Search results for: and additional trim required
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6808

Search results for: and additional trim required

418 Identification and Quantification of Lisinopril from Pure, Formulated and Urine Samples by Micellar Thin Layer Chromatography

Authors: Sudhanshu Sharma

Abstract:

Lisinopril, 1-[N-{(s)-I-carboxy-3 phenyl propyl}-L-proline dehydrate is a lysine analog of enalaprilat, the active metabolite of enalapril. It is long-acting, non-sulhydryl angiotensin-converting enzyme (ACE) inhibitor that is used for the treatment of hypertension and congestive heart failure in daily dosage 10-80 mg. Pharmacological activity of lisinopril has been proved in various experimental and clinical studies. Owing to its importance and widespread use, efforts have been made towards the development of simple and reliable analytical methods. As per our literature survey, lisinopril in pharmaceutical formulations has been determined by various analytical methodologies like polaragraphy, potentiometry, and spectrophotometry, but most of these analytical methods are not too suitable for the Identification of lisinopril from clinical samples because of the interferences caused by the amino acids and amino groups containing metabolites present in biological samples. This report is an attempt in the direction of developing a simple and reliable method for on plate identification and quantification of lisinopril in pharmaceutical formulations as well as from human urine samples using silica gel H layers developed with a new mobile phase comprising of micellar solutions of N-cetyl-N, N, N-trimethylammonium bromide (CTAB). Micellar solutions have found numerous practical applications in many areas of separation science. Micellar liquid chromatography (MLC) has gained immense popularity and wider applicability due to operational simplicity, cost effectiveness, relatively non-toxicity and enhanced separation efficiency, low aggressiveness. Incorporation of aqueous micellar solutions as mobile phase was pioneered by Armstrong and Terrill as they accentuated the importance of TLC where simultaneous separation of ionic or non-ionic species in a variety of matrices is required. A peculiarity of the micellar mobile phases (MMPs) is that they have no macroscopic analogues, as a result the typical separations can be easily achieved by using MMPs than aqueous organic mobile phases. Previously MMPs were successfully employed in TLC based critical separations of aromatic hydrocarbons, nucleotides, vitamin K1 and K5, o-, m- and p- aminophenol, amino acids, separation of penicillins. The human urine analysis for identification of selected drugs and their metabolites has emerged as an important investigation tool in forensic drug analysis. Among all chromatographic methods available only thin layer chromatography (TLC) enables a simple fast and effective separation of the complex mixtures present in various biological samples and is recommended as an approved testing for forensic drug analysis by federal Law. TLC proved its applicability during successful separation of bio-active amines, carbohydrates, enzymes, porphyrins, and their precursors, alkaloid and drugs from urine samples.

Keywords: lisnopril, surfactant, chromatography, micellar solutions

Procedia PDF Downloads 367
417 The Impact of Inconclusive Results of Thin Layer Chromatography for Marijuana Analysis and It’s Implication on Forensic Laboratory Backlog

Authors: Ana Flavia Belchior De Andrade

Abstract:

Forensic laboratories all over the world face a great challenge to overcame waiting time and backlog in many different areas. Many aspects contribute to this situation, such as an increase in drug complexity, increment in the number of exams requested and cuts in funding limiting laboratories hiring capacity. Altogether, those facts pose an essential challenge for forensic chemistry laboratories to keep both quality and time of response within an acceptable period. In this paper we will analyze how the backlog affects test results and, in the end, the whole judicial system. In this study data from marijuana samples seized by the Federal District Civil Police in Brazil between the years 2013 and 2017 were tabulated and the results analyzed and discussed. In the last five years, the number of petitioned exams increased from 822 in February 2013 to 1358 in March 2018, representing an increase of 32% in 5 years, a rise of more than 6% per year. Meanwhile, our data shows that the number of performed exams did not grow at the same rate. Product numbers are stationed as using the actual technology scenario and analyses routine the laboratory is running in full capacity. Marijuana detection is the most prevalence exam required, representing almost 70% of all exams. In this study, data from 7,110 (seven thousand one hundred and ten) marijuana samples were analyzed. Regarding waiting time, most of the exams were performed not later than 60 days after receipt (77%). Although some samples waited up to 30 months before being examined (0,65%). When marijuana´s exam is delayed we notice the enlargement of inconclusive results using thin-layer chromatography (TLC). Our data shows that if a marijuana sample is stored for more than 18 months, inconclusive results rise from 2% to 7% and when if storage exceeds 30 months, inconclusive rates increase to 13%. This is probably because Cannabis plants and preparations undergo oxidation under storage resulting in a decrease in the content of Δ9-tetrahydrocannabinol ( Δ9-THC). An inconclusive result triggers other procedures that require at least two more working hours of our analysts (e.g., GC/MS analysis) and the report would be delayed at least one day. Those new procedures increase considerably the running cost of a forensic drug laboratory especially when the backlog is significant as inconclusive results tend to increase with waiting time. Financial aspects are not the only ones to be observed regarding backlog cases; there are also social issues as legal procedures can be delayed and prosecution of serious crimes can be unsuccessful. Delays may slow investigations and endanger public safety by giving criminals more time on the street to re-offend. This situation also implies a considerable cost to society as at some point, if the exam takes a long time to be performed, an inconclusive can turn into a negative result and a criminal can be absolved by flawed expert evidence.

Keywords: backlog, forensic laboratory, quality management, accreditation

Procedia PDF Downloads 122
416 Precise Determination of the Residual Stress Gradient in Composite Laminates Using a Configurable Numerical-Experimental Coupling Based on the Incremental Hole Drilling Method

Authors: A. S. Ibrahim Mamane, S. Giljean, M.-J. Pac, G. L’Hostis

Abstract:

Fiber reinforced composite laminates are particularly subject to residual stresses due to their heterogeneity and the complex chemical, mechanical and thermal mechanisms that occur during their processing. Residual stresses are now well known to cause damage accumulation, shape instability, and behavior disturbance in composite parts. Many works exist in the literature on techniques for minimizing residual stresses in thermosetting and thermoplastic composites mainly. To study in-depth the influence of processing mechanisms on the formation of residual stresses and to minimize them by establishing a reliable correlation, it is essential to be able to measure very precisely the profile of residual stresses in the composite. Residual stresses are important data to consider when sizing composite parts and predicting their behavior. The incremental hole drilling is very effective in measuring the gradient of residual stresses in composite laminates. This method is semi-destructive and consists of drilling incrementally a hole through the thickness of the material and measuring relaxation strains around the hole for each increment using three strain gauges. These strains are then converted into residual stresses using a matrix of coefficients. These coefficients, called calibration coefficients, depending on the diameter of the hole and the dimensions of the gauges used. The reliability of the incremental hole drilling depends on the accuracy with which the calibration coefficients are determined. These coefficients are calculated using a finite element model. The samples’ features and the experimental conditions must be considered in the simulation. Any mismatch can lead to inadequate calibration coefficients, thus introducing errors on residual stresses. Several calibration coefficient correction methods exist for isotropic material, but there is a lack of information on this subject concerning composite laminates. In this work, a Python program was developed to automatically generate the adequate finite element model. This model allowed us to perform a parametric study to assess the influence of experimental errors on the calibration coefficients. The results highlighted the sensitivity of the calibration coefficients to the considered errors and gave an order of magnitude of the precisions required on the experimental device to have reliable measurements. On the basis of these results, improvements were proposed on the experimental device. Furthermore, a numerical method was proposed to correct the calibration coefficients for different types of materials, including thick composite parts for which the analytical approach is too complex. This method consists of taking into account the experimental errors in the simulation. Accurate measurement of the experimental errors (such as eccentricity of the hole, angular deviation of the gauges from their theoretical position, or errors on increment depth) is therefore necessary. The aim is to determine more precisely the residual stresses and to expand the validity domain of the incremental hole drilling technique.

Keywords: fiber reinforced composites, finite element simulation, incremental hole drilling method, numerical correction of the calibration coefficients, residual stresses

Procedia PDF Downloads 132
415 Using Scilab® as New Introductory Method in Numerical Calculations and Programming for Computational Fluid Dynamics (CFD)

Authors: Nicoly Coelho, Eduardo Vieira Vilas Boas, Paulo Orestes Formigoni

Abstract:

Faced with the remarkable developments in the various segments of modern engineering, provided by the increasing technological development, professionals of all educational areas need to overcome the difficulties generated due to the good understanding of those who are starting their academic journey. Aiming to overcome these difficulties, this article aims at an introduction to the basic study of numerical methods applied to fluid mechanics and thermodynamics, demonstrating the modeling and simulations with its substance, and a detailed explanation of the fundamental numerical solution for the use of finite difference method, using SCILAB, a free software easily accessible as it is free and can be used for any research center or university, anywhere, both in developed and developing countries. It is known that the Computational Fluid Dynamics (CFD) is a necessary tool for engineers and professionals who study fluid mechanics, however, the teaching of this area of knowledge in undergraduate programs faced some difficulties due to software costs and the degree of difficulty of mathematical problems involved in this way the matter is treated only in postgraduate courses. This work aims to bring the use of DFC low cost in teaching Transport Phenomena for graduation analyzing a small classic case of fundamental thermodynamics with Scilab® program. The study starts from the basic theory involving the equation the partial differential equation governing heat transfer problem, implies the need for mastery of students, discretization processes that include the basic principles of series expansion Taylor responsible for generating a system capable of convergence check equations using the concepts of Sassenfeld, finally coming to be solved by Gauss-Seidel method. In this work we demonstrated processes involving both simple problems solved manually, as well as the complex problems that required computer implementation, for which we use a small algorithm with less than 200 lines in Scilab® in heat transfer study of a heated plate in rectangular shape on four sides with different temperatures on either side, producing a two-dimensional transport with colored graphic simulation. With the spread of computer technology, numerous programs have emerged requiring great researcher programming skills. Thinking that this ability to program DFC is the main problem to be overcome, both by students and by researchers, we present in this article a hint of use of programs with less complex interface, thus enabling less difficulty in producing graphical modeling and simulation for DFC with an extension of the programming area of experience for undergraduates.

Keywords: numerical methods, finite difference method, heat transfer, Scilab

Procedia PDF Downloads 385
414 Contribution of Word Decoding and Reading Fluency on Reading Comprehension in Young Typical Readers of Kannada Language

Authors: Vangmayee V. Subban, Suzan Deelan. Pinto, Somashekara Haralakatta Shivananjappa, Shwetha Prabhu, Jayashree S. Bhat

Abstract:

Introduction and Need: During early years of schooling, the instruction in the schools mainly focus on children’s word decoding abilities. However, the skilled readers should master all the components of reading such as word decoding, reading fluency and comprehension. Nevertheless, the relationship between each component during the process of learning to read is less clear. The studies conducted in alphabetical languages have mixed opinion on relative contribution of word decoding and reading fluency on reading comprehension. However, the scenarios in alphasyllabary languages are unexplored. Aim and Objectives: The aim of the study was to explore the role of word decoding, reading fluency on reading comprehension abilities in children learning to read Kannada between the age ranges of 5.6 to 8.6 years. Method: In this cross sectional study, a total of 60 typically developing children, 20 each from Grade I, Grade II, Grade III maintaining equal gender ratio between the age range of 5.6 to 6.6 years, 6.7 to 7.6 years and 7.7 to 8.6 years respectively were selected from Kannada medium schools. The reading fluency and reading comprehension abilities of the children were assessed using Grade level passages selected from the Kannada text book of children core curriculum. All the passages consist of five questions to assess reading comprehension. The pseudoword decoding skills were assessed using 40 pseudowords with varying syllable length and their Akshara composition. Pseudowords are formed by interchanging the syllables within the meaningful word while maintaining the phonotactic constraints of Kannada language. The assessment material was subjected to content validation and reliability measures before collecting the data on the study samples. The data were collected individually, and reading fluency was assessed for words correctly read per minute. Pseudoword decoding was scored for the accuracy of reading. Results: The descriptive statistics indicated that the mean pseudoword reading, reading comprehension, words accurately read per minute increased with the Grades. The performance of Grade III children found to be higher, Grade I lower and Grade II remained intermediate of Grade III and Grade I. The trend indicated that reading skills gradually improve with the Grades. Pearson’s correlation co-efficient showed moderate and highly significant (p=0.00) positive co-relation between the variables, indicating the interdependency of all the three components required for reading. The hierarchical regression analysis revealed 37% variance in reading comprehension was explained by pseudoword decoding and was highly significant. Subsequent entry of reading fluency measure, there was no significant change in R-square and was only change 3%. Therefore, pseudoword-decoding evolved as a single most significant predictor of reading comprehension during early Grades of reading acquisition. Conclusion: The present study concludes that the pseudoword decoding skills contribute significantly to reading comprehension than reading fluency during initial years of schooling in children learning to read Kannada language.

Keywords: alphasyllabary, pseudo-word decoding, reading comprehension, reading fluency

Procedia PDF Downloads 262
413 Effects of Virtual Reality Treadmill Training on Gait and Balance Performance of Patients with Stroke: Review

Authors: Hanan Algarni

Abstract:

Background: Impairment of walking and balance skills has negative impact on functional independence and community participation after stroke. Gait recovery is considered a primary goal in rehabilitation by both patients and physiotherapists. Treadmill training coupled with virtual reality technology is a new emerging approach that offers patients with feedback, open and random skills practice while walking and interacting with virtual environmental scenes. Objectives: To synthesize the evidence around the effects of the VR treadmill training on gait speed and balance primarily, functional independence and community participation secondarily in stroke patients. Methods: Systematic review was conducted; search strategy included electronic data bases: MEDLINE, AMED, Cochrane, CINAHL, EMBASE, PEDro, Web of Science, and unpublished literature. Inclusion criteria: Participant: adult >18 years, stroke, ambulatory, without severe visual or cognitive impartments. Intervention: VR treadmill training alone or with physiotherapy. Comparator: any other interventions. Outcomes: gait speed, balance, function, community participation. Characteristics of included studies were extracted for analysis. Risk of bias assessment was performed using Cochrane's ROB tool. Narrative synthesis of findings was undertaken and summary of findings in each outcome was reported using GRADEpro. Results: Four studies were included involving 84 stroke participants with chronic hemiparesis. Interventions intensity ranged (6-12 sessions, 20 minutes-1 hour/session). Three studies investigated the effects on gait speed and balance. 2 studies investigated functional outcomes and one study assessed community participation. ROB assessment showed 50% unclear risk of selection bias and 25% of unclear risk of detection bias across the studies. Heterogeneity was identified in the intervention effects at post training and follow up. Outcome measures, training intensity and durations also varied across the studies, grade of evidence was low for balance, moderate for speed and function outcomes, and high for community participation. However, it is important to note that grading was done on few numbers of studies in each outcome. Conclusions: The summary of findings suggests positive and statistically significant effects (p<0.05) of VR treadmill training compared to other interventions on gait speed, dynamic balance skills, function and participation directly after training. However, the effects were not sustained at follow up in two studies (2 weeks-1 month) and other studies did not perform follow up measurements. More RCTs with larger sample sizes and higher methodological quality are required to examine the long term effects of VR treadmill effects on function independence and community participation after stroke, in order to draw conclusions and produce stronger robust evidence.

Keywords: virtual reality, treadmill, stroke, gait rehabilitation

Procedia PDF Downloads 274
412 Status of Vocational Education and Training in India: Policies and Practices

Authors: Vineeta Sirohi

Abstract:

The development of critical skills and competencies becomes imperative for young people to cope with the unpredicted challenges of the time and prepare for work and life. Recognizing that education has a critical role in reaching sustainability goals as emphasized by 2030 agenda for sustainability development, educating youth in global competence, meta-cognitive competencies, and skills from the initial stages of formal education are vital. Further, educating for global competence would help in developing work readiness and boost employability. Vocational education and training in India as envisaged in various policy documents remain marginalized in practice as compared to general education. The country is still far away from the national policy goal of tracking 25% of the secondary students at grade eleven and twelve under the vocational stream. In recent years, the importance of skill development has been recognized in the present context of globalization and change in the demographic structure of the Indian population. As a result, it has become a national policy priority and taken up with renewed focus by the government, which has set the target of skilling 500 million people by 2022. This paper provides an overview of the policies, practices, and current status of vocational education and training in India supported by statistics from the National Sample Survey, the official statistics of India. The national policy documents and annual reports of the organizations actively involved in vocational education and training have also been examined to capture relevant data and information. It has also highlighted major initiatives taken by the government to promote skill development. The data indicates that in the age group 15-59 years, only 2.2 percent reported having received formal vocational training, and 8.6 percent have received non-formal vocational training, whereas 88.3 percent did not receive any vocational training. At present, the coverage of vocational education is abysmal as less than 5 percent of the students are covered by the vocational education programme. Besides, launching various schemes to address the mismatch of skills supply and demand, the government through its National Policy on Skill Development and Entrepreneurship 2015 proposes to bring about inclusivity by bridging the gender, social and sectoral divide, ensuring that the skilling needs of socially disadvantaged and marginalized groups are appropriately addressed. It is fundamental that the curriculum is aligned with the demands of the labor market, incorporating more of the entrepreneur skills. Creating nonfarm employment opportunities for educated youth will be a challenge for the country in the near future. Hence, there is a need to formulate specific skill development programs for this sector and also programs for upgrading their skills to enhance their employability. There is a need to promote female participation in work and in non-traditional courses. Moreover, rigorous research and development of a robust information base for skills are required to inform policy decisions on vocational education and training.

Keywords: policy, skill, training, vocational education

Procedia PDF Downloads 152
411 An Exploration of the Emergency Staff’s Perceptions and Experiences of Teamwork and the Skills Required in the Emergency Department in Saudi Arabia

Authors: Sami Alanazi

Abstract:

Teamwork practices have been recognized as a significant strategy to improve patient safety, quality of care, and staff and patient satisfaction in healthcare settings, particularly within the emergency department (ED). The EDs depend heavily on teams of interdisciplinary healthcare staff to carry out their operational goals and core business of providing care to the serious illness and injured. The ED is also recognized as a high-risk area in relation to service demand and the potential for human error. Few studies have considered the perceptions and experiences of the ED staff (physicians, nurses, allied health professionals, and administration staff) about the practice of teamwork, especially in Saudi Arabia (SA), and no studies have been conducted to explore the practices of teamwork in the EDs. Aim: To explore the practices of teamwork from the perspectives and experiences of staff (physicians, nurses, allied health professionals, and administration staff) when interacting with each other in the admission areas in the ED of a public hospital in the Northern Border region of SA. Method: A qualitative case study design was utilized, drawing on two methods for the data collection, comprising of semi-structured interviews (n=22) with physicians (6), nurses (10), allied health professionals (3), and administrative members (3) working in the ED of a hospital in the Northern Border region of SA. The second method is non-participant direct observation. All data were analyzed using thematic analysis. Findings: The main themes that emerged from the analysis were as follows: the meaningful of teamwork, reasons of teamwork, the ED environmental factors, the organizational factors, the value of communication, leadership, teamwork skills in the ED, team members' behaviors, multicultural teamwork, and patients and families behaviors theme. Discussion: Working in the ED environment played a major role in affecting work performance as well as team dynamics. However, Communication, time management, fast-paced performance, multitasking, motivation, leadership, and stress management were highlighted by the participants as fundamental skills that have a major impact on team members and patients in the ED. It was found that the behaviors of the team members impacted the team dynamics as well as ED health services. Behaviors such as disputes among team members, conflict, cooperation, uncooperative members, neglect, and emotions of the members. Besides that, the behaviors of the patients and their accompanies had a direct impact on the team and the quality of the services. In addition, the differences in the cultures have separated the team members and created undesirable gaps such the gender segregation, national origin discrimination, and similarity and different in interests. Conclusion: Effective teamwork, in the context of the emergency department, was recognized as an essential element to obtain the quality of care as well as improve staff satisfaction.

Keywords: teamwork, barrier, facilitator, emergencydepartment

Procedia PDF Downloads 140
410 Active Development of Tacit Knowledge: Knowledge Management, High Impact Practices and Experiential Learning

Authors: John Zanetich

Abstract:

Due to their positive associations with student learning and retention, certain undergraduate opportunities are designated ‘high-impact.’ High-Impact Practices (HIPs) such as, learning communities, community based projects, research, internships, study abroad and culminating senior experience, share several traits bin common: they demand considerable time and effort, learning occurs outside of the classroom, and they require meaningful interactions between faculty and students, they encourage collaboration with diverse others, and they provide frequent and substantive feedback. As a result of experiential learning in these practices, participation in these practices can be life changing. High impact learning helps individuals locate tacit knowledge, and build mental models that support the accumulation of knowledge. On-going learning from experience and knowledge conversion provides the individual with a way to implicitly organize knowledge and share knowledge over a lifetime. Knowledge conversion is a knowledge management component which focuses on the explication of the tacit knowledge that exists in the minds of students and that knowledge which is embedded in the process and relationships of the classroom educational experience. Knowledge conversion is required when working with tacit knowledge and the demand for a learner to align deeply held beliefs with the cognitive dissonance created by new information. Knowledge conversion and tacit knowledge result from the fact that an individual's way of knowing, that is, their core belief structure, is considered generalized and tacit instead of explicit and specific. As a phenomenon, tacit knowledge is not readily available to the learner for explicit description unless evoked by an external source. The development of knowledge–related capabilities such as Aggressive Development of Tacit Knowledge (ADTK) can be used in experiential educational programs to enhance knowledge, foster behavioral change, improve decision making, and overall performance. ADTK allows the student in HIPs to use their existing knowledge in a way that allows them to evaluate and make any necessary modifications to their core construct of reality in order to amalgamate new information. Based on the Lewin/Schein Change Theory, the learner will reach for tacit knowledge as a stabilizing mechanism when they are challenged by new information that puts them slightly off balance. As in word association drills, the important concept is the first thought. The reactionary outpouring to an experience is the programmed or tacit memory and knowledge of their core belief structure. ADTK is a way to help teachers design their own methods and activities to unfreeze, create new learning, and then refreeze the core constructs upon which future learning in a subject area is built. This paper will explore the use of ADTK as a technique for knowledge conversion in the classroom in general and in HIP programs specifically. It will focus on knowledge conversion in curriculum development and propose the use of one-time educational experiences, multi-session experiences and sequential program experiences focusing on tacit knowledge in educational programs.

Keywords: tacit knowledge, knowledge management, college programs, experiential learning

Procedia PDF Downloads 262
409 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations

Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso

Abstract:

Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.

Keywords: pipeline, leakage, detection, AI

Procedia PDF Downloads 190
408 Cytotoxicity and Genotoxicity of Glyphosate and Its Two Impurities in Human Peripheral Blood Mononuclear Cells

Authors: Marta Kwiatkowska, Paweł Jarosiewicz, Bożena Bukowska

Abstract:

Glyphosate (N-phosphonomethylglycine) is a non-selected broad spectrum ingredient in the herbicide (Roundup) used for over 35 years for the protection of agricultural and horticultural crops. Glyphosate was believed to be environmentally friendly but recently, a large body of evidence has revealed that glyphosate can negatively affect on environment and humans. It has been found that glyphosate is present in the soil and groundwater. It can also enter human body which results in its occurrence in blood in low concentrations of 73.6 ± 28.2 ng/ml. Research conducted for potential genotoxicity and cytotoxicity can be an important element in determining the toxic effect of glyphosate. Due to regulation of European Parliament 1107/2009 it is important to assess genotoxicity and cytotoxicity not only for the parent substance but also its impurities, which are formed at different stages of production of major substance – glyphosate. Moreover verifying, which of these compounds are more toxic is required. Understanding of the molecular pathways of action is extremely important in the context of the environmental risk assessment. In 2002, the European Union has decided that glyphosate is not genotoxic. Unfortunately, recently performed studies around the world achieved results which contest decision taken by the committee of the European Union. World Health Organization (WHO) in March 2015 has decided to change the classification of glyphosate to category 2A, which means that the compound is considered to "probably carcinogenic to humans". This category relates to compounds for which there is limited evidence of carcinogenicity to humans and sufficient evidence of carcinogenicity on experimental animals. That is why we have investigated genotoxicity and cytotoxicity effects of the most commonly used pesticide: glyphosate and its impurities: N-(phosphonomethyl)iminodiacetic acid (PMIDA) and bis-(phosphonomethyl)amine on human peripheral blood mononuclear cells (PBMCs), mostly lymphocytes. DNA damage (analysis of DNA strand-breaks) using the single cell gel electrophoresis (comet assay) and ATP level were assessed. Cells were incubated with glyphosate and its impurities: PMIDA and bis-(phosphonomethyl)amine at concentrations from 0.01 to 10 mM for 24 hours. Evaluating genotoxicity using the comet assay showed a concentration-dependent increase in DNA damage for all compounds studied. ATP level was decreased to zero as a result of using the highest concentration of two investigated impurities, like bis-(phosphonomethyl)amine and PMIDA. Changes were observed using the highest concentration at which a person can be exposed as a result of acute intoxication. Our survey leads to a conclusion that the investigated compounds exhibited genotoxic and cytotoxic potential but only in high concentrations, to which people are not exposed environmentally. Acknowledgments: This work was supported by the Polish National Science Centre (Contract-2013/11/N/NZ7/00371), MSc Marta Kwiatkowska, project manager.

Keywords: cell viability, DNA damage, glyphosate, impurities, peripheral blood mononuclear cells

Procedia PDF Downloads 482
407 Analysis of the Relationship between Micro-Regional Human Development and Brazil's Greenhouse Gases Emission

Authors: Geanderson Eduardo Ambrósio, Dênis Antônio Da Cunha, Marcel Viana Pires

Abstract:

Historically, human development has been based on economic gains associated with intensive energy activities, which often are exhaustive in the emission of Greenhouse Gases (GHGs). It requires the establishment of targets for mitigation of GHGs in order to disassociate the human development from emissions and prevent further climate change. Brazil presents itself as one of the most GHGs emitters and it is of critical importance to discuss such reductions in intra-national framework with the objective of distributional equity to explore its full mitigation potential without compromising the development of less developed societies. This research displays some incipient considerations about which Brazil’s micro-regions should reduce, when the reductions should be initiated and what its magnitude should be. We started with the methodological assumption that human development and GHGs emissions arise in the future as their behavior was observed in the past. Furthermore, we assume that once a micro-region became developed, it is able to maintain gains in human development without the need of keep growing GHGs emissions rates. The human development index and the carbon dioxide equivalent emissions (CO2e) were extrapolated to the year 2050, which allowed us to calculate when the micro-regions will become developed and the mass of GHG’s emitted. The results indicate that Brazil must throw 300 GT CO2e in the atmosphere between 2011 and 2050, of which only 50 GT will be issued by micro-regions before it’s develop and 250 GT will be released after development. We also determined national mitigation targets and structured reduction schemes where only the developed micro-regions would be required to reduce. The micro-region of São Paulo, the most developed of the country, should be also the one that reduces emissions at most, emitting, in 2050, 90% less than the value observed in 2010. On the other hand, less developed micro-regions will be responsible for less impactful reductions, i.e. Vale do Ipanema will issue in 2050 only 10% below the value observed in 2010. Such methodological assumption would lead the country to issue, in 2050, 56.5% lower than that observed in 2010, so that the cumulative emissions between 2011 and 2050 would reduce by 130 GT CO2e over the initial projection. The fact of associating the magnitude of the reductions to the level of human development of the micro-regions encourages the adoption of policies that favor both variables as the governmental planner will have to deal with both the increasing demand for higher standards of living and with the increasing magnitude of reducing emissions. However, if economic agents do not act proactively in local and national level, the country is closer to the scenario in which emits more than the one in which mitigates emissions. The research highlighted the importance of considering the heterogeneity in determining individual mitigation targets and also ratified the theoretical and methodological feasibility to allocate larger share of contribution for those who historically emitted more. It is understood that the proposals and discussions presented should be considered in mitigation policy formulation in Brazil regardless of the adopted reduction target.

Keywords: greenhouse gases, human development, mitigation, intensive energy activities

Procedia PDF Downloads 318
406 Collaborative Procurement in the Pursuit of Net- Zero: A Converging Journey

Authors: Bagireanu Astrid, Bros-Williamson Julio, Duncheva Mila, Currie John

Abstract:

The Architecture, Engineering, and Construction (AEC) sector plays a critical role in the global transition toward sustainable and net-zero built environments. However, the industry faces unique challenges in planning for net-zero while struggling with low productivity, cost overruns and overall resistance to change. Traditional practices fall short due to their inability to meet the requirements for systemic change, especially as governments increasingly demand transformative approaches. Working in silos and rigid hierarchies and a short-term, client-centric approach prioritising immediate gains over long-term benefit stands in stark contrast to the fundamental requirements for the realisation of net-zero objectives. These practices have limited capacity to effectively integrate AEC stakeholders and promote the essential knowledge sharing required to address the multifaceted challenges of achieving net-zero. In the context of built environment, procurement may be described as the method by which a project proceeds from inception to completion. Collaborative procurement methods under the Integrated Practices (IP) umbrella have the potential to align more closely with net-zero objectives. This paper explores the synergies between collaborative procurement principles and the pursuit of net zero in the AEC sector, drawing upon the shared values of cross-disciplinary collaboration, Early Supply Chain involvement (ESI), use of standards and frameworks, digital information management, strategic performance measurement, integrated decision-making principles and contractual alliancing. To investigate the role of collaborative procurement in advancing net-zero objectives, a structured research methodology was employed. First, the study focuses on a systematic review on the application of collaborative procurement principles in the AEC sphere. Next, a comprehensive analysis is conducted to identify common clusters of these principles across multiple procurement methods. An evaluative comparison between traditional procurement methods and collaborative procurement for achieving net-zero objectives is presented. Then, the study identifies the intersection between collaborative procurement principles and the net-zero requirements. Lastly, an exploration of key insights for AEC stakeholders focusing on the implications and practical applications of these findings is made. Directions for future development of this research are recommended. Adopting collaborative procurement principles can serve as a strategic framework for guiding the AEC sector towards realising net-zero. Synergising these approaches overcomes fragmentation, fosters knowledge sharing, and establishes a net-zero-centered ecosystem. In the context of the ongoing efforts to amplify project efficiency within the built environment, a critical realisation of their central role becomes imperative for AEC stakeholders. When effectively leveraged, collaborative procurement emerges as a powerful tool to surmount existing challenges in attaining net-zero objectives.

Keywords: collaborative procurement, net-zero, knowledge sharing, architecture, built environment

Procedia PDF Downloads 73
405 Impact of Material Chemistry and Morphology on Attrition Behavior of Excipients during Blending

Authors: Sri Sharath Kulkarni, Pauline Janssen, Alberto Berardi, Bastiaan Dickhoff, Sander van Gessel

Abstract:

Blending is a common process in the production of pharmaceutical dosage forms where the high shear is used to obtain a homogenous dosage. The shear required can lead to uncontrolled attrition of excipients and affect API’s. This has an impact on the performance of the formulation as this can alter the structure of the mixture. Therefore, it is important to understand the driving mechanisms for attrition. The aim of this study was to increase the fundamental understanding of the attrition behavior of excipients. Attrition behavior of the excipients was evaluated using a high shear blender (Procept Form-8, Zele, Belgium). Twelve pure excipients are tested, with morphologies varying from crystalline (sieved), granulated to spray dried (round to fibrous). Furthermore, materials include lactose, microcrystalline cellulose (MCC), di-calcium phosphate (DCP), and mannitol. The rotational speed of the blender was set at 1370 rpm to have the highest shear with a Froude (Fr) number 9. Varying blending times of 2-10 min were used. Subsequently, after blending, the excipients were analyzed for changes in particle size distribution (PSD). This was determined (n = 3) by dry laser diffraction (Helos/KR, Sympatec, Germany). Attrition was found to be a surface phenomenon which occurs in the first minutes of the high shear blending process. An increase of blending time above 2 mins showed no change in particle size distribution. Material chemistry was identified as a key driver for differences in the attrition behavior between different excipients. This is mainly related to the proneness to fragmentation, which is known to be higher for materials such as DCP and mannitol compared to lactose and MCC. Secondly, morphology also was identified as a driver of the degree of attrition. Granular products consisting of irregular surfaces showed the highest reduction in particle size. This is due to the weak solid bonds created between the primary particles during the granulation process. Granular DCP and mannitol show a reduction of 80-90% in x10(µm) compared to a 20-30% drop for granular lactose (monohydrate and anhydrous). Apart from the granular lactose, all the remaining morphologies of lactose (spray dried-round, sieved-tomahawk, milled) show little change in particle size. Similar observations have been made for spray-dried fibrous MCC. All these morphologies have little irregular or sharp surfaces and thereby are less prone to fragmentation. Therefore, products containing brittle materials such as mannitol and DCP are more prone to fragmentation when exposed to shear. Granular products with irregular surfaces lead to an increase in attrition. While spherical, crystalline, or fibrous morphologies show reduced impact during high shear blending. These changes in size will affect the functionality attributes of the formulation, such as flow, API homogeneity, tableting, formation of dust, etc. Hence it is important for formulators to fully understand the excipients to make the right choices.

Keywords: attrition, blending, continuous manufacturing, excipients, lactose, microcrystalline cellulose, shear

Procedia PDF Downloads 111
404 Evaluation of Coupled CFD-FEA Simulation for Fire Determination

Authors: Daniel Martin Fellows, Sean P. Walton, Jennifer Thompson, Oubay Hassan, Ella Quigley, Kevin Tinkham

Abstract:

Fire performance is a crucial aspect to consider when designing cladding products, and testing this performance is extremely expensive. Appropriate use of numerical simulation of fire performance has the potential to reduce the total number of fire tests required when designing a product by eliminating poor-performing design ideas early in the design phase. Due to the complexity of fire and the large spectrum of failures it can cause, multi-disciplinary models are needed to capture the complex fire behavior and its structural effects on its surroundings. Working alongside Tata Steel U.K., the authors have focused on completing a coupled CFD-FEA simulation model suited to test Polyisocyanurate (PIR) based sandwich panel products to gain confidence before costly experimental standards testing. The sandwich panels are part of a thermally insulating façade system primarily for large non-domestic buildings. The work presented in this paper compares two coupling methodologies of a replicated physical experimental standards test LPS 1181-1, carried out by Tata Steel U.K. The two coupling methodologies that are considered within this research are; one-way and two-way. A one-way coupled analysis consists of importing thermal data from the CFD solver into the FEA solver. A two-way coupling analysis consists of continuously importing the updated changes in thermal data, due to the fire's behavior, to the FEA solver throughout the simulation. Likewise, the mechanical changes will also be updated back to the CFD solver to include geometric changes within the solution. For CFD calculations, a solver called Fire Dynamic Simulator (FDS) has been chosen due to its adapted numerical scheme to focus solely on fire problems. Validation of FDS applicability has been achieved in past benchmark cases. In addition, an FEA solver called ABAQUS has been chosen to model the structural response to the fire due to its crushable foam plasticity model, which can accurately model the compressibility of PIR foam. An open-source code called FDS-2-ABAQUS is used to couple the two solvers together, using several python modules to complete the process, including failure checks. The coupling methodologies and experimental data acquired from Tata Steel U.K are compared using several variables. The comparison data includes; gas temperatures, surface temperatures, and mechanical deformation of the panels. Conclusions are drawn, noting improvements to be made on the current coupling open-source code FDS-2-ABAQUS to make it more applicable to Tata Steel U.K sandwich panel products. Future directions for reducing the computational cost of the simulation are also considered.

Keywords: fire engineering, numerical coupling, sandwich panels, thermo fluids

Procedia PDF Downloads 89
403 The Impact of Social Support on Anxiety and Depression under the Context of COVID-19 Pandemic: A Scoping Review and Meta-Analysis

Authors: Meng Wu, Atif Rahman, Eng Gee, Lim, Jeong Jin Yu, Rong Yan

Abstract:

Context: The COVID-19 pandemic has had a profound impact on mental health, with increased rates of anxiety and depression observed. Social support, a critical factor in mental well-being, has also undergone significant changes during the pandemic. This study aims to explore the relationship between social support, anxiety, and depression during COVID-19, taking into account various demographic and contextual factors. Research Aim: The main objective of this study is to conduct a comprehensive systematic review and meta-analysis to examine the impact of social support on anxiety and depression during the COVID-19 pandemic. The study aims to determine the consistency of these relationships across different age groups, occupations, regions, and research paradigms. Methodology: A scoping review and meta-analytic approach were employed in this study. A search was conducted across six databases from 2020 to 2022 to identify relevant studies. The selected studies were then subjected to random effects models, with pooled correlations (r and ρ) estimated. Homogeneity was assessed using Q and I² tests. Subgroup analyses were conducted to explore variations across different demographic and contextual factors. Findings: The meta-analysis of both cross-sectional and longitudinal studies revealed significant correlations between social support, anxiety, and depression during COVID-19. The pooled correlations (ρ) indicated a negative relationship between social support and anxiety (ρ = -0.30, 95% CI = [-0.333, -0.255]) as well as depression (ρ = -0.27, 95% CI = [-0.370, -0.281]). However, further investigation is required to validate these results across different age groups, occupations, and regions. Theoretical Importance: This study emphasizes the multifaceted role of social support in mental health during the COVID-19 pandemic. It highlights the need to reevaluate and expand our understanding of social support's impact on anxiety and depression. The findings contribute to the existing literature by shedding light on the associations and complexities involved in these relationships. Data Collection and Analysis Procedures: The data collection involved an extensive search across six databases to identify relevant studies. The selected studies were then subjected to rigorous analysis using random effects models and subgroup analyses. Pooled correlations were estimated, and homogeneity was assessed using Q and I² tests. Question Addressed: This study aimed to address the question of the impact of social support on anxiety and depression during the COVID-19 pandemic. It sought to determine the consistency of these relationships across different demographic and contextual factors. Conclusion: The findings of this study highlight the significant association between social support, anxiety, and depression during the COVID-19 pandemic. However, further research is needed to validate these findings across different age groups, occupations, and regions. The study emphasizes the need for a comprehensive understanding of social support's multifaceted role in mental health and the importance of considering various contextual and demographic factors in future investigations.

Keywords: social support, anxiety, depression, COVID-19, meta-analysis

Procedia PDF Downloads 61
402 An Exploratory Study of Changing Organisational Practices of Third-Sector Organisations in Mandated Corporate Social Responsibility in India

Authors: Avadh Bihari

Abstract:

Corporate social responsibility (CSR) has become a global parameter to define corporates' ethical and responsible behaviour. It was a voluntary practice in India till 2013, driven by various guidelines, which has become a mandate since 2014 under the Companies Act, 2013. This has compelled the corporates to redesign their CSR strategies by bringing in structures, planning, accountability, and transparency in their processes with a mandate to 'comply or explain'. Based on the author's M.Phil. dissertation, this paper presents the changes in organisational practices and institutional mechanisms of third-sector organisations (TSOs) with the theoretical frameworks of institutionalism and co-optation. It became an interesting case as India is the only country to have a law on CSR, which is not only mandating the reporting but the spending too. The space of CSR in India is changing rapidly and affecting multiple institutions, in the context of the changing roles of the state, market, and TSOs. Several factors such as stringent regulation on foreign funding, mandatory CSR pushing corporates to look out for NGOs, and dependency of Indian NGOs on CSR funds have come to the fore almost simultaneously, which made it an important area of study. Further, the paper aims at addressing the gap in the literature on the effects of mandated CSR on the functioning of TSOs through the empirical and theoretical findings of this study. The author had adopted an interpretivist position in this study to explore changes in organisational practices from the participants' experiences. Data were collected through in-depth interviews with five corporate officials, eleven officials from six TSOs, and two academicians, located at Mumbai and Delhi, India. The findings of this study show the legislation has institutionalised CSR, and TSOs get co-opted in the process of implementing mandated CSR. Seventy percent of the corporates implement their CSR projects through TSOs in India; this has affected the organisational practices of TSOs to a large extent. They are compelled to recruit expert workforce, create new departments for monitoring & evaluation, communications, and adopt management practices of project implementation from corporates. These are attempts to institutionalise the TSOs so that they can produce calculated results as demanded by corporates. In this process, TSOs get co-opted in a struggle to secure funds and lose their autonomy. The normative, coercive, and mimetic isomorphisms of institutionalism come into play as corporates are mandated to take up CSR, thereby influencing the organisational practices of TSOs. These results suggest that corporates and TSOs require an understanding of each other's work culture to develop mutual respect and work towards the goal of sustainable development of the communities. Further, TSOs need to retain their autonomy and understanding of ground realities without which they become an extension of the corporate-funder. For a successful CSR project, engagement beyond funding is required from corporate, through their involvement and not interference. CSR-led community development can be structured by management practices to an extent, but cannot overshadow the knowledge and experience of TSOs.

Keywords: corporate social responsibility, institutionalism, organisational practices, third-sector organisations

Procedia PDF Downloads 114
401 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics

Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin

Abstract:

Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.

Keywords: convolutional neural networks, deep learning, shallow correctors, sign language

Procedia PDF Downloads 100
400 Outcome Evaluation of a Blended-Learning Mental Health Training Course in South African Public Health Facilities

Authors: F. Slaven, M. Uys, Y. Erasmus

Abstract:

The South African National Mental Health Education Programme (SANMHEP) was a National Department of Health (NDoH) initiative to strengthen mental health services in South Africa in collaboration with the Foundation for Professional Development (FPD), SANOFI and the various provincial departments of health. The programme was implemented against the backdrop of a number of challenges in the management of mental health in the country related to staff shortages and infrastructure, the intersection of mental health with the growing burden of non-communicable diseases and various forms of violence, and challenges around substance abuse and its relationship with mental health. The Mental Health Care Act (No. 17 of 2002) prescribes that mental health should be integrated into general health services including primary, secondary and tertiary levels to improve access to services and reduce stigma associated with mental illness. In order for the provisions of the Act to become a reality, and for the journey of mental health patients through the system to improve, sufficient and skilled health care providers are critical. SANMHEP specifically targeted Medical Doctors and Professional Nurses working within the facilities that are listed to conduct 72-hour assessments, as well as District Hospitals. The aim of the programme was to improve the clinical diagnosis and management of mental disorders/conditions and the understanding of and compliance with the Mental Health Care Act and related Regulations and Guidelines in the care, treatment and rehabilitation of mental health care users. The course used a blended-learning approach and trained 1 120 health care providers through 36 workshops between February and November 2019. Of those trained, 689 (61.52%) were Professional Nurses, 337 (30.09%) were Medical Doctors, and 91 (8.13%) indicated their occupation as ‘other’ (of these more than half were psychologists). The pre- and post-evaluation of the face-to-face training sessions indicated a marked improvement in knowledge and confidence level scores (both clinical and legislative) in the care, treatment and rehabilitation of mental health care users by participants in all the training sessions. There was a marked improvement in the knowledge and confidence of participants in performing certain mental health activities (on average the ratings increased by 2.72; or 27%) and in managing certain mental health conditions (on average the ratings increased by 2.55; or 25%). The course also required that participants obtain 70% or higher in their formal assessments as part of the online component. The 337 participants who completed and passed the course scored 90% on average. This illustrates that when participants attempted and completed the course, they did very well. To further assess the effect of the course on the knowledge and behaviour of the trained mental health care practitioners a mixed-method outcome evaluation is currently underway consisting of a survey with participants three months after completion, follow-up interviews with participants, and key informant interviews with department of health officials and course facilitators. This will enable a more detailed assessment of the impact of the training on participants' perceived ability to manage and treat mental health patients.

Keywords: mental health, public health facilities, South Africa, training

Procedia PDF Downloads 119
399 Methodological Deficiencies in Knowledge Representation Conceptual Theories of Artificial Intelligence

Authors: Nasser Salah Eldin Mohammed Salih Shebka

Abstract:

Current problematic issues in AI fields are mainly due to those of knowledge representation conceptual theories, which in turn reflected on the entire scope of cognitive sciences. Knowledge representation methods and tools are driven from theoretical concepts regarding human scientific perception of the conception, nature, and process of knowledge acquisition, knowledge engineering and knowledge generation. And although, these theoretical conceptions were themselves driven from the study of the human knowledge representation process and related theories; some essential factors were overlooked or underestimated, thus causing critical methodological deficiencies in the conceptual theories of human knowledge and knowledge representation conceptions. The evaluation criteria of human cumulative knowledge from the perspectives of nature and theoretical aspects of knowledge representation conceptions are affected greatly by the very materialistic nature of cognitive sciences. This nature caused what we define as methodological deficiencies in the nature of theoretical aspects of knowledge representation concepts in AI. These methodological deficiencies are not confined to applications of knowledge representation theories throughout AI fields, but also exceeds to cover the scientific nature of cognitive sciences. The methodological deficiencies we investigated in our work are: - The Segregation between cognitive abilities in knowledge driven models.- Insufficiency of the two-value logic used to represent knowledge particularly on machine language level in relation to the problematic issues of semantics and meaning theories. - Deficient consideration of the parameters of (existence) and (time) in the structure of knowledge. The latter requires that we present a more detailed introduction of the manner in which the meanings of Existence and Time are to be considered in the structure of knowledge. This doesn’t imply that it’s easy to apply in structures of knowledge representation systems, but outlining a deficiency caused by the absence of such essential parameters, can be considered as an attempt to redefine knowledge representation conceptual approaches, or if proven impossible; constructs a perspective on the possibility of simulating human cognition on machines. Furthermore, a redirection of the aforementioned expressions is required in order to formulate the exact meaning under discussion. This redirection of meaning alters the role of Existence and time factors to the Frame Work Environment of knowledge structure; and therefore; knowledge representation conceptual theories. Findings of our work indicate the necessity to differentiate between two comparative concepts when addressing the relation between existence and time parameters, and between that of the structure of human knowledge. The topics presented throughout the paper can also be viewed as an evaluation criterion to determine AI’s capability to achieve its ultimate objectives. Ultimately, we argue some of the implications of our findings that suggests that; although scientific progress may have not reached its peak, or that human scientific evolution has reached a point where it’s not possible to discover evolutionary facts about the human Brain and detailed descriptions of how it represents knowledge, but it simply implies that; unless these methodological deficiencies are properly addressed; the future of AI’s qualitative progress remains questionable.

Keywords: cognitive sciences, knowledge representation, ontological reasoning, temporal logic

Procedia PDF Downloads 112
398 The Brain’s Attenuation Coefficient as a Potential Estimator of Temperature Elevation during Intracranial High Intensity Focused Ultrasound Procedures

Authors: Daniel Dahis, Haim Azhari

Abstract:

Noninvasive image-guided intracranial treatments using high intensity focused ultrasound (HIFU) are on the course of translation into clinical applications. They include, among others, tumor ablation, hyperthermia, and blood-brain-barrier (BBB) penetration. Since many of these procedures are associated with local temperature elevation, thermal monitoring is essential. MRI constitutes an imaging method with high spatial resolution and thermal mapping capacity. It is the currently leading modality for temperature guidance, commonly under the name MRgHIFU (magnetic-resonance guided HIFU). Nevertheless, MRI is a very expensive non-portable modality which jeopardizes its accessibility. Ultrasonic thermal monitoring, on the other hand, could provide a modular, cost-effective alternative with higher temporal resolution and accessibility. In order to assess the feasibility of ultrasonic brain thermal monitoring, this study investigated the usage of brain tissue attenuation coefficient (AC) temporal changes as potential estimators of thermal changes. Newton's law of cooling describes a temporal exponential decay behavior for the temperature of a heated object immersed in a relatively cold surrounding. Similarly, in the case of cerebral HIFU treatments, the temperature in the region of interest, i.e., focal zone, is suggested to follow the same law. Thus, it was hypothesized that the AC of the irradiated tissue may follow a temporal exponential behavior during cool down regime. Three ex-vivo bovine brain tissue specimens were inserted into plastic containers along with four thermocouple probes in each sample. The containers were placed inside a specially built ultrasonic tomograph and scanned at room temperature. The corresponding pixel-averaged AC was acquired for each specimen and used as a reference. Subsequently, the containers were placed in a beaker containing hot water and gradually heated to about 45ᵒC. They were then repeatedly rescanned during cool down using ultrasonic through-transmission raster trajectory until reaching about 30ᵒC. From the obtained images, the normalized AC and its temporal derivative as a function of temperature and time were registered. The results have demonstrated high correlation (R² > 0.92) between both the brain AC and its temporal derivative to temperature. This indicates the validity of the hypothesis and the possibility of obtaining brain tissue temperature estimation from the temporal AC thermal changes. It is important to note that each brain yielded different AC values and slopes. This implies that a calibration step is required for each specimen. Thus, for a practical acoustic monitoring of the brain, two steps are suggested. The first step consists of simply measuring the AC at normal body temperature. The second step entails measuring the AC after small temperature elevation. In face of the urging need for a more accessible thermal monitoring technique for brain treatments, the proposed methodology enables a cost-effective high temporal resolution acoustical temperature estimation during HIFU treatments.

Keywords: attenuation coefficient, brain, HIFU, image-guidance, temperature

Procedia PDF Downloads 161
397 Audio-Visual Co-Data Processing Pipeline

Authors: Rita Chattopadhyay, Vivek Anand Thoutam

Abstract:

Speech is the most acceptable means of communication where we can quickly exchange our feelings and thoughts. Quite often, people can communicate orally but cannot interact or work with computers or devices. It’s easy and quick to give speech commands than typing commands to computers. In the same way, it’s easy listening to audio played from a device than extract output from computers or devices. Especially with Robotics being an emerging market with applications in warehouses, the hospitality industry, consumer electronics, assistive technology, etc., speech-based human-machine interaction is emerging as a lucrative feature for robot manufacturers. Considering this factor, the objective of this paper is to design the “Audio-Visual Co-Data Processing Pipeline.” This pipeline is an integrated version of Automatic speech recognition, a Natural language model for text understanding, object detection, and text-to-speech modules. There are many Deep Learning models for each type of the modules mentioned above, but OpenVINO Model Zoo models are used because the OpenVINO toolkit covers both computer vision and non-computer vision workloads across Intel hardware and maximizes performance, and accelerates application development. A speech command is given as input that has information about target objects to be detected and start and end times to extract the required interval from the video. Speech is converted to text using the Automatic speech recognition QuartzNet model. The summary is extracted from text using a natural language model Generative Pre-Trained Transformer-3 (GPT-3). Based on the summary, essential frames from the video are extracted, and the You Only Look Once (YOLO) object detection model detects You Only Look Once (YOLO) objects on these extracted frames. Frame numbers that have target objects (specified objects in the speech command) are saved as text. Finally, this text (frame numbers) is converted to speech using text to speech model and will be played from the device. This project is developed for 80 You Only Look Once (YOLO) labels, and the user can extract frames based on only one or two target labels. This pipeline can be extended for more than two target labels easily by making appropriate changes in the object detection module. This project is developed for four different speech command formats by including sample examples in the prompt used by Generative Pre-Trained Transformer-3 (GPT-3) model. Based on user preference, one can come up with a new speech command format by including some examples of the respective format in the prompt used by the Generative Pre-Trained Transformer-3 (GPT-3) model. This pipeline can be used in many projects like human-machine interface, human-robot interaction, and surveillance through speech commands. All object detection projects can be upgraded using this pipeline so that one can give speech commands and output is played from the device.

Keywords: OpenVINO, automatic speech recognition, natural language processing, object detection, text to speech

Procedia PDF Downloads 80
396 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 147
395 Strategies for Synchronizing Chocolate Conching Data Using Dynamic Time Warping

Authors: Fernanda A. P. Peres, Thiago N. Peres, Flavio S. Fogliatto, Michel J. Anzanello

Abstract:

Batch processes are widely used in food industry and have an important role in the production of high added value products, such as chocolate. Process performance is usually described by variables that are monitored as the batch progresses. Data arising from these processes are likely to display a strong correlation-autocorrelation structure, and are usually monitored using control charts based on multiway principal components analysis (MPCA). Process control of a new batch is carried out comparing the trajectories of its relevant process variables with those in a reference set of batches that yielded products within specifications; it is clear that proper determination of the reference set is key for the success of a correct signalization of non-conforming batches in such quality control schemes. In chocolate manufacturing, misclassifications of non-conforming batches in the conching phase may lead to significant financial losses. In such context, the accuracy of process control grows in relevance. In addition to that, the main assumption in MPCA-based monitoring strategies is that all batches are synchronized in duration, both the new batch being monitored and those in the reference set. Such assumption is often not satisfied in chocolate manufacturing process. As a consequence, traditional techniques as MPCA-based charts are not suitable for process control and monitoring. To address that issue, the objective of this work is to compare the performance of three dynamic time warping (DTW) methods in the alignment and synchronization of chocolate conching process variables’ trajectories, aimed at properly determining the reference distribution for multivariate statistical process control. The power of classification of batches in two categories (conforming and non-conforming) was evaluated using the k-nearest neighbor (KNN) algorithm. Real data from a milk chocolate conching process was collected and the following variables were monitored over time: frequency of soybean lecithin dosage, rotation speed of the shovels, current of the main motor of the conche, and chocolate temperature. A set of 62 batches with durations between 495 and 1,170 minutes was considered; 53% of the batches were known to be conforming based on lab test results and experts’ evaluations. Results showed that all three DTW methods tested were able to align and synchronize the conching dataset. However, synchronized datasets obtained from these methods performed differently when inputted in the KNN classification algorithm. Kassidas, MacGregor and Taylor’s (named KMT) method was deemed the best DTW method for aligning and synchronizing a milk chocolate conching dataset, presenting 93.7% accuracy, 97.2% sensitivity and 90.3% specificity in batch classification, being considered the best option to determine the reference set for the milk chocolate dataset. Such method was recommended due to the lowest number of iterations required to achieve convergence and highest average accuracy in the testing portion using the KNN classification technique.

Keywords: batch process monitoring, chocolate conching, dynamic time warping, reference set distribution, variable duration

Procedia PDF Downloads 167
394 Validation of Mapping Historical Linked Data to International Committee for Documentation (CIDOC) Conceptual Reference Model Using Shapes Constraint Language

Authors: Ghazal Faraj, András Micsik

Abstract:

Shapes Constraint Language (SHACL), a World Wide Web Consortium (W3C) language, provides well-defined shapes and RDF graphs, named "shape graphs". These shape graphs validate other resource description framework (RDF) graphs which are called "data graphs". The structural features of SHACL permit generating a variety of conditions to evaluate string matching patterns, value type, and other constraints. Moreover, the framework of SHACL supports high-level validation by expressing more complex conditions in languages such as SPARQL protocol and RDF Query Language (SPARQL). SHACL includes two parts: SHACL Core and SHACL-SPARQL. SHACL Core includes all shapes that cover the most frequent constraint components. While SHACL-SPARQL is an extension that allows SHACL to express more complex customized constraints. Validating the efficacy of dataset mapping is an essential component of reconciled data mechanisms, as the enhancement of different datasets linking is a sustainable process. The conventional validation methods are the semantic reasoner and SPARQL queries. The former checks formalization errors and data type inconsistency, while the latter validates the data contradiction. After executing SPARQL queries, the retrieved information needs to be checked manually by an expert. However, this methodology is time-consuming and inaccurate as it does not test the mapping model comprehensively. Therefore, there is a serious need to expose a new methodology that covers the entire validation aspects for linking and mapping diverse datasets. Our goal is to conduct a new approach to achieve optimal validation outcomes. The first step towards this goal is implementing SHACL to validate the mapping between the International Committee for Documentation (CIDOC) conceptual reference model (CRM) and one of its ontologies. To initiate this project successfully, a thorough understanding of both source and target ontologies was required. Subsequently, the proper environment to run SHACL and its shape graphs were determined. As a case study, we performed SHACL over a CIDOC-CRM dataset after running a Pellet reasoner via the Protégé program. The applied validation falls under multiple categories: a) data type validation which constrains whether the source data is mapped to the correct data type. For instance, checking whether a birthdate is assigned to xsd:datetime and linked to Person entity via crm:P82a_begin_of_the_begin property. b) Data integrity validation which detects inconsistent data. For instance, inspecting whether a person's birthdate occurred before any of the linked event creation dates. The expected results of our work are: 1) highlighting validation techniques and categories, 2) selecting the most suitable techniques for those various categories of validation tasks. The next plan is to establish a comprehensive validation model and generate SHACL shapes automatically.

Keywords: SHACL, CIDOC-CRM, SPARQL, validation of ontology mapping

Procedia PDF Downloads 253
393 Study of Influencing Factors on the Flowability of Jute Nonwoven Reinforced Sheet Molding Compound

Authors: Miriam I. Lautenschläger, Max H. Scheiwe, Kay A. Weidenmann, Frank Henning, Peter Elsner

Abstract:

Due to increasing environmental awareness jute fibers are more often used in fiber reinforced composites. In the Sheet Molding Compound (SMC) process, the mold cavity is filled via material flow allowing more complex component design. But, the difficulty of using jute fibers in this process is the decreased capacity of fiber movement in the mold. A comparative flow study with jute nonwoven reinforced SMC was conducted examining the influence of the fiber volume content, the grammage of the jute nonwoven textile and a mechanical modification of the nonwoven textile on the flowability. The nonwoven textile reinforcement was selected to support homogeneous fiber distribution. Trials were performed using two SMC paste formulations differing only in filler type. Platy-shaped kaolin with a mean particle size of 0.8 μm and ashlar calcium carbonate with a mean particle size of 2.7 μm were selected as fillers. Ensuring comparability of the two SMC paste formulations the filler content was determined to reach equal initial viscosity for both systems. The calcium carbonate filled paste was set as reference. The flow study was conducted using a jute nonwoven textile with 300 g/m² as reference. The manufactured SMC sheets were stacked and centrally placed in a square mold. The mold coverage was varied between 25 and 90% keeping the weight of the stack for comparison constant. Comparing the influence of the two fillers kaolin yielded better results regarding a homogeneous fiber distribution. A mold coverage of about 68% was already sufficient to homogeneously fill the mold cavity whereas for calcium carbonate filled system about 79% mold coverage was necessary. The flow study revealed a strong influence of the fiber volume content on the flowability. A fiber volume content of 12 vol.-% and 25 vol.-% were compared for both SMC formulations. The lower fiber volume content strongly supported fiber transport whereas 25 vol.-% showed insignificant influence. The results indicate a limiting fiber volume content for the flowability. The influence of the nonwoven textile grammage was determined using nonwoven jute material with 500 g/m² and a fiber volume content of 20 vol.-%. The 500 g/m² reinforcement material showed inferior results with regard to fiber movement. A mold coverage of about 90 % was required to prevent the destruction of the nonwoven structure. Below this mold coverage the 500 g/m² nonwoven material was ripped and torn apart. Low mold coverages led to damage of the textile reinforcement. Due to the ripped nonwoven structure the textile was modified with cuts in order to facilitate fiber movement in the mold. Parallel cuts of about 20 mm length and 20 mm distance to each other were applied to the textile and stacked with varying orientations prior to molding. Stacks with unidirectional orientated cuts over stacks with cuts in various directions e.g. (0°, 45°, 90°, -45°) were investigated. The mechanical modification supported tearing of the textile without achieving benefit for the flowability.

Keywords: filler, flowability, jute fiber, nonwoven, sheet molding compound

Procedia PDF Downloads 332
392 The Toxic Effects of Kynurenine Metabolites on SH-SY5Y Neuroblastoma Cells

Authors: Susan Hall, Gary D. Grant, Catherine McDermott, Devinder Arora

Abstract:

Introduction /Aim: The kynurenine pathway is thought to play an important role in the pathophysiology of numerous neurodegenerative diseases including depression, Alzheimer’s disease, and Parkinson’s disease. Numerous neuroactive compounds, including the neurotoxic 3-hydroxyanthranilic acid, 3-hydroxykynurenine and quinolinic acid and the neuroprotective kynurenic acid and picolinic acid, are produced through the metabolism of kynurenine and are thought to be the causative agents responsible for neurodegeneration. The toxicity of 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid has been widely evaluated and demonstrated in primary cell cultures but to date only 3-hydroxykynurenine and 3-hydroxyanthranilic acid have been shown to cause toxicity in immortal tumour cells. The aim of this study was to evaluate the toxicity of kynurenine metabolites, both individually and in combination, on SH-SY5Y neuroblastoma cells after 24 and 72 h exposure in order to explore a cost-effective model to study their neurotoxic effects and potential protective agents. Methods: SH-SY5Y neuroblastoma cells were exposed to various concentrations of the neuroactive kynurenine metabolites, both individually and in combination, for 24 and 72 h, and viability was subsequently evaluated using the Resazurin (Alamar blue) proliferation assay. Furthermore, the effects of these compounds, alone and in combination, on specific death pathways including apoptosis, necrosis and free radical production was evaluated using various assays. Results: Consistent with literature, toxicity was shown with short-term 24-hour treatments at 1000 μM concentrations for both 3-hydroxykynurenine and 3-hydroxyanthranilic acid. Combinations of kynurenine metabolites showed modest toxicity towards SH-SY5Y neuroblastoma cells in a concentration-dependent manner. Specific cell death pathways, including apoptosis, necrosis and free radical production were shown to be increased after both 24 and 72 h exposure of SH-SY5Y neuroblastoma cells to 3-hydroxykynurenine and 3-hydroxyanthranilic acid and various combinations of neurotoxic kynurenine metabolites. Conclusion: It is well documented that neurotoxic kynurenine metabolites show toxicity towards primary human neurons in the nanomolar to low micromolar concentration range. Results show that the concentrations required to show significant cell death are in the range of 1000 µM for 3-hydroxykynurenine and 3-hydroxyanthranilic acid and toxicity of quinolinic acid towards SH-SY5Y was unable to be shown. This differs significantly from toxicities observed in primary human neurons. Combinations of the neurotoxic metabolites were shown to have modest toxicity towards these cells with increased toxicity and activation of cell death pathways observed after 72 h exposure. This study suggests that the 24 h model is unsuitable for use in neurotoxicity studies, however, the 72 h model better represents the observations of the studies using primary human neurons and may provide some benefit in providing a cost-effective model to assess possible protective agents against kynurenine metabolite toxicities.

Keywords: kynurenine metabolites, neurotoxicity, quinolinic acid, SH-SY5Y neuroblastoma

Procedia PDF Downloads 417
391 Providing Support On-Time: Need to Establish De-Radicalization Hotlines

Authors: Ashir Ahmed

Abstract:

Peacekeeping is a collective responsibility of governments, law enforcement agencies, communities, families, and individuals. Moreover, the complex nature of peacekeeping activities requires a holistic and collaborative approach where various community sectors work together to form collective strategies that are likely to be more effective than strategies designed and delivered in isolation. Similarly, it is important to learn from past programs to evaluate the initiatives that have worked well and the areas that need further improvement. Review of recent peacekeeping initiatives suggests that there have been tremendous efforts and resources put in place to deal with the emerging threat of terrorism, radicalization and violent extremism through number of de-radicalization programs. Despite various attempts in designing and delivering successful programs for deradicalization, the threat of people being radicalized is growing more than ever before. This research reviews the prominent de-radicalization programs to draw an understanding of their strengths and weaknesses. Some of the weaknesses in the existing programs include. Inaccessibility: Limited resources, geographical location of potential participants (for offline programs), inaccessibility or inability to use various technologies (for online programs) makes it difficult for people to participate in de-radicalization programs. Timeliness: People might need to wait for a program on a set date/time to get the required information and to get their questions answered. This is particularly true for offline programs. Lack of trust: The privacy issues and lack of trust between participants and program organizers are another hurdle in the success of de-radicalization programs. The fear of sharing participants information with organizations (such as law enforcement agencies) without their consent led them not to participate in these programs. Generalizability: Majority of these programs are very generic in nature and do not cater the specific needs of an individual. Participants in these programs may feel that the contents are irrelevant to their individual situations and hence feel disconnected with purpose of the programs. To address the above-mentioned weaknesses, this research developed a framework that recommends some improvements in de-radicalization programs. One of the recommendations is to offer 24/7, secure, private and online hotline (also referred as helpline) for the people who have any question, concern or situation to discuss with someone who is qualified (a counsellor) to deal with people who are vulnerable to be radicalized. To make these hotline services viable and sustainable, the existing organizations offering support for depression, anxiety or suicidal ideation could additionally host these services. These helplines should be available via phone, the internet, social media and in-person. Since these services will be embedded within existing and well-known services, they would likely to get more visibility and promotion. The anonymous and secure conversation between a person and a counsellor would ensure that a person can discuss the issues without being afraid of information sharing with any third party – without his/her consent. The next stage of this project would include the operationalization of the framework by collaborating with other organizations to host de-radicalization hotlines and would assess the effectiveness of such initiatives.

Keywords: de-radicalization, framework, hotlines, peacekeeping

Procedia PDF Downloads 214
390 The Power-Knowledge Relationship in the Italian Education System between the 19th and 20th Century

Authors: G. Iacoviello, A. Lazzini

Abstract:

This paper focuses on the development of the study of accounting in the Italian education system between the 19th and 20th centuries. It also focuses on the subsequent formation of a scientific and experimental forma mentis that would prepare students for administrative and managerial activities in industry, commerce and public administration. From a political perspective, the period was characterized by two dominant movements - liberalism (1861-1922) and fascism (1922-1945) - that deeply influenced accounting practices and the entire Italian education system. The materials used in the study include both primary and secondary sources. The primary sources used to inform this study are numerous original documents issued from 1890-1935 by the government and maintained in the Historical Archive of the State in Rome. The secondary sources have supported both the development of the theoretical framework and the definition of the historical context. This paper assigns to the educational system the role of cultural producer. Foucauldian analysis identifies the problem confronted by the critical intellectual in finding a way to deploy knowledge through a 'patient labour of investigation' that highlights the contingency and fragility of the circumstances that have shaped current practices and theories. Education can be considered a powerful and political process providing students with values, ideas, and models that they will subsequently use to discipline themselves, remaining as close to them as possible. It is impossible for power to be exercised without knowledge, just as it is impossible for knowledge not to engender power. The power-knowledge relationship can be usefully employed for explaining how power operates within society, how mechanisms of power affect everyday lives. Power is employed at all levels and through many dimensions including government. Schools exercise ‘epistemological power’ – a power to extract a knowledge of individuals from individuals. Because knowledge is a key element in the operation of power, the procedures applied to the formation and accumulation of knowledge cannot be considered neutral instruments for the presentation of the real. Consequently, the same institutions that produce and spread knowledge can be considered part of the ‘power-knowledge’ interrelation. Individuals have become both objects and subject in the development of knowledge. If education plays a fundamental role in shaping all aspects of communities in the same way, the structural changes resulting from economic, social and cultural development affect the educational systems. Analogously, the important changes related to social and economic development required legislative intervention to regulate the functioning of different areas in society. Knowledge can become a means of social control used by the government to manage populations. It can be argued that the evolution of Italy’s education systems is coherent with the idea that power and knowledge do not exist independently but instead are coterminous. This research aims to reduce such a gap by analysing the role of the state in the development of accounting education in Italy.

Keywords: education system, government, knowledge, power

Procedia PDF Downloads 139
389 The Role of Intraluminal Endoscopy in the Diagnosis and Treatment of Fluid Collections in Patients With Acute Pancreatitis

Authors: A. Askerov, Y. Teterin, P. Yartcev, S. Novikov

Abstract:

Introduction: Acute pancreatitis (AP) is a socially significant problem for public health and continues to be one of the most common causes of hospitalization of patients with pathology of the gastrointestinal tract. It is characterized by high mortality rates, which reaches 62-65% in infected pancreatic necrosis. Aims & Methods: The study group included 63 patients who underwent transluminal drainage (TLD) fluid collection (FC). All patients were performed transabdominal ultrasound, computer tomography of the abdominal cavity and retroperitoneal organs and endoscopic ultrasound (EUS) of the pancreatobiliary zone. The EUS was used as a final diagnostic method to determine the characteristics of FC. The indications for TLD were: the distance between the wall of the hollow organ and the FC was not more than 1 cm, the absence of large vessels on the puncture trajectory (more than 3 mm), and the size of the formation was more than 5 cm. When a homogeneous cavity with clear, even contours was detected, a plastic stent with rounded ends (“double pig tail”) was installed. The indication for the installation of a fully covered self-expanding stent was the detection of nonhomogeneous anechoic FC with hyperechoic inclusions and cloudy purulent contents. In patients with necrotic forms after drainage of the purulent cavity, a cystonasal drainage with a diameter of 7Fr was installed in its lumen under X-ray control to sanitize the cavity with a 0.05% aqueous solution of chlorhexidine. Endoscopic necrectomy was performed every 24-48 hours. The plastic stent was removed in 6 month, the fully covered self-expanding stent - in 1 month after the patient was discharged from the hospital. Results: Endoscopic TLD was performed in 63 patients. The FC corresponding to interstitial edematous pancreatitis was detected in 39 (62%) patients who underwent TLD with the installation of a plastic stent with rounded ends. In 24 (38%) patients with necrotic forms of FC, a fully covered self-expanding stent was placed. Communication with the ductal system of the pancreas was found in 5 (7.9%) patients. They underwent pancreaticoduodenal stenting. A complicated postoperative period was noted in 4 (6.3%) cases and was manifested by bleeding from the zone of pancreatogenic destruction. In 2 (3.1%) cases, this required angiography and endovascular embolization a. gastroduodenalis, in 1 (1.6%) case, endoscopic hemostasis was performed by filling the cavity with 4 ml of Hemoblock hemostatic solution. The combination of both methods was used in 1 (1.6%) patient. There was no evidence of recurrent bleeding in these patients. Lethal outcome occurred in 4 patients (6.3%). In 3 (4.7%) patients, the cause of death was multiple organ failure, in 1 (1.6%) - severe nosocomial pneumonia that developed on the 32nd day after drainage. Conclusions: 1. EUS is not only the most important method for diagnosing FC in AP, but also allows you to determine further tactics for their intraluminal drainage.2. Endoscopic intraluminal drainage of fluid zones in 45.8% of cases is the final minimally invasive method of surgical treatment of large-focal pancreatic necrosis. Disclosure: Nothing to disclose.

Keywords: acute pancreatitis, fluid collection, endoscopy surgery, necrectomy, transluminal drainage

Procedia PDF Downloads 109