Search results for: decision tree model
13911 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously
Authors: S. Mehrab Amiri, Nasser Talebbeydokhti
Abstract:
Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme. In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.Keywords: artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations
Procedia PDF Downloads 19113910 Modeling the Time Dependent Biodistribution of a 177Lu Labeled Somatostatin Analogues for Targeted Radiotherapy of Neuroendocrine Tumors Using Compartmental Analysis
Authors: Mahdieh Jajroudi
Abstract:
Developing a pharmacokinetic model for the neuroendocrine tumors therapy agent 177Lu-DOTATATE in nude mice bearing AR42J rat pancreatic tumor to investigate and evaluate the behavior of the complex was the main purpose of this study. The utilization of compartmental analysis permits the mathematical differencing of tissues and organs to become acquainted with the concentration of activity in each fraction of interest. Biodistribution studies are onerous and troublesome to perform in humans, but such data can be obtained facilely in rodents. A physiologically based pharmacokinetic model for scaling up activity concentration in particular organs versus time was developed. The mathematical model exerts physiological parameters including organ volumes, blood flow rates, and vascular permabilities; the compartments (organs) are connected anatomically. This allows the use of scale-up techniques to forecast new complex distribution in humans' each organ. The concentration of the radiopharmaceutical in various organs was measured at different times. The temporal behavior of biodistribution of 177Lu labeled somatostatin analogues was modeled and drawn as function of time. Conclusion: The variation of pharmaceutical concentration in all organs is characterized with summation of six to nine exponential terms and it approximates our experimental data with precision better than 1%.Keywords: biodistribution modeling, compartmental analysis, 177Lu labeled somatostatin analogues, neuroendocrine tumors
Procedia PDF Downloads 37313909 Model Predictive Control (MPC) and Proportional-Integral-Derivative (PID) Control of Quadcopters: A Comparative Analysis
Authors: Anel Hasić, Naser Prljača
Abstract:
In the domain of autonomous or piloted flights, the accurate control of quadrotor trajectories is of paramount significance for large numbers of tasks. These adaptable aerial platforms find applications that span from high-precision aerial photography and surveillance to demanding search and rescue missions. Among the fundamental challenges confronting quadrotor operation is the demand for accurate following of desired flight paths. To address this control challenge, among others, two celebrated well-established control strategies have emerged as noteworthy contenders: Model Predictive Control (MPC) and Proportional-Integral-Derivative (PID) control. In this work, we focus on the extensive examination of MPC and PID control techniques by using comprehensive simulation studies in MATLAB/Simulink. Intensive simulation results demonstrate the performance of the studied control algorithms.Keywords: MATLAB, MPC, PID, quadcopter, simulink
Procedia PDF Downloads 7513908 An As-Is Analysis and Approach for Updating Building Information Models and Laser Scans
Authors: Rene Hellmuth
Abstract:
Factory planning has the task of designing products, plants, processes, organization, areas, and the construction of a factory. The requirements for factory planning and the building of a factory have changed in recent years. Regular restructuring of the factory building is becoming more important in order to maintain the competitiveness of a factory. Restrictions in new areas, shorter life cycles of product and production technology as well as a VUCA world (Volatility, Uncertainty, Complexity & Ambiguity) lead to more frequent restructuring measures within a factory. A building information model (BIM) is the planning basis for rebuilding measures and becomes an indispensable data repository to be able to react quickly to changes. Use as a planning basis for restructuring measures in factories only succeeds if the BIM model has adequate data quality. Under this aspect and the industrial requirement, three data quality factors are particularly important for this paper regarding the BIM model: up-to-dateness, completeness, and correctness. The research question is: how can a BIM model be kept up to date with required data quality and which visualization techniques can be applied in a short period of time on the construction site during conversion measures? An as-is analysis is made of how BIM models and digital factory models (including laser scans) are currently being kept up to date. Industrial companies are interviewed, and expert interviews are conducted. Subsequently, the results are evaluated, and a procedure conceived how cost-effective and timesaving updating processes can be carried out. The availability of low-cost hardware and the simplicity of the process are of importance to enable service personnel from facility mnagement to keep digital factory models (BIM models and laser scans) up to date. The approach includes the detection of changes to the building, the recording of the changing area, and the insertion into the overall digital twin. Finally, an overview of the possibilities for visualizations suitable for construction sites is compiled. An augmented reality application is created based on an updated BIM model of a factory and installed on a tablet. Conversion scenarios with costs and time expenditure are displayed. A user interface is designed in such a way that all relevant conversion information is available at a glance for the respective conversion scenario. A total of three essential research results are achieved: As-is analysis of current update processes for BIM models and laser scans, development of a time-saving and cost-effective update process and the conception and implementation of an augmented reality solution for BIM models suitable for construction sites.Keywords: building information modeling, digital factory model, factory planning, restructuring
Procedia PDF Downloads 11813907 The Use of Water Resources Yield Model at Kleinfontein Dam
Authors: Lungile Maliba, O. I. Nkwonta, E Onyari
Abstract:
Water resources development and management are regarded as crucial for poverty reduction in many developing countries and sustainable economic growth such as South Africa. The contribution of large hydraulic infrastructure and management of it, particularly reservoirs, to development remains controversial. This controversy stems from the fact that from a historical point of view construction of reservoirs has brought fewer benefits than envisaged and has resulted in significant environmental and social costs. A further complexity in reservoir management is the variety of stakeholders involved, all with different objectives, including domestic and industrial water use, flood control, irrigation and hydropower generation. The objective was to evaluate technical adaptation options for kleinfontein Dam’s current operating rule curves. To achieve this objective, the current operating rules curves being used in the sub-basin were analysed. An objective methodology was implemented in other to get the operating rules with regards to the target storage curves. These were derived using the Water Resources Yield/Planning Model (WRY/PM), with the aim of maximising of releases to demand zones. The result showed that the system is over allocated and in addition the demands exceed the long-term yield that is available for the system. It was concluded that the current operating rules in the system do not produce the optimum operation such as target storage curves to avoid supply failures in the system.Keywords: infrastructure, Kleinfontein dam, operating rule curve, water resources yield and planning model
Procedia PDF Downloads 14213906 Application of Artificial Neural Networks to Adaptive Speed Control under ARDUINO
Authors: Javier Fernandez De Canete, Alvaro Fernandez-Quintero
Abstract:
Nowadays, adaptive control schemes are being used when model based control schemes are applied in presence of uncertainty and model mismatches. Artificial neural networks have been employed both in modelling and control of non-linear dynamic systems with unknown dynamics. In fact, these are powerful tools to solve this control problem when only input-output operational data are available. A neural network controller under SIMULINK together with the ARDUINO hardware platform has been used to perform real-time speed control of a computer case fan. Comparison of performance with a PID controller has also been presented in order to show the efficacy of neural control under different command signals tracking and also when disturbance signals are present in the speed control loops.Keywords: neural networks, ARDUINO platform, SIMULINK, adaptive speed control
Procedia PDF Downloads 37013905 Dynamic Fault Diagnosis for Semi-Batch Reactor Under Closed-Loop Control via Independent RBFNN
Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm
Abstract:
In this paper, a new robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics and using the weighted sum-squared prediction error as the residual. The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. The several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control
Procedia PDF Downloads 50313904 A Comparison of Dietary Quality and Nutritional Adequacy of Meal Plans of a Diet Prescription Generator Web App against the Australian Guidelines to Healthy Eating
Authors: Ananda Perera
Abstract:
Diet therapy has a positive impact on many diseases in General Practice. If a meal plan can be generated as easily as writing a drug prescription for dyspepsia, then the evidence and practice gap in nutrition therapy can be narrowed. Meal plans of 50 diet prescriptions were compared with the criteria for a healthy diet given by Australian authorities. The energy value of each meal plan was compared with the recommended daily energy requirements of the authorities for Diet Prescription Generator (DPG) accuracy. Meal plans generated were within the criteria laid down by the Australian authorities for a healthy diet.Keywords: dieting, obesity, diabetes, weight loss, computerized decision support systems, dieting software, CDSS, meal plans
Procedia PDF Downloads 14713903 Oil Demand Forecasting in China: A Structural Time Series Analysis
Authors: Tehreem Fatima, Enjun Xia
Abstract:
The research investigates the relationship between total oil consumption and transport oil consumption, GDP, oil price, and oil reserve in order to forecast future oil demand in China. Annual time series data is used over the period of 1980 to 2015, and for this purpose, an oil demand function is estimated by applying structural time series model (STSM). The technique also uncovers the Underline energy demand trend (UEDT) for China oil demand and GDP, oil reserve, oil price and UEDT are considering important drivers of China oil demand. The long-run elasticity of total oil consumption with respect to GDP and price are (0.5, -0.04) respectively while GDP, oil reserve, and price remain (0.17; 0.23; -0.05) respectively. Moreover, the Estimated results of long-run elasticity of transport oil consumption with respect to GDP and price are (0.5, -0.00) respectively long-run estimates remain (0.28; 37.76;-37.8) for GDP, oil reserve, and price respectively. For both model estimated underline energy demand trend (UEDT) remains nonlinear and stochastic and with an increasing trend of (UEDT) and based on estimated equations, it is predicted that China total oil demand somewhere will be 9.9 thousand barrel per day by 2025 as compare to 9.4 thousand barrel per day in 2015, while transport oil demand predicting value is 9.0 thousand barrel per day by 2020 as compare to 8.8 thousand barrel per day in 2015.Keywords: china, forecasting, oil, structural time series model (STSM), underline energy demand trend (UEDT)
Procedia PDF Downloads 28713902 Using Nonhomogeneous Poisson Process with Compound Distribution to Price Catastrophe Options
Authors: Rong-Tsorng Wang
Abstract:
In this paper, we derive a pricing formula for catastrophe equity put options (or CatEPut) with non-homogeneous loss and approximated compound distributions. We assume that the loss claims arrival process is a nonhomogeneous Poisson process (NHPP) representing the clustering occurrences of loss claims, the size of loss claims is a sequence of independent and identically distributed random variables, and the accumulated loss distribution forms a compound distribution and is approximated by a heavy-tailed distribution. A numerical example is given to calibrate parameters, and we discuss how the value of CatEPut is affected by the changes of parameters in the pricing model we provided.Keywords: catastrophe equity put options, compound distributions, nonhomogeneous Poisson process, pricing model
Procedia PDF Downloads 17113901 Study of Biomechanical Model for Smart Sensor Based Prosthetic Socket Design System
Authors: Wei Xu, Abdo S. Haidar, Jianxin Gao
Abstract:
Prosthetic socket is a component that connects the residual limb of an amputee with an artificial prosthesis. It is widely recognized as the most critical component that determines the comfort of a patient when wearing the prosthesis in his/her daily activities. Through the socket, the body weight and its associated dynamic load are distributed and transmitted to the prosthesis during walking, running or climbing. In order to achieve a good-fit socket for an individual amputee, it is essential to obtain the biomechanical properties of the residual limb. In current clinical practices, this is achieved by a touch-and-feel approach which is highly subjective. Although there have been significant advancements in prosthetic technologies such as microprocessor controlled knee and ankle joints in the last decade, the progress in designing a comfortable socket has been rather limited. This means that the current process of socket design is still very time-consuming, and highly dependent on the expertise of the prosthetist. Supported by the state-of-the-art sensor technologies and numerical simulations, a new socket design system is being developed to help prosthetists achieve rapid design of comfortable sockets for above knee amputees. This paper reports the research work related to establishing biomechanical models for socket design. Through numerical simulation using finite element method, comprehensive relationships between pressure on residual limb and socket geometry were established. This allowed local topological adjustment for the socket so as to optimize the pressure distributions across the residual limb. When the full body weight of a patient is exerted on the residual limb, high pressures and shear forces between the residual limb and the socket occur. During numerical simulations, various hyperplastic models, namely Ogden, Yeoh and Mooney-Rivlin, were used, and their effectiveness in representing the biomechanical properties of soft tissues of the residual limb was evaluated. This also involved reverse engineering, which resulted in an optimal representative model under compression test. To validate the simulation results, a range of silicone models were fabricated. They were tested by an indentation device which yielded the force-displacement relationships. Comparisons of results obtained from FEA simulations and experimental tests showed that the Ogden model did not fit well the soft tissue material indentation data, while the Yeoh model gave the best representation of the soft tissue mechanical behavior under indentation. Compared with hyperplastic model, the result showed that elastic model also had significant errors. In addition, normal and shear stress distributions on the surface of the soft tissue model were obtained. The effect of friction in compression testing and the influence of soft tissue stiffness and testing boundary conditions were also analyzed. All these have contributed to the overall goal of designing a good-fit socket for individual above knee amputees.Keywords: above knee amputee, finite element simulation, hyperplastic model, prosthetic socket
Procedia PDF Downloads 21113900 Silver-Curcumin Nanoparticle Eradicate Enterococcus faecalis in Human ex vivo Dentine Model
Authors: M. Gowri, E. K. Girija, V. Ganesh
Abstract:
Background and Significance: Among the dental infections, inflammation and infection of the root canal are common among all age groups. Currently, the management of root canal infections involves cleaning the canal with powerful irrigants followed by intracanal medicament application. Though these treatments have been in vogue for a long time, root canal failures do occur. Treatment for root canal infections is limited due to the anatomical complexity in terms of small micrometer volumes and poor penetration of drugs. Thus, infections of the root canal seem to be a challenge that demands development of new agents that can eradicate E. faecalis. Methodology: In the present study, we synthesized and screened silver-curcumin nanoparticle against E. faecalis. Morphological cell damage and antibiofilm activity of silver-curcumin nanoparticle on E. faecalis was studied using scanning electron microscopy (SEM). Biochemical evidence for membrane damage was studied using flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model. Results: Screening data showed that silver-curcumin nanoparticle was active against E. faecalis. silver-curcumin nanoparticle exerted time kill effect. Further, SEM images of E. faecalis showed that silver-curcumin nanoparticle caused membrane damage and inhibited biofilm formation. Biochemical evidence for membrane damage was confirmed by increased propidium iodide (PI) uptake in flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model, which mimics human tooth root canal infection. Confocal laser scanning microscopy studies showed eradication of E. faecalis and reduction in colony forming unit (CFU) after 24 h treatment in the infected tooth samples in this model. Further, silver-curcumin nanoparticle was found to be hemocompatible, not cytotoxic to normal mammalian NIH 3T3 cells and non-mutagenic. Conclusion: The results of this study can pave the way for developing new antibacterial agents with well deciphered mechanisms of action and can be a promising antibacterial agent or medicament against root canal infection.Keywords: ex vivo dentine model, inhibition of biofilm formation, root canal infection, silver-curcumin nanoparticle
Procedia PDF Downloads 19113899 Magneto-Transport of Single Molecular Transistor Using Anderson-Holstein-Caldeira-Leggett Model
Authors: Manasa Kalla, Narasimha Raju Chebrolu, Ashok Chatterjee
Abstract:
We have studied the quantum transport properties of a single molecular transistor in the presence of an external magnetic field using the Keldysh Green function technique. We also used the Anderson-Holstein-Caldeira-Leggett Model to describe the single molecular transistor that consists of a molecular quantum dot (QD) coupled to two metallic leads and placed on a substrate that acts as a heat bath. The phonons are eliminated by the Lang-Firsov transformation and the effective Hamiltonian is used to study the effect of an external magnetic field on the spectral density function, Tunneling Current, Differential Conductance and Spin polarization. A peak in the spectral function corresponds to a possible excitation. In the presence of a magnetic field, the spin-up and spin-down states are degenerate and this degeneracy is lifted by the magnetic field leading to the splitting of the central peak of the spectral function. The tunneling current decreases with increasing magnetic field. We have observed that even the differential conductance peak in the zero magnetic field curve is split in the presence electron-phonon interaction. As the magnetic field is increased, each peak splits into two peaks. And each peak indicates the existence of an energy level. Thus the number of energy levels for transport in the bias window increases with the magnetic field. In the presence of the electron-phonon interaction, Differential Conductance in general gets reduced and decreases faster with the magnetic field. As magnetic field strength increases, the spin polarization of the current is increasing. Our results show that a strongly interacting QD coupled to metallic leads in the presence of external magnetic field parallel to the plane of QD acts as a spin filter at zero temperature.Keywords: Anderson-Holstein model, Caldeira-Leggett model, spin-polarization, quantum dots
Procedia PDF Downloads 18813898 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment
Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali
Abstract:
This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis
Procedia PDF Downloads 43213897 Computational Fluid Dynamics Analysis of an RC Airplane Wing Using a NACA 2412 Profile at Different Angle of Attacks
Authors: Huseyin Gokberk, Shian Gao
Abstract:
CFD analysis of the relationship between the coefficients of lift and drag with respect to the angle of attack on a NACA 2412 wing section of an RC plane is conducted. Both the 2D and 3D models are investigated with the turbulence model. The 2D analysis has a free stream velocity of 10m/s at different AoA of 0°, 2°, 5°, 10°, 12°, and 15°. The induced drag and drag coefficient increased throughout the changes in angles even after the critical angle had been exceeded, whereas the lift force and coefficient of lift increased but had a limit at the critical stall angle, which results in values to reduce sharply. Turbulence flow characteristics are analysed around the aerofoil with the additions caused due to a finite 3D model. 3D results highlight how wing tip vortexes develop and alter the flow around the wing with the effects of the tapered configuration.Keywords: CFD, turbulence modelling, aerofoil, angle of attack
Procedia PDF Downloads 22913896 Free Fatty Acid Assessment of Crude Palm Oil Using a Non-Destructive Approach
Authors: Siti Nurhidayah Naqiah Abdull Rani, Herlina Abdul Rahim, Rashidah Ghazali, Noramli Abdul Razak
Abstract:
Near infrared (NIR) spectroscopy has always been of great interest in the food and agriculture industries. The development of prediction models has facilitated the estimation process in recent years. In this study, 110 crude palm oil (CPO) samples were used to build a free fatty acid (FFA) prediction model. 60% of the collected data were used for training purposes and the remaining 40% used for testing. The visible peaks on the NIR spectrum were at 1725 nm and 1760 nm, indicating the existence of the first overtone of C-H bands. Principal component regression (PCR) was applied to the data in order to build this mathematical prediction model. The optimal number of principal components was 10. The results showed R2=0.7147 for the training set and R2=0.6404 for the testing set.Keywords: palm oil, fatty acid, NIRS, regression
Procedia PDF Downloads 51013895 Theoretical Approach of Maritime Transport Sector’s Specialist’s Resilience Enhancement
Authors: Elena Valionienė, Genutė Kalvaitienė
Abstract:
The issue of resilience of an individual, an organisation, or an entire ecosystem of organisations has recently become an integral part of the education system, where the uncertainties that lead to societal development in the short term create economic, social, and psycho-emotional instability. The Maritime Transport Sector (MTS) is no exception, and the aim of the article is to model the possibilities of enhancing the professional, sociocultural, and psycho-emotional resilience of MTS specialists to proactively respond to crises caused by uncertainties. The research consists of theoretical model creation that helps to identify general maritime business resilience factors and critical success factors. This can develop high resilience and achieve business excellence in a highly volatile, uncertain, complex, and ambiguous (VUCA) environment.Keywords: maritime transport sector, resilience, uncertainties, VUCA
Procedia PDF Downloads 8713894 Nonlinear Dynamic Response of Helical Gear with Torque-Limiter
Authors: Ahmed Guerine, Ali El Hafidi, Bruno Martin, Philippe Leclaire
Abstract:
This paper investigates the nonlinear dynamic response of a mechanical torque limiter which is used to protect drive parts from overload (helical transmission gears). The system is driven by four excitations: two external excitations (aerodynamics torque and force) and two internal excitations (two mesh stiffness fluctuations). In this work, we develop a dynamic model with lumped components and 28 degrees of freedom. We use the Runge Kutta step-by-step time integration numerical algorithm to solve the equations of motion obtained by Lagrange formalism. The numerical results have allowed us to identify the sources of vibration in the wind turbine. Also, they are useful to help the designer to make the right design and correctly choose the times for maintenance.Keywords: two-stage helical gear, lumped model, dynamic response, torque-limiter
Procedia PDF Downloads 35913893 Analytical Solutions for Corotational Maxwell Model Fluid Arising in Wire Coating inside a Canonical Die
Authors: Muhammad Sohail Khan, Rehan Ali Shah
Abstract:
The present paper applies the optimal homotopy perturbation method (OHPM) and the optimal homotopy asymptotic method (OHAM) introduced recently to obtain analytic approximations of the non-linear equations modeling the flow of polymer in case of wire coating of a corotational Maxwell fluid. Expression for the velocity field is obtained in non-dimensional form. Comparison of the results obtained by the two methods at different values of non-dimensional parameter l10, reveal that the OHPM is more effective and easy to use. The OHPM solution can be improved even working in the same order of approximation depends on the choices of the auxiliary functions.Keywords: corotational Maxwell model, optimal homotopy asymptotic method, optimal homotopy perturbation method, wire coating die
Procedia PDF Downloads 33913892 Timing and Probability of Presurgical Teledermatology: Survival Analysis
Authors: Felipa de Mello-Sampayo
Abstract:
The aim of this study is to undertake, from patient’s perspective, the timing and probability of using teledermatology, comparing it with a conventional referral system. The dynamic stochastic model’s main value-added consists of the concrete application to patients waiting for dermatology surgical intervention. Patients with low health level uncertainty must use teledermatology treatment as soon as possible, which is precisely when the teledermatology is least valuable. The results of the model were then tested empirically with the teledermatology network covering the area served by the Hospital Garcia da Horta, Portugal, links the primary care centers of 24 health districts with the hospital’s dermatology department via the corporate intranet of the Portuguese healthcare system. Health level volatility can be understood as the hazard of developing skin cancer and the trend of health level as the bias of developing skin lesions. The results of the survival analysis suggest that the theoretical model can explain the use of teledermatology. It depends negatively on the volatility of patients' health, and positively on the trend of health, i.e., the lower the risk of developing skin cancer and the younger the patients, the more presurgical teledermatology one expects to occur. Presurgical teledermatology also depends positively on out-of-pocket expenses and negatively on the opportunity costs of teledermatology, i.e., the lower the benefit missed by using teledermatology, the more presurgical teledermatology one expects to occur.Keywords: teledermatology, wait time, uncertainty, opportunity cost, survival analysis
Procedia PDF Downloads 13213891 Phylogenetic Relationships of Aproaerema Simplexella (Walker) and the Groundnut Leaf Miner Aproaerema Modicella (Deventer) (Lepidoptera: Gelechiidae) Collected from Australia, India, Mozambique, and South Africa
Authors: Makhosi Buthelezi
Abstract:
Mitochondrial DNA cytochrome c oxidase I (COI) gene analyses linked the South African groundnut leaf miner (GLM) to the Australian soya bean moth Aproaerema simplexella (Walker) and Indian Aproaerema modicella (Deventer). Thus, the genetic relatedness of GLM, A. simplexela, and A. modicella was examined by performing mitochondrial and nuclear (COI, cytochrome oxidase subunit II (COII), mitochondrial cytochrome b (CYTB), nuclear ribosomal 28S (28S) and intergenic spacer elongation factor-1 alpha ( EF-1 ALPHA) on 44 specimens collected from South Africa, four from Mozambique, and three each from single locations in India and Australia. Phylogenetic analyses were conducted using the Maximum Parsimony (MP) and Neighbour-Joining (NJ) methods. All of the datasets of the five DNA gene regions that were sequenced were also analyzed using the Basic Local Alignment Search Tool (BLAST) to find the closest matches for inclusion in the phylogenetic trees as outgroups and for purposes of information. In the phylogenetic trees for COI, COII, cytb and EF-1 ALPHA, a similar pattern was observed in the way that the sequences assembled into different groups; i.e., some sequences of A. simplexella from Australia were grouped separately from the others, but some Australian sequences grouped with those of the GLM from South Africa, India, and Mozambique. In the phylogenetic tree for 28S, all sequences from South Africa, Australia, India, and Mozambique grouped together and formed one group. For COI, genetic pairwise distance ranged from 0.97 to 3.60 %, for COII it ranged from 0.19% to 2.32%, for cytb it ranged from 0.25 to 9.77% and for EF-1 ALPHA it ranged 0.48 to 6.99%. Results of this study indicate that these populations are genetically related and presumably constitute a single species. Thus, further molecular and morphological studies need to be undertaken in order to resolve this apparent conundrum on the taxonomy of these populations.Keywords: aproaerema modicella, aproaerema simplexella, mitochondrial DNA, nuclear DNA
Procedia PDF Downloads 20313890 Cognitive Fusion and Obstacles to Valued Living: Beyond Pain-Specific Events in Chronic Pain
Authors: Sergio A. Carvalho, Jose Pinto-Gouveia, David Gillanders, Paula Castilho
Abstract:
The role of psychological processes has long been recognized as crucial factors in depressive symptoms in chronic pain (CP). Although some studies have explored the negative impact of being entangled with internal experiences (e.g., thoughts, emotions, physical sensations) – cognitive fusion, it is not extensively explored 1) whether these are pain-related or rather general difficult experiences, and 2) how they relate to experiencing obstacles in committing to valued actions. The current study followed a cross-sectional design in a sample of 231 participants with CP, in which a mediational model was tested through path analyses in AMOS software. The model presented a very good model fit (Χ²/DF = 1.161; CFI = .999; TLI = .996; RMSEA = .026, PCLOSE = .550.), and results showed that pain intensity was not directly related to depressive symptoms (β = .055; p = .239) but was mediated by cognitive fusion with both general and pain-related internal experiences (β = .181, 95%CI [.097; .271]; p = .015). Additionally, results showed that only general cognitive fusion (but not pain-specific fusion) was associated with experiencing obstacles to living a meaningful life, which mediated its impact on depressive symptoms (β = .197, 95%CI [.102; .307]; p = .001). Overall, this study adds on current literature by suggesting that psychological interventions to pain management should not be focused only on management of pain-related experiences, but also on developing more effective ways of relating to overall internal experiences.Keywords: cognitive fusion, chronic pain, depressive symptoms, valued living
Procedia PDF Downloads 22913889 Media Literacy Development: A Methodology to Systematically Integrate Post-Contemporary Challenges in Early Childhood Education
Authors: Ana Mouta, Ana Paulino
Abstract:
The following text presents the ik.model, a theoretical framework that guided the pedagogical implementation of meaningful educational technology-based projects in formal education worldwide. In this paper, we will focus on how this framework has enabled the development of media literacy projects for early childhood education during the last three years. The methodology that guided educators through the challenge of systematically merging analogic and digital means in dialogic high-quality opportunities of world exploration is explained throughout these lines. The effects of this methodology on early age media literacy development are considered. Also considered is the relevance of this skill in terms of post-contemporary challenges posed to learning.Keywords: early learning, ik.model, media literacy, pedagogy
Procedia PDF Downloads 32513888 DNA Barcoding of Selected Fin Fishes from New Calabar River in Rivers State, South-South Nigeria Using Cytochrome C Oxidase Subunit 1 Gene
Authors: Anukwu J. U., Nwamba H. O., Njom V. S., Achikanu C. E., Edoga C. O. Chiaha I. E.
Abstract:
The major environmental crisis is the loss of biodiversity and the decline is predominant in the fish population. Although taxonomic history began 250 years ago, there are still undiscovered members of species and new species are waiting to be uncovered. The failure of the traditional taxonomic method to address this issue has resulted to the adoption of a molecular approach-DNA barcoding. It was proposed that DNA barcoding using the mitochondrion cytochrome oxidase subunit I (COI) gene has the capability to serve as a barcode for fish. The aim of this study was to use DNA barcoding in the identification of fish species in the New Calabar River, Rivers State. BLAST result showed the correlation between the sequence queried and the biological sequences with the NCBI database. The names of the samples, percentage ID, predicted organisms, and GenBank Accession numbers were clearly identified. A total of 18 sequences (all > 600bp) belonging to 8 species, 7 genera, 7 families, and 5 orders were validated and submitted to the NCBI database. Each nucleotide peak was represented by a single colour with various percentage occurrences. Two (22%) out of the 9 original samples analyzed corresponded with the predicted organisms from the BLAST result.) There were a total of 712 positions in the final dataset. Evolutionary analyses were conducted in MEGA11. Pairwise sequence alignment showed different consensus positions and a total of 30 mutations. There was one insertion from Polynemus dubius and 29 substitutions (transition-15 and transversion-14) mutations. No deletion and nonsense codons were detected in all the amplified sequences. This work will facilitate more research in other keys areas such as the identification of mislabeled fish products, illegal trading of endangered species, and effective tracking of fish biodiversity.Keywords: DNA barcoding, Imo river, phylogenetic tree, mutation.
Procedia PDF Downloads 1513887 An Assessment of the Factors Affecting Green Building Technology (GBT) Adoption
Authors: Nuruddeen Usman, Usman Mohammed Gidado
Abstract:
A construction and post construction activity in buildings contributes to environmental degradation, because of the generation of solid waste during construction to the production of carbon dioxide by the occupants during utilization. These problems were caused as a result of lack of adopting green building technology during and after construction. However, this study aims at conceptualizing the factors that are affecting the adoption of green building technology with a view to suggest better ways for its successful adoption in the construction industry through developing a green building technology model. Thus, the research findings show that: Economic, social, cultural, and technological progresses are the factors affecting Green Building Technology Adoption. Therefore, identifying these factors and developing the model might help in the successful adoption of green building technology.Keywords: green building technology, construction, post construction, degradation
Procedia PDF Downloads 66613886 Consortium Blockchain-based Model for Data Management Applications in the Healthcare Sector
Authors: Teo Hao Jing, Shane Ho Ken Wae, Lee Jin Yu, Burra Venkata Durga Kumar
Abstract:
Current distributed healthcare systems face the challenge of interoperability of health data. Storing electronic health records (EHR) in local databases causes them to be fragmented. This problem is aggravated as patients visit multiple healthcare providers in their lifetime. Existing solutions are unable to solve this issue and have caused burdens to healthcare specialists and patients alike. Blockchain technology was found to be able to increase the interoperability of health data by implementing digital access rules, enabling uniformed patient identity, and providing data aggregation. Consortium blockchain was found to have high read throughputs, is more trustworthy, more secure against external disruptions and accommodates transactions without fees. Therefore, this paper proposes a blockchain-based model for data management applications. In this model, a consortium blockchain is implemented by using a delegated proof of stake (DPoS) as its consensus mechanism. This blockchain allows collaboration between users from different organizations such as hospitals and medical bureaus. Patients serve as the owner of their information, where users from other parties require authorization from the patient to view their information. Hospitals upload the hash value of patients’ generated data to the blockchain, whereas the encrypted information is stored in a distributed cloud storage.Keywords: blockchain technology, data management applications, healthcare, interoperability, delegated proof of stake
Procedia PDF Downloads 14113885 E-Learning Approaches Based on Artificial Intelligence Techniques: A Survey
Authors: Nabila Daly, Hamdi Ellouzi, Hela Ltifi
Abstract:
In last year’s, several recent researches’ that focus on e-learning approaches having as goal to improve pedagogy and student’s academy level assessment. E-learning-related works have become an important research file nowadays due to several problems that make it impossible for students join classrooms, especially in last year’s. Among those problems, we note the current epidemic problems in the word case of Covid-19. For those reasons, several e-learning-related works based on Artificial Intelligence techniques are proposed to improve distant education targets. In the current paper, we will present a short survey of the most relevant e-learning based on Artificial Intelligence techniques giving birth to newly developed e-learning tools that rely on new technologies.Keywords: artificial intelligence techniques, decision, e-learning, support system, survey
Procedia PDF Downloads 22813884 A Geographic Information System Mapping Method for Creating Improved Satellite Solar Radiation Dataset Over Qatar
Authors: Sachin Jain, Daniel Perez-Astudillo, Dunia A. Bachour, Antonio P. Sanfilippo
Abstract:
The future of solar energy in Qatar is evolving steadily. Hence, high-quality spatial solar radiation data is of the uttermost requirement for any planning and commissioning of solar technology. Generally, two types of solar radiation data are available: satellite data and ground observations. Satellite solar radiation data is developed by the physical and statistical model. Ground data is collected by solar radiation measurement stations. The ground data is of high quality. However, they are limited to distributed point locations with the high cost of installation and maintenance for the ground stations. On the other hand, satellite solar radiation data is continuous and available throughout geographical locations, but they are relatively less accurate than ground data. To utilize the advantage of both data, a product has been developed here which provides spatial continuity and higher accuracy than any of the data alone. The popular satellite databases: National Solar radiation Data Base, NSRDB (PSM V3 model, spatial resolution: 4 km) is chosen here for merging with ground-measured solar radiation measurement in Qatar. The spatial distribution of ground solar radiation measurement stations is comprehensive in Qatar, with a network of 13 ground stations. The monthly average of the daily total Global Horizontal Irradiation (GHI) component from ground and satellite data is used for error analysis. The normalized root means square error (NRMSE) values of 3.31%, 6.53%, and 6.63% for October, November, and December 2019 were observed respectively when comparing in-situ and NSRDB data. The method is based on the Empirical Bayesian Kriging Regression Prediction model available in ArcGIS, ESRI. The workflow of the algorithm is based on the combination of regression and kriging methods. A regression model (OLS, ordinary least square) is fitted between the ground and NSBRD data points. A semi-variogram is fitted into the experimental semi-variogram obtained from the residuals. The kriging residuals obtained after fitting the semi-variogram model were added to NSRBD data predicted values obtained from the regression model to obtain the final predicted values. The NRMSE values obtained after merging are respectively 1.84%, 1.28%, and 1.81% for October, November, and December 2019. One more explanatory variable, that is the ground elevation, has been incorporated in the regression and kriging methods to reduce the error and to provide higher spatial resolution (30 m). The final GHI maps have been created after merging, and NRMSE values of 1.24%, 1.28%, and 1.28% have been observed for October, November, and December 2019, respectively. The proposed merging method has proven as a highly accurate method. An additional method is also proposed here to generate calibrated maps by using regression and kriging model and further to use the calibrated model to generate solar radiation maps from the explanatory variable only when not enough historical ground data is available for long-term analysis. The NRMSE values obtained after the comparison of the calibrated maps with ground data are 5.60% and 5.31% for November and December 2019 month respectively.Keywords: global horizontal irradiation, GIS, empirical bayesian kriging regression prediction, NSRDB
Procedia PDF Downloads 9113883 The Effect of Iran's Internet Filtering on Active Digital Marketing Businesses
Authors: Maryam Sheikhzadeh Noshabadi
Abstract:
There is no doubt that the Internet has connected the entire world. As a result of this flexible environment, virtual businesses have grown in importance and become one of the most important types of businesses. Although many governments use the internet and have free access to it, some are not happy with the free space and wide accessibility. As a result of recent events and civil protests in Iran, the country's government leaders have decided to once again cut off and filter its free and global Internet. Several issues were impacted by this decision; this includes the lives of businesses that were formed in virtual spaces platform. In this study, we explored the definitive impact of the Internet in Iran in September 1401, using semi-structured interviews with 20 digital marketing activists. This group was discussed in detail in terms of their financial and psychological damages. As a result of these conditions, this group has experienced a crisis of livelihood.Keywords: internet, Iran, filtering, digital marketing.
Procedia PDF Downloads 8013882 Automatic Tuning for a Systemic Model of Banking Originated Losses (SYMBOL) Tool on Multicore
Authors: Ronal Muresano, Andrea Pagano
Abstract:
Nowadays, the mathematical/statistical applications are developed with more complexity and accuracy. However, these precisions and complexities have brought as result that applications need more computational power in order to be executed faster. In this sense, the multicore environments are playing an important role to improve and to optimize the execution time of these applications. These environments allow us the inclusion of more parallelism inside the node. However, to take advantage of this parallelism is not an easy task, because we have to deal with some problems such as: cores communications, data locality, memory sizes (cache and RAM), synchronizations, data dependencies on the model, etc. These issues are becoming more important when we wish to improve the application’s performance and scalability. Hence, this paper describes an optimization method developed for Systemic Model of Banking Originated Losses (SYMBOL) tool developed by the European Commission, which is based on analyzing the application's weakness in order to exploit the advantages of the multicore. All these improvements are done in an automatic and transparent manner with the aim of improving the performance metrics of our tool. Finally, experimental evaluations show the effectiveness of our new optimized version, in which we have achieved a considerable improvement on the execution time. The time has been reduced around 96% for the best case tested, between the original serial version and the automatic parallel version.Keywords: algorithm optimization, bank failures, OpenMP, parallel techniques, statistical tool
Procedia PDF Downloads 372