COD). The extracted algal oil from POME culture showed that the saturated fatty acids decreased while polyunsaturated fatty acids increased compared to those cultured in standard culture medium (Bold’s Basal medium). The biochemical compositions of the algae grown in flat panel PBR were the highest with lipid, protein and carbohydrate productivity of 17.91 mg/L/day, 34.65 mg/L/day and 21.44 mg/L/day, respectively. The microalgae cultivation in diluted POME had not only shown potential as biodiesel feedstock based on the fatty acids profile but also the ability to reduce pollutants e.g. PO4, NO3, NO2 and COD in biological wastewater treatment.

Keywords: wastewater treatment, photobioreactors, biomass productivity, specific growth rate

Procedia PDF Downloads 266
1635 Deltamethrin-Induces Oxidative Stress to the Freshwater Ciliate Model: Paramecium tetraurelia

Authors: Amamra Ryma, Djebar Mohamed Reda, Moumeni Ouissem, Otmani Hadjer, Berrebbah Houria

Abstract:

The problem of environmental contamination by the excessive use of organics cannot be neglected. Extensive application is usually companied with serious problems and health risk. It is established that many chemicals, in common use, can produce some toxic effects on biological systems through their mode of action or by production of free radicals that damage all cell compounds. Deltamethrin, a widely used type II pyrethroid pesticide, is one of the most common contaminants in freshwater aquatic system. In this study, we investigate the effects of deltamethrin exposure on the induction of oxidative stress to the freshwater ciliate Paramecium tetraurelia. After the treatment of paramecium cells with increasing concentrations of insecticide, we followed up the growth kinetics, generation time and the percentage response. Also, we studied the variation in biomarkers of stress such as: GSH content, GST, GPX and CAT activities. Our results showed a significant decrease in the proliferation of cells correlated by the decrease in generation number and the increase in generation time. Also, we noted an inhibition in the percentage response. The monitoring of biomarkers revealed depletion in GSH content in a proportional and dose dependent manner accompanied by an increase in the GST activity. In parallel, a strong induction in the CAT and GPX activities was noted specially for the highest dose. In summary, under the current experimental conditions, deltamethrin is highly toxic to the freshwater ciliate Paramecium tetraurelia. Exposure to low concentrations showed significant adverse on growth accompanied with the induction of oxidative damage supported by the decrease in GSH content and the intensification of the antioxidant enzymes.

Keywords: deltamethrin, Paramecium tetraurelia, growth, oxidative stress, biomarkers, antioxidant

Procedia PDF Downloads 467
1634 Value Chain Network: A Social Network Analysis of the Value Chain Actors of Recycled Polymer Products in Lagos Metropolis, Nigeria

Authors: Olamide Shittu, Olayinka Akanle

Abstract:

Value Chain Analysis is a common method of examining the stages involved in the production of a product, mostly agricultural produce, from the input to the consumption stage including the actors involved in each stage. However, the Functional Institutional Analysis is the most common method in literature employed to analyze the value chain of products. Apart from studying the relatively neglected phenomenon of recycled polymer products in Lagos Metropolis, this paper adopted the use of social network analysis to attempt a grounded theory of the nature of social network that exists among the value chain actors of the subject matter. The study adopted a grounded theory approach by conducting in-depth interviews, administering questionnaires and conducting observations among the identified value chain actors of recycled polymer products in Lagos Metropolis, Nigeria. The thematic analysis of the collected data gave the researchers the needed background to formulate a truly representative network of the social relationships among the value chain actors of recycled polymer products in Lagos Metropolis. The paper introduced concepts such as Transient and Perennial Social Ties to explain the observed social relations among the actors. Some actors have more social capital than others as a result of the structural holes that exist in their triad network. Households and resource recoverers are at disadvantaged position in the network as they have high constraints in their relationships with other actors. The study attempted to provide a new perspective in the study of the environmental value chain by analyzing the network of actors to bring about policy action points and improve recycling in Nigeria. Government and social entrepreneurs can exploit the structural holes that exist in the network for the socio-economic and sustainable development of the state.

Keywords: recycled polymer products, social network analysis, social ties, value chain analysis

Procedia PDF Downloads 410
1633 Influence of Cyperus Rotundus Active Principles Inhibit Viral Multiplication and Stimulate Immune System in Indian White Shrimp Fenneropenaeus Indicus against White Spot Syndrome Virus Infection

Authors: Thavasimuthu Citarasu, Mariavincent Michaelbabu, Vikram Vakharia

Abstract:

The rhizome of Java grass, Cyperus rotundus was extracted different organic polar and non-polar solvents and performed the in vitro antiviral and immunostimulant activities against White Spot Syndrome Virus (WSSV) and Vibrio harveyi respectively. Based on the initial screening the ethyl acetate extract of C. rotundus was strong activities and further it was purified through silica column chromatography and the fractions were screened again for antiviral and immunostimulant activity. Among the different fractions screened against the WSSV and V. harveyi, the fractions, F-III to FV had strong activities. In order to study the in vivo influence of C. rotundus, the fractions (F-III to FV) were pooled and delivered to the F. indicus through artificial feed for 30 days. After the feeding trail the experimental and control diet fed F. indicus were challenged with virulent WSSV and studied the survival, molecular diagnosis, biochemical, haematological and immunological parameters. Surprisingly, the pooled fractions (F-III to FV) incorporated diets helped to significantly (P < 0.01) suppressed viral multiplication, showed significant (P < 0.01) differences in protein and glucose levels, improved total haemocyte count (THC), coagulase activity, significantly increased (P < =0.001) prophenol oxidase and intracellular superoxide anion production compared to the control shrimps. Based on the results, C. rotundus extracts effectively suppressed WSSV multiplication and improve the immune system in F. indicus against WSSV infection and this knowledge will helps to develop novel drugs from C. rotundus against WSSV.

Keywords: antiviral drugs, cyperus rotundus, fenneropenaeus indicus, WSSV

Procedia PDF Downloads 456
1632 Quantifying the Impacts of Elevated CO2 and N Fertilization on Wood Density in Loblolly Pine

Authors: Y. Cochet, A. Achim, Tom Flatman, J-C. Domec, J. Ogée, L. Wingate, Ram Oren

Abstract:

It is accepted that atmospheric CO2 concentration will increase in the future. For the past 30 years, researchers have used FACE (Free-Air Carbon Dioxide Enrichment) facilities to study the development of terrestrial ecosystems under elevated CO2 (eCO2). Forest responses to eCO2 are likely to impact timber industries with potential feedbacks towards the atmosphere. The main objectives of this study were to examine whether eCO2 alone or in combination with N-fertilization alter wood properties and to identify changes in wood anatomy related to water transport. Wood disks were sampled at breast height from mature loblolly pine trees (Pinus taeda L.) harvested at the Duke FACE site (NC, USA). By measuring ring width and intra-ring changes in density (X-ray densitometry) and tracheid size (lumen and cell wall thickness) from pith to bark, the following hypotheses were tested: 1) eCO2 and N-fertilization interact positively to increase significantly above-ground primary productivity; 2) eCO2 and N-fertilization lead to a decrease in density; 3) eCO2 and N-fertilization increase lumen diameter and decrease cell wall thickness, thus affecting water transport capacity. Our results revealed a boost in earlywood tracheid production induced by eCO2 lasting a few years. The following decrease seemed to be buffered by N-fertilization. X-ray profiles did not show a marked decrease in wood density under eCO2 or N-fertilization, although there were changes in cell anatomical properties such as a reduction in cell-wall thickness and an increase in lumen diameter. If such effects of eCO2 are confirmed, forest management strategies for example N-fertilization should be redesigned.

Keywords: wood density, Duke FACE (free-air carbon dioxide enrichment), N fertilization, tree ring

Procedia PDF Downloads 335
1631 Influence of Gold Nanoparticles on NiAlZr Type Layered Double Hydroxide for the Catalytic Transfer Oxidation of Biomass Derived Aldehydes

Authors: Nihel Dib, Redouane Bachir, Ghezlane Berrahou, Chaima Zoulikha Tabet Zatla, Sumeya Bedrane, Ginessa Blanco Montilla, Jose Juan Calvino Gamez

Abstract:

In recent decades, the world’s population has rapidly increased annually, resulting in the consumption of huge amounts of conventional non-renewable petroleum-based resources at an alarming rate. The scarcity of such resources will shut down the corresponding industries and consequently have negative effects on the well-being of humanity. Accordingly, to combat the forthcoming crises and to serve the ever-growing demands, seeking potentially sustainable resources such as geothermal, wind, solar, and biomass has become an active field of study. Currently, lignocellulosic biomass, one of the world’s most plentiful resources, is acknowledged as a cost-effective material that has drawn great interest from many researchers since it has substantial energy potential as well as containing useful C5 and C6 sugars. These C5 and C6 sugars are the key reactants for the production of the valuable 16-platform chemicals such as 5-hydroxymethyl furfural, furfural, levulinic acid, succinic acid, and fumaric acid, all of which are crucial intermediates for synthesizing high-value bio-based chemicals and polymers. Succinic acid (SA) has been predicted to make a significant contribution to the global bio-based economy soon since it serves as a C4 building block that is used in a wide spectrum of industries, including biopolymers, solvents, and pharmaceuticals. In the present work, we modify the HDL MgAl with Zr to try to create acid sites on the supports and deposit gold by deposition precipitation with urea with a low gold content (0.25%). The catalyst was used to produce succinic acid by selective oxidation of furfuraldehyde with hydrogen peroxide under mild reaction conditions.

Keywords: hydrotalcite, catalysis, gold, biomass, furfural, oxidation

Procedia PDF Downloads 69
1630 A Proteomic Approach for Discovery of Microbial Cellulolytic Enzymes

Authors: M. S. Matlala, I. Ignatious

Abstract:

Environmental sustainability has taken the center stage in human life all over the world. Energy is the most essential component of our life. The conventional sources of energy are non-renewable and have a detrimental environmental impact. Therefore, there is a need to move from conventional to non-conventional renewable energy sources to satisfy the world’s energy demands. The study aimed at screening for microbial cellulolytic enzymes using a proteomic approach. The objectives were to screen for microbial cellulases with high specific activity and separate the cellulolytic enzymes using a combination of zymography and two-dimensional (2-D) gel electrophoresis followed by tryptic digestion, Matrix-assisted Laser Desorption Ionisation-Time of Flight (MALDI-TOF) and bioinformatics analysis. Fungal and bacterial isolates were cultured in M9 minimal and Mandel media for a period of 168 hours at 60°C and 30°C with cellobiose and Avicel as carbon sources. Microbial cells were separated from supernatants through centrifugation, and the crude enzyme from the cultures was used for the determination of cellulase activity, zymography, SDS-PAGE, and two-dimensional gel electrophoresis. Five isolates, with lytic action on carbon sources studied, were a bacterial strain (BARK) and fungal strains (VCFF1, VCFF14, VCFF17, and VCFF18). Peak cellulase production by the selected isolates was found to be 3.8U/ml, 2.09U/ml, 3.38U/ml, 3.18U/ml, and 1.95U/ml, respectively. Two-dimensional gel protein maps resulted in the separation and quantitative expression of different proteins by the microbial isolates. MALDI-TOF analysis and database search showed that the expressed proteins in this study closely relate to different glycoside hydrolases produced by other microbial species with an acceptable confidence level of 100%.

Keywords: cellulases, energy, two-dimensional gel electrophoresis, matrix-assisted laser desorption ionisation-time of flight, MALDI-TOF MS

Procedia PDF Downloads 134
1629 The Prediction Mechanism of M. cajuputi Extract from Lampung-Indonesia, as an Anti-Inflammatory Agent for COVID-19 by NFκβ Pathway

Authors: Agustyas Tjiptaningrum, Intanri Kurniati, Fadilah Fadilah, Linda Erlina, Tiwuk Susantiningsih

Abstract:

Coronavirus disease-19 (COVID-19) is still one of the health problems. It can be a severe condition that is caused by a cytokine storm. In a cytokine storm, several proinflammatory cytokines are released massively. It destroys epithelial cells, and subsequently, it can cause death. The anti-inflammatory agent can be used to decrease the number of severe Covid-19 conditions. Melaleuca cajuputi is a plant that has antiviral, antibiotic, antioxidant, and anti-inflammatory activities. This study was carried out to analyze the prediction mechanism of the M. cajuputi extract from Lampung, Indonesia, as an anti-inflammatory agent for COVID-19. This study constructed a database of protein host target that was involved in the inflammation process of COVID-19 using data retrieval from GeneCards with the keyword “SARS-CoV2”, “inflammation,” “cytokine storm,” and “acute respiratory distress syndrome.” Subsequent protein-protein interaction was generated by using Cytoscape version 3.9.1. It can predict the significant target protein. Then the analysis of the Gene Ontology (GO) and KEGG pathways was conducted to generate the genes and components that play a role in COVID-19. The result of this study was 30 nodes representing significant proteins, namely NF-κβ, IL-6, IL-6R, IL-2RA, IL-2, IFN2, C3, TRAF6, IFNAR1, and DOX58. From the KEGG pathway, we obtained the result that NF-κβ has a role in the production of proinflammatory cytokines, which play a role in the COVID-19 cytokine storm. It is an important factor for macrophage transcription; therefore, it will induce inflammatory gene expression that encodes proinflammatory cytokines such as IL-6, TNF-α, and IL-1β. In conclusion, the blocking of NF-κβ is the prediction mechanism of the M. cajuputi extract as an anti-inflammation agent for COVID-19.

Keywords: antiinflammation, COVID-19, cytokine storm, NF-κβ, M. cajuputi

Procedia PDF Downloads 87
1628 Effect of Different Level of Pomegranate Molasses on Performance, Egg Quality Trait, Serological and Hematological Parameters in Older Laying Hens

Authors: Ismail Bayram, Aamir Iqbal, E. Eren Gultepe, Cangir Uyarlar, Umit Ozcınar, I. Sadi Cetingul

Abstract:

The current study was planned with the objective to explore the potential of pomegranate molasses (PM) on performance, egg quality and blood parameters in older laying hens. A total of 240 Babcock white laying hens (52 weeks old) were divided into 5 groups (n=48) with 8 subgroups having 6 hens in each. Pomegranate molasses was added in the drinking water to experimental groups with 0 %, 0.1%, 0.25 %, 0.5%, and 1%, respectively during one month. In our results, egg weight values were remained the same in all pomegranate molasses supplemented groups except 1% group over control. However, feed consumption, egg production, feed conversion ratio (FCR), egg mass, egg yolk cholesterol, body weights, and water consumption remained unaffected (P > 0.05). During mid-study (15 Days) analyses, egg quality parameters such as Haugh unit, eggshell thickness, albumin index, yolk index, and egg yolk color were remained non-significant (P > 0.05) while after final (30 Days) egg analyses, only egg yolk color had positively (P < 0.05) increased in 0.5% group. Moreover, Haugh unit, eggshell thickness, and albumin index were not significantly (P > 0.05) affected by the supplementation of pomegranate molasses. Regarding serological parameters, pomegranate molasses did not show any positive effect on cholesterol, total protein, LDL, HDL, GGT, AST, ALT, and glucose level. Similarly, pomegranate molasses also showed non-significant (P > 0.05) results on different blood parameters such as HCT, RBC, MCV, MCH, MCHC, PLT, RDWC, MPV except hemoglobin level. Only hemoglobin level was increased in all experimental groups over control showing that pomegranate molasses can be used as an enhancer in animals with low hemoglobin level.

Keywords: pomegranate molasses, laying hen, egg yield, blood parameters

Procedia PDF Downloads 169
1627 MicroRNA-211 Regulates Oxidative Phosphorylation and Energy Metabolism in Human Vitiligoa

Authors: Anupama Sahoo, Bongyong Lee, Katia Boniface, Julien Seneschal, Sanjaya K. Sahoo, Tatsuya Seki, Chunyan Wang, Soumen Das, Xianlin Han, Michael Steppie, Sudipta Seal, Alain Taieb, Ranjan J. Perera

Abstract:

Vitiligo is a common, chronic skin disorder characterized by loss of epidermal melanocytes and progressive depigmentation. Vitiligo has a complex immune, genetic, environmental, and biochemical etiology, but the exact molecular mechanisms of vitiligo development and progression, particularly those related to metabolic control, are poorly understood. Here we characterized the human vitiligo cell line PIG3V and the normal human melanocytes, HEM-l by RNA-sequencing, targeted metabolomics, and shotgun lipidomics. Melanocyte-enriched miR-211, a known metabolic switch in non-pigmented melanoma cells, was severely downregulated in vitiligo cell line PIG3V and skin biopsies from vitiligo patients, while its novel predicted targets transcriptional co-activator PGC1-α (PPARGC1A), ribonucleotide reductase regulatory subunit M2 (RRM2), and serine-threonine protein kinase TAO1 (TAOK1) were reciprocally upregulated. miR-211 binds to PGC1-α 3’UTR locus and represses it. Although mitochondrial numbers were constant, mitochondrial complexes I, II, and IV and respiratory responses were defective in vitiligo cells. Nanoparticle-coated miR-211 partially augmented the oxygen consumption rate in PIG3V cells. The lower oxygen consumption rate, changes in lipid and metabolite profiles, and increased reactive oxygen species production observed in vitiligo cells appear to be partly due to abnormal regulation of miR-211 and its target genes. These genes represent potential biomarkers and therapeutic targets in human vitiligo.

Keywords: metabolism, microRNA, mitochondria, vitiligo

Procedia PDF Downloads 367
1626 Eco-Friendly Textiles: The Power of Natural Dyes

Authors: Bushra

Abstract:

This paper explores the historical significance, ecological benefits, and contemporary applications of natural dyes in textile dyeing, aiming to provide a comprehensive overview of their potential to contribute to a sustainable fashion industry while minimizing ecological footprints. This research explores the potential of natural dyes as a sustainable alternative to synthetic dyes in the textile industry, examining their historical context, sources, and environmental benefits. Natural dyes come from plants, animals, and minerals, including roots, leaves, bark, fruits, flowers, insects, and metal salts, used as mordants to fix dyes to fabrics. Natural dyeing involves extraction, mordanting, and dyeing techniques. Optimizing these processes can enhance the performance of natural dyes, making them viable for contemporary textile applications based on experimental research. Natural dyes offer eco-friendly benefits like biodegradability, non-toxicity, and resource renewables, reducing pollution, promoting biodiversity, and reducing reliance on petrochemicals. Natural dyes offer benefits but face challenges in color consistency, scalability, and performance, requiring industrial production to meet modern consumer standards for durability and colorfastness. Contemporary initiatives in the textile industry include fashion brands like Eileen Fisher and Patagonia incorporating natural dyes, artisans like India Flint's Botanical Alchemy promoting traditional dyeing techniques, and research projects like the European Union's Horizon 2020 program. Natural dyes offer a sustainable textile industry solution, reducing environmental impact and promoting harmony with nature. Research and innovation are paving the way for widespread adoption, transforming textile dyeing.

Keywords: historical significance, textile industry, natural dyes, sustainability

Procedia PDF Downloads 48
1625 Preventive Effect of Three Kinds of Bacteriophages to Control Vibrio coralliilyticus Infection in Oyster Larvae

Authors: Hyoun Joong Kim, Jin Woo Jun, Sib Sankar Giri, Cheng Chi, Saekil Yun, Sang Guen Kim, Sang Wha Kim, Jeong Woo Kang, Se Jin Han, Se Chang Park

Abstract:

Vibrio corallilyticus is a well-known pathogen of coral. It is also infectious to a variety of shellfish species, including Pacific oyster (Crassostrea gigas) larvae. V. corallilyticus is remained to be a major constraint in marine bivalve aquaculture practice, especially in artificial seed production facility. Owing to the high mortality and contagious nature of the pathogen, large amount of antibiotics has been used for disease prevention and control. However, indiscriminate use of antibiotics may result in food and environmental pollution, and development of antibiotic resistant strains. Therefore, eco-friendly disease preventative measures are imperative for sustainable bivalve culture. The present investigation proposes the application of bacteriophage (phage) as an effective alternative method for controlling V. corallilyticus infection in marine bivalve hatcheries. Isolation of phages from sea water sample was carried out using drop or double layer agar methods. The host range, stability and morphology of the phage isolates were studied. In vivo phage efficacy to prevent V. corallilyticus infection in oyster larvae was also performed. The isolated phages, named pVco-5 and pVco-7 was classified as a podoviridae and pVco-14, was classified as a siphoviridae. Each phages were infective to four strains of seven V. corallilyticus strains tested. When oyster larvae were pre-treated with the phage before bacterial challenge, mortality of the treated oyster larvae was lower than that in the untreated control. This result suggests that each phages have the potential to be used as therapeutic agent for controlling V. corallilyticus infection in marine bivalve hatchery.

Keywords: bacteriophage, Vibrio coralliilyticus, Oyster larvae, mortality

Procedia PDF Downloads 224
1624 Electric Field-Induced Deformation of Particle-Laden Drops and Structuring of Surface Particles

Authors: Alexander Mikkelsen, Khobaib Khobaib, Zbigniew Rozynek

Abstract:

Drops covered by particles have found important uses in various fields, ranging from stabilization of emulsions to production of new advanced materials. Particles at drop interfaces can be interlocked to form solid capsules with properties tailored for a myriad of applications. Despite the huge potential of particle-laden drops and capsules, the knowledge of their deformation and stability are limited. In this regard, we contribute with experimental studies on the deformation and manipulation of silicone oil drops covered with micrometer-sized particles subjected to electric fields. A mixture of silicone oil and particles were immersed in castor oil using a mechanical pipette, forming millimeter sized drops. The particles moved and adsorbed at the drop interfaces by sedimentation, and were structured at the interface by electric field-induced electrohydrodynamic flows. When applying a direct current electric field, free charges accumulated at the drop interfaces, yielding electric stress that deformed the drops. In our experiments, we investigated how particle properties affected drop deformation, break-up, and particle structuring. We found that by increasing the size of weakly-conductive clay particles, the drop shape can go from compressed to stretched out in the direction of the electric field. Increasing the particle size and electrical properties were also found to weaken electrohydrodynamic flows, induce break-up of drops at weaker electric field strengths and structure particles in chains. These particle parameters determine the dipolar force between the interfacial particles, which can yield particle chaining. We conclude that the balance between particle chaining and electrohydrodynamic flows governs the observed drop mechanics.

Keywords: drop deformation, electric field induced stress, electrohydrodynamic flows, particle structuring at drop interfaces

Procedia PDF Downloads 207
1623 The Acute Effects of a Warm-Up Including Different Dynamic Stretching on Hamstring Stiffness, Flexibility, and Strength

Authors: Che Hsiu Chen, Kuo Wei Tseng, Zih Jian Huang, Hon Wen Cheng

Abstract:

A typical warm-up contains both stretching exercises and jogging. The static stretching prior to training or competition may cause detrimental effects to athletic performance. However, it is unclear whether different types of dynamic stretching exercises had different acute effects on knee flexors stiffness, flexibility, and strength. The purpose of this study was to analyze the knee flexors stiffness, flexibility, and strength gains after dynamic straight leg raise (DSLR) and dynamic modified toe-touch (MTT) stretching. Sixteen healthy university active men (height 176.27 ± 4.03 cm; weight 72.27 ± 8.90 kg; age 22.09 ± 2.31 years). After 5 minutes (8km/h) of running subjects performed 2 randomly ordered stretching protocols: DSLR and MTT stretching protocols. There were a total of six, 30 seconds bouts of dynamic stretching (15 repetitions) with 30seconds rest between bouts. The outcome measures were maximal voluntary isokinetic concentric hamstring strength (60°/s), muscle flexibility test by passive straight leg raise (PSLR), active straight leg raise (ASLR), and muscle stiffness using ultrasound Acoustic Radiation Forced Impulse (ARFI) elastography before and immediately after stretching. The muscle stiffness and concentric strength decreased significantly (p < .05), the flexibility no significant change after DSLR protocol (p > .05). The concentric strength decreased significantly (p < .05), the flexibility and muscle stiffness no significant change after MTT protocol (p > .05), whereas no significant differences were found for the DSLR and MTT. Our findings suggest that dynamic stretching (30s x 6 bouts) resulted in change in muscle stiffness or may be induced slack in the musculotendinous unit thereby, reducing force production. Therefore, 30s x 6 bouts of dynamic stretching adversely affects efforts of hamstring muscle maximal concentric strength.

Keywords: sport injury, ultrasound, eccentric exercise, performance

Procedia PDF Downloads 285
1622 Exchange Rate Variation and Balance of Payments: The Nigerian Experience (1970-2012)

Authors: Vitus Onyebuchim Onyemailu, Olive Obianuju Okalibe

Abstract:

The study tried to examine relationship between exchange rate variations on the balance of payments in Nigeria from 1970 to 2012. Using time series on econometric measures such as Granger causality and ordinary least square (OLS), the study found that exchange rate movements especially the depreciation of naira has not contributed significantly on the balance of payments under the year of the study. The granger result conform the Marshall-Lerner short and long run prepositions that exchange rate devaluation enhances balance of payments. On disaggregation exchange rate granger causes current and capital account balances give the Nigeria data from 1970 to 2012. Overall in the long run OLS regression analysis, exchange rate on semi log functional form, exchange rate variation did not record significant effect on balance of payment equation. This height was also maintained in the current or trade balance which does not match the Marshall-Lerner. The capital account balance in reverse reported a significant impact of exchange rate variability on the capital account balance. Finally, on exchange rate determination equation, where many fundamentals were considered including lagged of exchange rate. Thus, the lagged of exchange rate recorded a positive and significant influence on the present exchange rate. This means that players in the financial markets usually out plays authority’s policy’s stances through their speculative tendencies. The work therefore, recommend that effort should be made by the authorities to providing enabling environment for production of goods and services to triumph in order to take advantages of steady devaluation of its currency. This is done by providing infrastructure, provision of science and technology. Thus, when this is done Nigeria would be able to have competitive power against the rest of the world.

Keywords: exchange rate variation, balance of payments, current account, capital account, Marshall-Lerner hypothesis

Procedia PDF Downloads 397
1621 Effect of Goat Milk Kefir and Soy Milk Kefir on IL-6 in Diabetes Mellitus Wistar Mice Models Induced by Streptozotocin and Nicotinamide

Authors: Agatha Swasti Ayuning Tyas

Abstract:

Hyperglycemia in Diabetes Mellitus (DM) is an important factor in cellular and vascular damage, which is caused by activation of C Protein Kinase, polyol and hexosamine track, and production of Advanced Glycation End-Products (AGE). Those mentioned before causes the accumulation of Reactive Oxygen Species (ROS). Oxidative stress increases the expression of proinflammatory factors IL-6 as one of many signs of endothelial disfunction. Genistein in soy milk has a high immunomodulator potential. Goat milk contains amino acids which have antioxidative potential. Fermented kefir has an anti-inflammatory activity which believed will also contribute in potentiating goat milk and soy milk. This study is a quasi-experimental posttest-only research to 30 Wistar mice. This study compared the levels of IL-6 between healthy Wistar mice group (G1) and 4 DM Wistar mice with intervention and grouped as follows: mice without treatment (G2), mice treated with 100% goat milk kefir (G3), mice treated with combination of 50% goat milk kefir and 50% soy milk kefir (G4), and mice treated with 100% soy milk kefir (G5). DM animal models were induced with Streptozotocin & Nicotinamide to achieve hyperglycemic condition. Goat milk kefir and soy milk kefir are given at a dose of 2 mL/kg body weight/day for four weeks to intervention groups. Blood glucose was analyzed by the GOD-POD principle. IL-6 was analyzed by enzyme-linked sandwich ELISA. The level of IL-6 in DM untreated control group (G2) showed a significant difference from the group treated with the combination of 50% goat milk kefir and 50% soy milk kefir (G3) (p=0,006) and the group treated with 100% soy milk kefir (G5) (p=0,009). Whereas the difference of IL-6 in group treated with 100% goat milk kefir (G3) was not significant (p=0,131). There is also synergism between glucose level and IL-6 in intervention groups treated with combination of 50% goat milk kefir and 50% soy milk kefir (G3) and the group treated with 100% soy milk kefir (G5). Combination of 50 % goat milk kefir and 50% soy milk kefir and administration of 100% soy milk kefir alone can control the level of IL-6 remained low in DM Wistar mice induced with streptozocin and nicotinamide.

Keywords: diabetes mellitus, goat milk kefir, soy milk kefir, interleukin 6

Procedia PDF Downloads 285
1620 Thermal Proprieties of Date Palm Wood

Authors: K. Almi, S. Lakel, A. Benchabane, A. Kriker

Abstract:

Several researches are focused on natural resources for the production of biomaterials intended for technical applications. Date palm wood present one of the world’s most important natural resource. Its use as insulating materials will help to solve the severe environmental and recycling problems which other artificial insulating materials caused. This paper reports the results of an experimental investigation on the thermal proprieties of date palm wood from Algeria. A study of physical, chemical, and mechanical properties is also carried out. The goal is to use this natural material in the manufacture of thermal insulation materials for buildings. The local natural resources used in this study are the date palm fibers from Biskra oasis in Algeria. The results have shown that there is no significant difference in the morphological proprieties of the four types of residues. Their chemical composition differed slightly; with the lowest amounts of cellulose and lignin content belong to Petiole. Water absorption study proved that Rachis has a low value of sorption whereas Petiole and Fibrillium have a high value of sorption what influenced their mechanical properties. It is seen that the Rachis and leaflets exhibit high tensile strength values compared to the other residue. On the other hand, the low value of the bulk density of Petiole and Fibrillium leads to a high value of specific tensile strength and young modulus. It was found that the specific young modulus of Petiole and Fibrillium was higher than that of Rachis and Leaflets and that of other natural fibers or even artificial fibers. Compared to the other materials date palm wood provide a good thermal proprieties thus, date palm wood will be a good candidate for the manufacturing efficient and safe insulating materials.

Keywords: composite materials, date palm fiber, natural fibers, tensile tests, thermal proprieties

Procedia PDF Downloads 293
1619 Filled Polymer Composite

Authors: Adishirin Mammadov

Abstract:

Polymers and polymer composites play vital roles in diverse industries, including food and beverage packaging, transportation innovations, and medical advancements. However, the advancements in polymer technology bring certain risks, particularly concerning water and soil pollution due to the presence of polymers. The creation of new polymers is a critical aspect of this field. While the primary focus is on improving their physical and chemical properties, ensuring their ecological compatibility is equally important. An advanced method for developing innovative polymer types involves integrating fillers with diverse characteristics, offering advantages such as cost reduction and improved quality indicators. In the conducted research, efforts were made to enhance environmental aspects by employing waste fillers. Specifically, low-density polyethylene (LDPE) was used as the polymer, and waste from cocoon factories was chosen as the filler. Following a process of cleaning, drying, and crushing the filler to specific dimensions, it was incorporated into polyethylene through a mechanical-chemical method under laboratory conditions. The varied rheological properties of the resulting polyethylene compositions examined at temperatures ranging from 145 to 165 degrees Celsius. These compositions demonstrated different rheological properties at various temperature intervals. Achieving homogeneity in the obtained compositions is crucial in the polymers mechanochemical process. Beyond rheological properties, swelling rates in different environments and percentages of mass loss at different temperatures learned using the differential thermal analysis method. The research revealed that, to a certain extent, the physico-chemical properties of polyethylene were not significantly affected by the polymer compositions. This suggests that incorporating cocoon waste enables cost reduction in composite production while positively impacting the environment.

Keywords: polyethylene, polymer, composites, filler, reology

Procedia PDF Downloads 56
1618 The Cytoprotective Role of Antioxidants in Mammalian Cells Exposed to Variable Temperature, Pressure Overload and Radiation in the Stratosphere

Authors: Dawid Przystupski, Agata Gorska, Paulina Rozborska, Weronika Bartosik, Olga Michel, Joanna Rossowska, Anna Szewczyk, Malgorzata Drag-Zalesinska, Jedrzej Gorski, Julita Kulbacka

Abstract:

Researchers are still looking for an answer to the question which has been fascinating the mankind for generations, specifically – is there life beyond Earth? As long as routine flights to other planets remain beyond our reach, there is a need to find alternative ways to conduct the astrobiological research. It is worth noticing that the part of the Earth’s atmosphere, stratosphere, has been found to show subcosmic environmental conditions, namely temperatures around -50°C, very rarefied air, increased cosmic radiation and the Sun’s ultraviolet radiation. This phenomenon gives rise to the opportunity for the use of stratospheric environment as a research model for the space conditions. Therefore the idea of conducting astrobiological experiments during the stratospheric flights arose. Up to now, the preliminary work in this field included launching balloons containing solely microbiological samples into the stratosphere to figure out if they would be able to survive under the stratospheric conditions. In our study, we take this concept further, sending the human healthy and cancerous cells treated with various compounds to investigate whether these medicines are capable to protect the cells against stratospheric stress. Due to oxidative stress caused by ionizing radiation and temperature shock, we used natural compounds which display antioxidant properties. In this way, we were able to reduce the reactive oxygen species production affecting cells, which results in their death. After-flight laboratory tests of biological samples from the stratosphere have been performed and indicated the most active antioxidants as potential agents which can minimize the harmful impacts of stratospheric conditions, especially radiation and temperature.

Keywords: antioxidants, stratosphere, balloon flight, oxidative stress, cell death, radiation

Procedia PDF Downloads 138
1617 Oxidative Stability of Methyl and Ethyl Microalgae Biodiesel with Synthetic Antioxidants

Authors: Willian L. G. Silva, Fabio R. M. Batista, Matthieu Tubino

Abstract:

Microalgae can be considered a potential source of oil for biodiesel synthesis since this microorganism can grow rapidly in either fresh or salty water, not competing with food production. There are several favorable conditions in Brazil for this type of culture due to the country’s great amount of water. Another very positive aspect of this type of culture is its ability to fix atmospheric CO2, contributing to the reduction of greenhouse gases and their effects on global warming. Despite this biodiesel environmental advantages it degrades resulting in changes in its physical and chemical properties. In this work, the methyl and ethyl microalgae biodiesel oxidative stability was studied in the absence and presence of a synthetic antioxidant. The synthetic antioxidants used were propyl gallate (PG) and tert-butylhydroquinone (TBHQ), at a 0,12% (w/w) concentration. The biodiesel mixture was kept in a sealed glass flask, sheltered from light, and at room temperature (about 25 ºC) for 180 days. During this period, aliquots from this biodiesel were subjected to induced degradation by the Rancimat method, which determines an important quality parameter, provided in the current methods, and is used to monitor the degradation processes that occur in the biodiesel over time. The induction period (IP) expresses the biodiesel oxidative stability. It was stablished that the minimum accepted IP value for biodiesel is 8 hours. The results show that ethylic biodiesel increased its IP value from 7,6 hours to 31 hours when using PG, and to 67 hours when using TBHQ, exceeding the minimum accepted IP value. When the antioxidants were added to the methylic biodiesel samples, the IP was raised to 28 hours when using PG, and to 62 hours when using TBHQ. These values were maintained throughout the entire period of study (180 days). On the other hand, the biodiesel samples without additives maintained an IP above the allowed value for only 30 days. Therefore, in order to preserve microalgae biodiesel for longer periods of time, it is necessary to add antioxidants to both derivatives, i.e., the ethylic and methylic.

Keywords: biodiesel, microalgae, oxidative stability, storage, synthetic antioxidants

Procedia PDF Downloads 462
1616 Advanced Analysis on Dissemination of Pollutant Caused by Flaring System Effect Using Computational Fluid Dynamics (CFD) Fluent Model with WRF Model Input in Transition Season

Authors: Benedictus Asriparusa

Abstract:

In the area of the oil industry, there is accompanied by associated natural gas. The thing shows that a large amount of energy is being wasted mostly in the developing countries by contributing to the global warming process. This research represents an overview of methods in Minas area employed by these researchers in PT. Chevron Pacific Indonesia to determine ways of measuring and reducing gas flaring and its emission drastically. It provides an approximation includes analytical studies, numerical studies, modeling, computer simulations, etc. Flaring system is the controlled burning of natural gas in the course of routine oil and gas production operations. This burning occurs at the end of a flare stack or boom. The combustion process will release emissions of greenhouse gases such as NO2, CO2, SO2, etc. This condition will affect the air and environment around the industrial area. Therefore, we need a simulation to create the pattern of the dissemination of pollutant. This research paper has being made to see trends in gas flaring model and current developments to predict dominant variable which gives impact to dissemination of pollutant. Fluent models used to simulate the distribution of pollutant gas coming out of the stack. While WRF model output is used to overcome the limitations of the analysis of meteorological data and atmospheric conditions in the study area. This study condition focused on transition season in 2012 at Minas area. The goal of the simulation is looking for the exact time which is most influence towards dissemination of pollutants. The most influence factor divided into two main subjects. It is the quickest wind and the slowest wind. According to the simulation results, it can be seen that quickest wind moves to horizontal way and slowest wind moves to vertical way.

Keywords: flaring system, fluent model, dissemination of pollutant, transition season

Procedia PDF Downloads 380
1615 Standards of Toxicity and Food Security in Brazil

Authors: Ana Luiza Da Gama E Souza

Abstract:

This article aims to discuss the problem of food insecurity in Brazil in what it refers to contamination of food by chemical substances such as herbicides, pesticides, and other contaminants. The issue will be faced by analyzing, on the one hand, the standards that guide the food system in the world and, on the other hand, human rights indicators whose purpose is to provide an effective monitoring of the State's obligations to guarantee food security, analyzing the implications of the former for the success of the latter. The methodology adopted in this article was bibliographic-documentary and consists of three moments of analysis. The first moment consists in the analysis of the reports of the Commission on Human Rights of the Organization of American States to identify the set of progress indicators developed by the Commission. This analysis will involve the new methodology used to evaluate the efficiency in monitoring food security in Brazil the case of using pesticides in the production of food at levels of toxicity not admitted by the inspection bodies. The second moment consists in evaluating the mechanism for monitoring food security in Brazil, which was initially established by the National Food Security Plan (PLANSAN) for 2012-2015 and improved by the II National Food Security Plan for 2016-2019. Those mechanisms were prepared by the Chamber (CAISAN), and have the function to compare the monitoring proposals with the results presented by CAISAN on the Indicators and Results Report of the National Plan for Food and Nutrition Security 2012-2015. The third moment was intended to understand, analyze and evaluate the standardization process of the agri-food system, especially regarding the level of toxicity standards, that is related to food safety monitoring as a guarantee of pesticide-free food. The results show the dependence between private standards of toxicity and the indicators of food safety that leads to inefficiency on monitoring that mechanism in Brazil.

Keywords: standards, indicators, human rights, food security

Procedia PDF Downloads 333
1614 Ecological Concerns in Food Systems: An Ethnographical Approach on Vegan Impact in Governmentality

Authors: Jessica Gonzalez

Abstract:

Veganism, along with different types of vegetarianism, consists in the abstinence of animal products. Far from being only an alimentary regulation, it stands as a political posture against the food industry generating itself a set of beliefs, prohibitions, and attitudes that compel the individual to a reevaluation of his obligations towards the environment. Veganism defends animal rights and at the same time reinforces a different conception of natural resources embodying it in alimentary restrictions. These practices emerge in the context of alimentary modernity, which is characterized by bringing new concerns to the consumer. An increased skepticism towards the government ability to protect food supply; a notable distrust toward the market guaranties on providing safe food with sustainable techniques and the desire to react to the neoliberal forms of exploitation are some of its consequences of this phenomenon. This study aims to approach the concept of governmentality as a coproduced system of legitimized practices and knowledge, formed by the interaction of the different actors that are involved. In a scenario where the State seems to retreat from centralized regulation of food production giving up importance to citizens, dietary consultants, farmers, and stockbreeders, veganism plays its role on the conformation of distinctive forms of environmentalism, nature rights and responses to ecological crisis. The ethnographic method allows observing the mechanisms of interaction of consumers and discourses with the mainstream food system, providing evidence about the means of generation of new conceptions about nature and the environment. The paper focuses on how the dietary restrictions, consumption patterns and public discourses of vegans in Barcelona impact local consumption, demonstrating its relevance as a mechanism that associates particular concerns about food with political economy.

Keywords: animal rights, environmentalism, food system, governmentality, veganism

Procedia PDF Downloads 127
1613 Understanding and Explaining Urban Resilience and Vulnerability: A Framework for Analyzing the Complex Adaptive Nature of Cities

Authors: Richard Wolfel, Amy Richmond

Abstract:

Urban resilience and vulnerability are critical concepts in the modern city due to the increased sociocultural, political, economic, demographic, and environmental stressors that influence current urban dynamics. Urban scholars need help explaining urban resilience and vulnerability. First, cities are dominated by people, which is challenging to model, both from an explanatory and a predictive perspective. Second, urban regions are highly recursive in nature, meaning they not only influence human action, but the structures of cities are constantly changing due to human actions. As a result, explanatory frameworks must continuously evolve as humans influence and are influenced by the urban environment in which they operate. Finally, modern cities have populations, sociocultural characteristics, economic flows, and environmental impacts on order of magnitude well beyond the cities of the past. As a result, the frameworks that seek to explain the various functions of a city that influence urban resilience and vulnerability must address the complex adaptive nature of cities and the interaction of many distinct factors that influence resilience and vulnerability in the city. This project develops a taxonomy and framework for organizing and explaining urban vulnerability. The framework is built on a well-established political development model that includes six critical classes of urban dynamics: political presence, political legitimacy, political participation, identity, production, and allocation. In addition, the framework explores how environmental security and technology influence and are influenced by the six elements of political development. The framework aims to identify key tipping points in society that act as influential agents of urban vulnerability in a region. This will help analysts and scholars predict and explain the influence of both physical and human geographical stressors in a dense urban area.

Keywords: urban resilience, vulnerability, sociocultural stressors, political stressors

Procedia PDF Downloads 116