Search results for: distance learning education
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13565

Search results for: distance learning education

7235 Homosexuality and Inclusion: Experiences of Learners and Teachers within South African School's Contex

Authors: Tsediso Makoelle

Abstract:

South Africa like in other parts of the world has acknowledged the prevalence of the phenomenon of homosexuality in the society. Due to the number of homosexuality cases in the South African society, questions have been asked about the impact of homosexuality in schools and how teachers and learners deal with homosexuality within the context of an emerging inclusive education system. This qualitative study analysis the experiences of teachers and learners in selected secondary schools in relation to prevalence of transgender in schools. Interviews were conducted with principals, teachers and focus group of learners in schools were cases homosexuality have been reported. Data was analysed using an inductive analysis framework. Among the findings was that homosexuality is still viewed as a taboo in Black-African dominated school communities and that the need to create all-embracing and inclusive environment was evident. The study suggests a needs to open communications in communities about homosexuality in order to develop an all-inclusive environment for all learners regardless of their sexual orientation.

Keywords: homosexuality, inclusive education, sexual orientation, transgender

Procedia PDF Downloads 246
7234 Digital Platform of Crops for Smart Agriculture

Authors: Pascal François Faye, Baye Mor Sall, Bineta Dembele, Jeanne Ana Awa Faye

Abstract:

In agriculture, estimating crop yields is key to improving productivity and decision-making processes such as financial market forecasting and addressing food security issues. The main objective of this paper is to have tools to predict and improve the accuracy of crop yield forecasts using machine learning (ML) algorithms such as CART , KNN and SVM . We developed a mobile app and a web app that uses these algorithms for practical use by farmers. The tests show that our system (collection and deployment architecture, web application and mobile application) is operational and validates empirical knowledge on agro-climatic parameters in addition to proactive decision-making support. The experimental results obtained on the agricultural data, the performance of the ML algorithms are compared using cross-validation in order to identify the most effective ones following the agricultural data. The proposed applications demonstrate that the proposed approach is effective in predicting crop yields and provides timely and accurate responses to farmers for decision support.

Keywords: prediction, machine learning, artificial intelligence, digital agriculture

Procedia PDF Downloads 80
7233 Using Action Based Research to Examine the Effects of Co-Teaching on Middle School and High School Student Achievement in Math and Language Arts

Authors: Kathleen L. Seifert

Abstract:

Students with special needs are expected to achieve the same academic standards as their general education peers, yet many students with special needs are pulled-out of general content instruction. Because of this, many students with special needs are denied content knowledge from a content expert and instead receive content instruction in a more restrictive setting. Collaborative teaching, where a general education and special education teacher work alongside each other in the same classroom, has become increasingly popular as a means to meet the diverse needs of students in America’s public schools. The idea behind co-teaching is noble; to ensure students with special needs receive content area instruction from a content expert while also receiving the necessary supports to be successful. However, in spite of this noble effort, the effects of co-teaching are not always positive. The reasons why have produced several hypotheses, one of which has to do with lack of proper training and implementation of effective evidence-based co-teaching practices. In order to examine the effects of co-teacher training, eleven teaching pairs from a small mid-western school district in the United States participated in a study. The purpose of the study was to examine the effects of co-teacher training on middle and high school student achievement in Math and Language Arts. A local university instructor provided teachers with training in co-teaching via a three-day workshop. In addition, co-teaching pairs were given the opportunity for direct observation and feedback using the Co-teaching Core Competencies Observation Checklist throughout the academic year. Data are in the process of being collected on both the students enrolled in the co-taught classes as well as on the teachers themselves. Student data compared achievement on standardized assessments and classroom performance across three domains: 1. General education students compared to students with special needs in co-taught classrooms, 2. Students with special needs in classrooms with and without co-teaching, 3. Students in classrooms where teachers were given observation and feedback compared to teachers who refused the observation and feedback. Teacher data compared the perceptions of the co-teaching initiative between teacher pairs who received direct observation and feedback from those who did not. The findings from the study will be shared with the school district and used for program improvement.

Keywords: collabortive teaching, collaboration, co-teaching, professional development

Procedia PDF Downloads 119
7232 Evaluation of the CRISP-DM Business Understanding Step: An Approach for Assessing the Predictive Power of Regression versus Classification for the Quality Prediction of Hydraulic Test Results

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Digitalisation in production technology is a driver for the application of machine learning methods. Through the application of predictive quality, the great potential for saving necessary quality control can be exploited through the data-based prediction of product quality and states. However, the serial use of machine learning applications is often prevented by various problems. Fluctuations occur in real production data sets, which are reflected in trends and systematic shifts over time. To counteract these problems, data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets to extract stable features. Successful process control of the target variables aims to centre the measured values around a mean and minimise variance. Competitive leaders claim to have mastered their processes. As a result, much of the real data has a relatively low variance. For the training of prediction models, the highest possible generalisability is required, which is at least made more difficult by this data availability. The implementation of a machine learning application can be interpreted as a production process. The CRoss Industry Standard Process for Data Mining (CRISP-DM) is a process model with six phases that describes the life cycle of data science. As in any process, the costs to eliminate errors increase significantly with each advancing process phase. For the quality prediction of hydraulic test steps of directional control valves, the question arises in the initial phase whether a regression or a classification is more suitable. In the context of this work, the initial phase of the CRISP-DM, the business understanding, is critically compared for the use case at Bosch Rexroth with regard to regression and classification. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. Suitable methods for leakage volume flow regression and classification for inspection decision are applied. Impressively, classification is clearly superior to regression and achieves promising accuracies.

Keywords: classification, CRISP-DM, machine learning, predictive quality, regression

Procedia PDF Downloads 144
7231 An Empirical Study of the Effect of Robot Programming Education on the Computational Thinking of Young Children: The Role of Flowcharts

Authors: Wei Sun, Yan Dong

Abstract:

There is an increasing interest in introducing computational thinking at an early age. Computational thinking, like mathematical thinking, engineering thinking, and scientific thinking, is a kind of analytical thinking. Learning computational thinking skills is not only to improve technological literacy, but also allows learners to equip with practicable skills such as problem-solving skills. As people realize the importance of computational thinking, the field of educational technology faces a problem: how to choose appropriate tools and activities to help students develop computational thinking skills. Robots are gradually becoming a popular teaching tool, as robots provide a tangible way for young children to access to technology, and controlling a robot through programming offers them opportunities to engage in developing computational thinking. This study explores whether the introduction of flowcharts into the robotics programming courses can help children convert natural language into a programming language more easily, and then to better cultivate their computational thinking skills. An experimental study was adopted with a sample of children ages six to seven (N = 16) participated, and a one-meter-tall humanoid robot was used as the teaching tool. Results show that children can master basic programming concepts through robotic courses. Children's computational thinking has been significantly improved. Besides, results suggest that flowcharts do have an impact on young children’s computational thinking skills development, but it only has a significant effect on the "sequencing" and "correspondence" skills. Overall, the study demonstrates that the humanoid robot and flowcharts have qualities that foster young children to learn programming and develop computational thinking skills.

Keywords: robotics, computational thinking, programming, young children, flow chart

Procedia PDF Downloads 147
7230 Private Coded Computation of Matrix Multiplication

Authors: Malihe Aliasgari, Yousef Nejatbakhsh

Abstract:

The era of Big Data and the immensity of real-life datasets compels computation tasks to be performed in a distributed fashion, where the data is dispersed among many servers that operate in parallel. However, massive parallelization leads to computational bottlenecks due to faulty servers and stragglers. Stragglers refer to a few slow or delay-prone processors that can bottleneck the entire computation because one has to wait for all the parallel nodes to finish. The problem of straggling processors, has been well studied in the context of distributed computing. Recently, it has been pointed out that, for the important case of linear functions, it is possible to improve over repetition strategies in terms of the tradeoff between performance and latency by carrying out linear precoding of the data prior to processing. The key idea is that, by employing suitable linear codes operating over fractions of the original data, a function may be completed as soon as enough number of processors, depending on the minimum distance of the code, have completed their operations. The problem of matrix-matrix multiplication in the presence of practically big sized of data sets faced with computational and memory related difficulties, which makes such operations are carried out using distributed computing platforms. In this work, we study the problem of distributed matrix-matrix multiplication W = XY under storage constraints, i.e., when each server is allowed to store a fixed fraction of each of the matrices X and Y, which is a fundamental building of many science and engineering fields such as machine learning, image and signal processing, wireless communication, optimization. Non-secure and secure matrix multiplication are studied. We want to study the setup, in which the identity of the matrix of interest should be kept private from the workers and then obtain the recovery threshold of the colluding model, that is, the number of workers that need to complete their task before the master server can recover the product W. The problem of secure and private distributed matrix multiplication W = XY which the matrix X is confidential, while matrix Y is selected in a private manner from a library of public matrices. We present the best currently known trade-off between communication load and recovery threshold. On the other words, we design an achievable PSGPD scheme for any arbitrary privacy level by trivially concatenating a robust PIR scheme for arbitrary colluding workers and private databases and the proposed SGPD code that provides a smaller computational complexity at the workers.

Keywords: coded distributed computation, private information retrieval, secret sharing, stragglers

Procedia PDF Downloads 122
7229 The Negative Effects of Controlled Motivation on Mathematics Achievement

Authors: John E. Boberg, Steven J. Bourgeois

Abstract:

The decline in student engagement and motivation through the middle years is well documented and clearly associated with a decline in mathematics achievement that persists through high school. To combat this trend and, very often, to meet high-stakes accountability standards, a growing number of parents, teachers, and schools have implemented various methods to incentivize learning. However, according to Self-Determination Theory, forms of incentivized learning such as public praise, tangible rewards, or threats of punishment tend to undermine intrinsic motivation and learning. By focusing on external forms of motivation that thwart autonomy in children, adults also potentially threaten relatedness measures such as trust and emotional engagement. Furthermore, these controlling motivational techniques tend to promote shallow forms of cognitive engagement at the expense of more effective deep processing strategies. Therefore, any short-term gains in apparent engagement or test scores are overshadowed by long-term diminished motivation, resulting in inauthentic approaches to learning and lower achievement. The current study focuses on the relationships between student trust, engagement, and motivation during these crucial years as students transition from elementary to middle school. In order to test the effects of controlled motivational techniques on achievement in mathematics, this quantitative study was conducted on a convenience sample of 22 elementary and middle schools from a single public charter school district in the south-central United States. The study employed multi-source data from students (N = 1,054), parents (N = 7,166), and teachers (N = 356), along with student achievement data and contextual campus variables. Cross-sectional questionnaires were used to measure the students’ self-regulated learning, emotional and cognitive engagement, and trust in teachers. Parents responded to a single item on incentivizing the academic performance of their child, and teachers responded to a series of questions about their acceptance of various incentive strategies. Structural equation modeling (SEM) was used to evaluate model fit and analyze the direct and indirect effects of the predictor variables on achievement. Although a student’s trust in teacher positively predicted both emotional and cognitive engagement, none of these three predictors accounted for any variance in achievement in mathematics. The parents’ use of incentives, on the other hand, predicted a student’s perception of his or her controlled motivation, and these two variables had significant negative effects on achievement. While controlled motivation had the greatest effects on achievement, parental incentives demonstrated both direct and indirect effects on achievement through the students’ self-reported controlled motivation. Comparing upper elementary student data with middle-school student data revealed that controlling forms of motivation may be taking their toll on student trust and engagement over time. While parental incentives positively predicted both cognitive and emotional engagement in the younger sub-group, such forms of controlling motivation negatively predicted both trust in teachers and emotional engagement in the middle-school sub-group. These findings support the claims, posited by Self-Determination Theory, about the dangers of incentivizing learning. Short-term gains belie the underlying damage to motivational processes that lead to decreased intrinsic motivation and achievement. Such practices also appear to thwart basic human needs such as relatedness.

Keywords: controlled motivation, student engagement, incentivized learning, mathematics achievement, self-determination theory, student trust

Procedia PDF Downloads 220
7228 Task Based Language Learning: A Paradigm Shift in ESL/EFL Teaching and Learning: A Case Study Based Approach

Authors: Zehra Sultan

Abstract:

The study is based on the task-based language teaching approach which is found to be very effective in the EFL/ESL classroom. This approach engages learners to acquire the usage of authentic language skills by interacting with the real world through sequence of pedagogical tasks. The use of technology enhances the effectiveness of this approach. This study throws light on the historical background of TBLT and its efficacy in the EFL/ESL classroom. In addition, this study precisely talks about the implementation of this approach in the General Foundation Programme of Muscat College, Oman. It furnishes the list of the pedagogical tasks embedded in the language curriculum of General Foundation Programme (GFP) which are skillfully allied to the College Graduate Attributes. Moreover, the study also discusses the challenges pertaining to this approach from the point of view of teachers, students, and its classroom application. Additionally, the operational success of this methodology is gauged through formative assessments of the GFP, which is apparent in the students’ progress.

Keywords: task-based language teaching, authentic language, communicative approach, real world activities, ESL/EFL activities

Procedia PDF Downloads 124
7227 An Improved Adaptive Dot-Shape Beamforming Algorithm Research on Frequency Diverse Array

Authors: Yanping Liao, Zenan Wu, Ruigang Zhao

Abstract:

Frequency diverse array (FDA) beamforming is a technology developed in recent years, and its antenna pattern has a unique angle-distance-dependent characteristic. However, the beam is always required to have strong concentration, high resolution and low sidelobe level to form the point-to-point interference in the concentrated set. In order to eliminate the angle-distance coupling of the traditional FDA and to make the beam energy more concentrated, this paper adopts a multi-carrier FDA structure based on proposed power exponential frequency offset to improve the array structure and frequency offset of the traditional FDA. The simulation results show that the beam pattern of the array can form a dot-shape beam with more concentrated energy, and its resolution and sidelobe level performance are improved. However, the covariance matrix of the signal in the traditional adaptive beamforming algorithm is estimated by the finite-time snapshot data. When the number of snapshots is limited, the algorithm has an underestimation problem, which leads to the estimation error of the covariance matrix to cause beam distortion, so that the output pattern cannot form a dot-shape beam. And it also has main lobe deviation and high sidelobe level problems in the case of limited snapshot. Aiming at these problems, an adaptive beamforming technique based on exponential correction for multi-carrier FDA is proposed to improve beamforming robustness. The steps are as follows: first, the beamforming of the multi-carrier FDA is formed under linear constrained minimum variance (LCMV) criteria. Then the eigenvalue decomposition of the covariance matrix is ​​performed to obtain the diagonal matrix composed of the interference subspace, the noise subspace and the corresponding eigenvalues. Finally, the correction index is introduced to exponentially correct the small eigenvalues ​​of the noise subspace, improve the divergence of small eigenvalues ​​in the noise subspace, and improve the performance of beamforming. The theoretical analysis and simulation results show that the proposed algorithm can make the multi-carrier FDA form a dot-shape beam at limited snapshots, reduce the sidelobe level, improve the robustness of beamforming, and have better performance.

Keywords: adaptive beamforming, correction index, limited snapshot, multi-carrier frequency diverse array, robust

Procedia PDF Downloads 130
7226 Exchanging Messages in Ancient Greek Tragedy: The Use of δέλτος in the Euripidean and Sophoclean Stage

Authors: Maria-Agori Gravvani

Abstract:

The part of communication holds a significant place in human life. From the early beginning of human history, humans tried to communicate orally with other people in order to survive and to communicate their needs. The level of education that the majority of the Athenean citizens had the opportunity to acquire in the Classic period was very low. Only the wealthy ones had the opportunity of the upper form of education that led them to a career in politics, while the other ones struggled for their daily survival. In the corpus of Euripides' and Sophocles' tragedies, the type of communication is written, too. Not only in the Iphigenia's tragedies of Euripides but also in the Sophocles' Trachiniae, the use of δέλτος bonds significant messages with people. Those written means of private communication play an important role in the plot of the tragedy and have hidden private messages from their owners. The main aim of this paper is to analyze the power of the deltos' written text in the tragedies of Euripides Ifigenia Taurica and Ifigenia Aulidensis and Sophocles' Trachiniae.

Keywords: deltos, ancient greek tragedy, sophocles, euripides

Procedia PDF Downloads 67
7225 Effects of Video Games and Online Chat on Mathematics Performance in High School: An Approach of Multivariate Data Analysis

Authors: Lina Wu, Wenyi Lu, Ye Li

Abstract:

Regarding heavy video game players for boys and super online chat lovers for girls as a symbolic phrase in the current adolescent culture, this project of data analysis verifies the displacement effect on deteriorating mathematics performance. To evaluate correlation or regression coefficients between a factor of playing video games or chatting online and mathematics performance compared with other factors, we use multivariate analysis technique and take gender difference into account. We find the most important reason for the negative sign of the displacement effect on mathematics performance due to students’ poor academic background. Statistical analysis methods in this project could be applied to study internet users’ academic performance from the high school education to the college education.

Keywords: correlation coefficients, displacement effect, multivariate analysis technique, regression coefficients

Procedia PDF Downloads 364
7224 Manage an Acute Pain Unit based on the Balanced Scorecard

Authors: Helena Costa Oliveira, Carmem Oliveira, Rita Moutinho

Abstract:

The Balanced Scorecard (BSC) is a continuous strategic monitoring model focused not only on financial issues but also on internal processes, patients/users, and learning and growth. Initially dedicated to business management, it currently serves organizations of other natures - such as hospitals. This paper presents a BSC designed for a Portuguese Acute Pain Unit (APU). This study is qualitative and based on the experience of collaborators at the APU. The management of APU is based on four perspectives – users, internal processes, learning and growth, and financial and legal. For each perspective, there were identified strategic objectives, critical factors, lead indicators and initiatives. The strategic map of the APU outlining sustained strategic relations among strategic objectives. This study contributes to the development of research in the health management area as it explores how organizational insufficiencies and inconsistencies in this particular case can be addressed, through the identification of critical factors, to clearly establish core outcomes and initiatives to set up.

Keywords: acute pain unit, balanced scorecard, hospital management, organizational performance, Portugal

Procedia PDF Downloads 148
7223 Multidimensional Inequality and Deprivation Among Tribal Communities of Andhra Pradesh, India

Authors: Sanjay Sinha, Mohd Umair Khan

Abstract:

The level of income inequality in India has been worrisome as the World Inequality Report termed it as a “poor and unequal country, with an affluent elite”. As important as income is to understand inequality and deprivation, it is just one dimension. But the historical roots and current realities of inequality and deprivation in India lies in many of the non-income dimensions such as housing, nutrition, education, agency, sense of inclusion etc. which are often ignored, especially in solution-oriented research. The level of inequality and deprivation among the tribal is one such case. There is a corpus of literature establishing that the tribal communities in India are disadvantageous on various grounds. Given their rural geography, issues of access and quality of basic facilities such as education and healthcare are often unaddressed. COVID-19 has further exacerbated this challenge and climate change will make it even more worrying. With this background, a succinct measurement tool at the village level is necessary to design short to medium-term actions with reference to risk mitigation for tribal communities. This research paper examines the level of inequality and deprivation among the tribal communities in the rural areas of Andhra Pradesh state of India using a Multidimensional Inequality and Deprivation Index based on the Alkire-Foster methodology. The methodology is theoretically grounded in the capability approach propounded by Amartya Sen, emphasizing on achieving the “beings and doings” (functionings) an individual reason to value. In the index, the authors have five domains, including Livelihood, Food Security, Education, Health and Housing and these domains are divided into sixteen indicators. This assessment is followed by domain-wise short-term and long-term solutions.

Keywords: Andhra Pradesh, Alkire-Foster methodology, deprivation, inequality, multidimensionality, poverty, tribal

Procedia PDF Downloads 160
7222 A Short History of Recorder Education in Taiwan: A Qualitative Research about the Process of the Recorder Move into the Compulsory Schooling System

Authors: Jen-Fu Lee

Abstract:

From the 1980s, the ministry of education in Taiwan moves the instrument ‘Recorder’ into the 9-year compulsory schooling system. The recorder is widely popularized successfully in Taiwan. The research aims to document the history of how the recorder came into Taiwan, what the process of the recorder moving into the schooling system is; what the meaning for the recorder moving into the schooling system is by searching the papers about the recorder in Taiwan and interviewing the people who had participated the process. The research discovers that the recorder in Taiwan was popularized nongovernmental by Shang-Ren, Wang. Shang-Ren, Wang imported 200 recorders from Japan in 1982 and then founded a publishing house which publishes the books and sheets about the recorder in 1983. The reason of Shang-Ren, Wang committed to popularizing the recorder is to spread the Orff Approach in Taiwan. Except for the technique of playing the recorder, the knowledge of the history of the recorder and the role that it plays in Early Music is not available in school. The recorder only plays a ‘Cheap and Easy’ instrument which is suitable for the schooling system in Taiwan, cannot develop to a professional instrument.

Keywords: recorder, Taiwan, Shang-Ren, Wang, compulsory schooling system

Procedia PDF Downloads 377
7221 A Scalable Model of Fair Socioeconomic Relations Based on Blockchain and Machine Learning Algorithms-1: On Hyperinteraction and Intuition

Authors: Merey M. Sarsengeldin, Alexandr S. Kolokhmatov, Galiya Seidaliyeva, Alexandr Ozerov, Sanim T. Imatayeva

Abstract:

This series of interdisciplinary studies is an attempt to investigate and develop a scalable model of fair socioeconomic relations on the base of blockchain using positive psychology techniques and Machine Learning algorithms for data analytics. In this particular study, we use hyperinteraction approach and intuition to investigate their influence on 'wisdom of crowds' via created mobile application which was created for the purpose of this research. Along with the public blockchain and private Decentralized Autonomous Organization (DAO) which were elaborated by us on the base of Ethereum blockchain, a model of fair financial relations of members of DAO was developed. We developed a smart contract, so-called, Fair Price Protocol and use it for implementation of model. The data obtained from mobile application was analyzed by ML algorithms. A model was tested on football matches.

Keywords: blockchain, Naïve Bayes algorithm, hyperinteraction, intuition, wisdom of crowd, decentralized autonomous organization

Procedia PDF Downloads 169
7220 Bed Evolution under One-Episode Flushing in a Truck Sewer in Paris, France

Authors: Gashin Shahsavari, Gilles Arnaud-Fassetta, Alberto Campisano, Roberto Bertilotti, Fabien Riou

Abstract:

Sewer deposits have been identified as a major cause of dysfunctions in combined sewer systems regarding sewer management, which induces different negative consequents resulting in poor hydraulic conveyance, environmental damages as well as worker’s health. In order to overcome the problematics of sedimentation, flushing has been considered as the most operative and cost-effective way to minimize the sediments impacts and prevent such challenges. Flushing, by prompting turbulent wave effects, can modify the bed form depending on the hydraulic properties and geometrical characteristics of the conduit. So far, the dynamics of the bed-load during high-flow events in combined sewer systems as a complex environment is not well understood, mostly due to lack of measuring devices capable to work in the “hostile” in combined sewer system correctly. In this regards, a one-episode flushing issue from an opening gate valve with weir function was carried out in a trunk sewer in Paris to understanding its cleansing efficiency on the sediments (thickness: 0-30 cm). During more than 1h of flushing within 5 m distance in downstream of this flushing device, a maximum flowrate and a maximum level of water have been recorded at 5 m in downstream of the gate as 4.1 m3/s and 2.1 m respectively. This paper is aimed to evaluate the efficiency of this type of gate for around 1.1 km (from the point -50 m to +1050 m in downstream from the gate) by (i) determining bed grain-size distribution and sediments evolution through the sewer channel, as well as their organic matter content, and (ii) identifying sections that exhibit more changes in their texture after the flush. For the first one, two series of sampling were taken from the sewer length and then analyzed in laboratory, one before flushing and second after, at same points among the sewer channel. Hence, a non-intrusive sampling instrument has undertaken to extract the sediments smaller than the fine gravels. The comparison between sediments texture after the flush operation and the initial state, revealed the most modified zones by the flush effect, regarding the sewer invert slope and hydraulic parameters in the zone up to 400 m from the gate. At this distance, despite the increase of sediment grain-size rages, D50 (median grain-size) varies between 0.6 mm and 1.1 mm compared to 0.8 mm and 10 mm before and after flushing, respectively. Overall, regarding the sewer channel invert slope, results indicate that grains smaller than sands (< 2 mm) are more transported to downstream along about 400 m from the gate: in average 69% before against 38% after the flush with more dispersion of grain-sizes distributions. Furthermore, high effect of the channel bed irregularities on the bed material evolution has been observed after the flush.

Keywords: bed-load evolution, combined sewer systems, flushing efficiency, sediments transport

Procedia PDF Downloads 403
7219 The Construct of Assessment Instrument for Value, Attitude and Professionalism among Students Faculty of Sports Science and Coaching

Authors: Ahmad Hashim, Thariq Khan Azizuddin Khan, Zulakbal Abd Karim, Nohazira Abdul Karim

Abstract:

This research aims to obtain the validity and reliability of a survey instrument to evaluate the values, attitudes, and professionalism of sports science students, from the Faculty of Sports Science and Coaching, Universiti Pendidikan Sultan Idris (UPSI). It is a survey which is divided into two components namely first; moral, self-esteem, proactive, self-reliant and voluntary and second; ethics and professionalism. Development of the survey instrument is based on the Malaysian Education Development Plan, Higher Education Malaysia. There are 50 items prepared based on the five-point Likert scale which were tested at the pilot test level. It involved 212 research subjects selected based on random sampling. In addition, the research method applied is in the form of pre-experimental one group pre-test-post-test. Results of the analysis showed that overall field expert validity is r = .89, while the Cronbach alpha reliability correlation value of outdoor education instrument evaluation survey is r = .85. Next, this survey was tested again for construct validity using the factor analysis method for statistical analysis which would validate each item tested was supposed to be in the right component. From the analysis, results show that Bartlett's test is significant p < .05 and Kaiser-Meyer-Olkin index range is r = .87. The result showed 39 survey items are produced out of 50 items of the survey based on this factor analysis method. Research has shown that the survey instrument developed is valid and reliable to be used for the Faculty of Sports Sciences and Coaching, UPSI.

Keywords: values, attitudes, professionalism, ethics, professionalism

Procedia PDF Downloads 191
7218 Psychosocial Experiences of Black Male Students in Public and Social Spaces on and around a Historically White South African Campus

Authors: Claudia P. Saunderson

Abstract:

Widening of participation in higher education globally has increased diversity of student populations. However, widening participation is more than mere access. Central to the debate about widening participation are social justice issues of authentic inclusion and appropriate support for success for all students in higher education (HE). Given the recent global campaign for 'Black Lives Matter' as well as the worldwide advocacy for justice in the George Floyd case, the importance of the experiences of Black men, were again poignantly foregrounded. The literature abounds with the negative experiences of Black male students in higher education. Much of this literature emanates from the Global North, with little systematic research on black male students' university experiences originating from the Global South. This research, therefore, explores the psychosocial experiences of Black male students at a historically white South African university. Not only are these students' educational or academic adjustment important, but so is their psychosocial adjustment to the institution. The psychosocial adjustment might include emotional well-being, motivation, as well as the student’s perception of how well he fits in or is made to feel welcome at the institution. The study draws on strands of critical race theory (CRT), co-cultural theory (CCT) as well as defining properties of micro-aggression theory (MAT). In the study, CRT, therefore, served as an overarching theory at the macro level, and it comments on the structural dynamics while MAT and CCT rather focussed on the impact of structural arrangements like racialization, at an individual and micro-level. These theories furthermore provided a coherent analytic framework for this study. Using a case study design, this qualitative study, employing focus groups and individual interviews, drew on the psychosocial experiences of twenty Black male students to explore how they navigate this specific historically white campus. The data were analyzed using thematic analysis that provided a systematic procedure for generating codes and themes from the qualitative data. The study found that the combination of race and gender-based micro-aggressions experienced by students included negative stereotyping, criminalization as well as racial profiling and that these experiences impede participants' ability to thrive at the institution. However, participants also shared positive perspectives about the institution. Some of the positive traits of the institution that the participants mentioned were well-aligned administration, good quality of education, as well as various funding opportunities. This study implies that if any HE institution values transformation, it necessitates the exploration and interrogation of potential aspects that are subtly hidden in the institutional culture and environment that might serve as barriers to the transformation process. This positioning is based on a social justice stance and believes that all students are equal and have the right to racially and culturally equitable and appropriate education and support.

Keywords: critical race theory, higher education transformation, micro-aggression, student experience

Procedia PDF Downloads 138
7217 A Proposed Training Program for the Development of the Kindergarten Teacher According To Her Contemporary Professionàĺ Needs

Authors: Abdulhakim Ali Mosleh Alzubidy

Abstract:

The study's aim was to establish a proposed training program for kindergarten teachers according to their modern professional demands so that they could effectively teach children through movement education and play. The sample, which consisted of (46) teachers and administrators selected at random from the Ibb governorate, represented the study population of kindergarten teachers and administrators. The researcher developed three survey forms as a tool for data collection, and the forms were used with the research sample. The researcher used the descriptive method due to its applicability and the nature of the study, and he also used the appropriate statistical treatment of the data, which is to extract the percentage and the percentage of agreement. The study came to the following conclusions: ● The proposed program is of great importance in preparing the kindergarten teacher in an appropriate manner that keeps pace with modern developments in this field. ● The field of movement education is a necessity for the kindergarten teacher, through which she will be able to prepare the child physically and kinetically and teach him effectively the principles of reading, writing, and numerical and arithmetic concepts.

Keywords: training program, professional needs, kindergarten, kindergarten teacher

Procedia PDF Downloads 85
7216 Relationship between Effective Classroom Management with Students’ Academic Achievement of EFL of STKIP YPUP

Authors: Eny Syatriana

Abstract:

The purpose of this study is to find out the effective instruction for classroom management, with the main identification of organizing and managing effective learning environments, to identify characteristics of effective lesson planning, identify resources and materials dealing with positive and effective classroom management. Knowing the effective instruction management is one of the characteristics of well managed teacher. The study was carried out in three randomly selected classes of STKIP YPUP in South Sulawesi. The design adopted for the study was a descriptive survey approach. Simple descriptive analysis was used. The major instrument used in this study were student questionnaire, teacher questionnaire, data were gathered with the research instrument and were analyzed, the research question were investigated and two hypothesis were duly tested using t-test statistics. Based on the findings of this research, it was concluded that effective classroom management skills or techniques have strong and positive influence on student achievement.

Keywords: effective classroom management skills, students’ achievement, students academic, effective learning environments

Procedia PDF Downloads 333
7215 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever

Authors: Sudha T., Naveen C.

Abstract:

Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.

Keywords: deep learning model, dengue fever, prediction, optimization

Procedia PDF Downloads 65
7214 Modeling Floodplain Vegetation Response to Groundwater Variability Using ArcSWAT Hydrological Model, Moderate Resolution Imaging Spectroradiometer - Normalised Difference Vegetation Index Data, and Machine Learning

Authors: Newton Muhury, Armando A. Apan, Tek Maraseni

Abstract:

This study modelled the relationships between vegetation response and available water below the soil surface using the Terra’s Moderate Resolution Imaging Spectroradiometer (MODIS) generated Normalised Difference Vegetation Index (NDVI) and soil water content (SWC) data. The Soil & Water Assessment Tool (SWAT) interface known as ArcSWAT was used in ArcGIS for the groundwater analysis. The SWAT model was calibrated and validated in SWAT-CUP software using 10 years (2001-2010) of monthly streamflow data. The average Nash-Sutcliffe Efficiency during the calibration and validation was 0.54 and 0.51, respectively, indicating that the model performances were good. Twenty years (2001-2020) of monthly MODIS NDVI data for three different types of vegetation (forest, shrub, and grass) and soil water content for 43 sub-basins were analysed using the WEKA, machine learning tool with a selection of two supervised machine learning algorithms, i.e., support vector machine (SVM) and random forest (RF). The modelling results show that different types of vegetation response and soil water content vary in the dry and wet season. For example, the model generated high positive relationships (r=0.76, 0.73, and 0.81) between the measured and predicted NDVI values of all vegetation in the study area against the groundwater flow (GW), soil water content (SWC), and the combination of these two variables, respectively, during the dry season. However, these relationships were reduced by 36.8% (r=0.48) and 13.6% (r=0.63) against GW and SWC, respectively, in the wet season. On the other hand, the model predicted a moderate positive relationship (r=0.63) between shrub vegetation type and soil water content during the dry season, which was reduced by 31.7% (r=0.43) during the wet season. Our models also predicted that vegetation in the top location (upper part) of the sub-basin is highly responsive to GW and SWC (r=0.78, and 0.70) during the dry season. The results of this study indicate the study region is suitable for seasonal crop production in dry season. Moreover, the results predicted that the growth of vegetation in the top-point location is highly dependent on groundwater flow in both dry and wet seasons, and any instability or long-term drought can negatively affect these floodplain vegetation communities. This study has enriched our knowledge of vegetation responses to groundwater in each season, which will facilitate better floodplain vegetation management.

Keywords: ArcSWAT, machine learning, floodplain vegetation, MODIS NDVI, groundwater

Procedia PDF Downloads 119
7213 Classification of Health Risk Factors to Predict the Risk of Falling in Older Adults

Authors: L. Lindsay, S. A. Coleman, D. Kerr, B. J. Taylor, A. Moorhead

Abstract:

Cognitive decline and frailty is apparent in older adults leading to an increased likelihood of the risk of falling. Currently health care professionals have to make professional decisions regarding such risks, and hence make difficult decisions regarding the future welfare of the ageing population. This study uses health data from The Irish Longitudinal Study on Ageing (TILDA), focusing on adults over the age of 50 years, in order to analyse health risk factors and predict the likelihood of falls. This prediction is based on the use of machine learning algorithms whereby health risk factors are used as inputs to predict the likelihood of falling. Initial results show that health risk factors such as long-term health issues contribute to the number of falls. The identification of such health risk factors has the potential to inform health and social care professionals, older people and their family members in order to mitigate daily living risks.

Keywords: classification, falls, health risk factors, machine learning, older adults

Procedia PDF Downloads 148
7212 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: opinion mining, opinion summarization, sentiment analysis, text mining

Procedia PDF Downloads 332
7211 Outcome Evaluation of a Blended-Learning Mental Health Training Course in South African Public Health Facilities

Authors: F. Slaven, M. Uys, Y. Erasmus

Abstract:

The South African National Mental Health Education Programme (SANMHEP) was a National Department of Health (NDoH) initiative to strengthen mental health services in South Africa in collaboration with the Foundation for Professional Development (FPD), SANOFI and the various provincial departments of health. The programme was implemented against the backdrop of a number of challenges in the management of mental health in the country related to staff shortages and infrastructure, the intersection of mental health with the growing burden of non-communicable diseases and various forms of violence, and challenges around substance abuse and its relationship with mental health. The Mental Health Care Act (No. 17 of 2002) prescribes that mental health should be integrated into general health services including primary, secondary and tertiary levels to improve access to services and reduce stigma associated with mental illness. In order for the provisions of the Act to become a reality, and for the journey of mental health patients through the system to improve, sufficient and skilled health care providers are critical. SANMHEP specifically targeted Medical Doctors and Professional Nurses working within the facilities that are listed to conduct 72-hour assessments, as well as District Hospitals. The aim of the programme was to improve the clinical diagnosis and management of mental disorders/conditions and the understanding of and compliance with the Mental Health Care Act and related Regulations and Guidelines in the care, treatment and rehabilitation of mental health care users. The course used a blended-learning approach and trained 1 120 health care providers through 36 workshops between February and November 2019. Of those trained, 689 (61.52%) were Professional Nurses, 337 (30.09%) were Medical Doctors, and 91 (8.13%) indicated their occupation as ‘other’ (of these more than half were psychologists). The pre- and post-evaluation of the face-to-face training sessions indicated a marked improvement in knowledge and confidence level scores (both clinical and legislative) in the care, treatment and rehabilitation of mental health care users by participants in all the training sessions. There was a marked improvement in the knowledge and confidence of participants in performing certain mental health activities (on average the ratings increased by 2.72; or 27%) and in managing certain mental health conditions (on average the ratings increased by 2.55; or 25%). The course also required that participants obtain 70% or higher in their formal assessments as part of the online component. The 337 participants who completed and passed the course scored 90% on average. This illustrates that when participants attempted and completed the course, they did very well. To further assess the effect of the course on the knowledge and behaviour of the trained mental health care practitioners a mixed-method outcome evaluation is currently underway consisting of a survey with participants three months after completion, follow-up interviews with participants, and key informant interviews with department of health officials and course facilitators. This will enable a more detailed assessment of the impact of the training on participants' perceived ability to manage and treat mental health patients.

Keywords: mental health, public health facilities, South Africa, training

Procedia PDF Downloads 120
7210 Weed Classification Using a Two-Dimensional Deep Convolutional Neural Network

Authors: Muhammad Ali Sarwar, Muhammad Farooq, Nayab Hassan, Hammad Hassan

Abstract:

Pakistan is highly recognized for its agriculture and is well known for producing substantial amounts of wheat, cotton, and sugarcane. However, some factors contribute to a decline in crop quality and a reduction in overall output. One of the main factors contributing to this decline is the presence of weed and its late detection. This process of detection is manual and demands a detailed inspection to be done by the farmer itself. But by the time detection of weed, the farmer will be able to save its cost and can increase the overall production. The focus of this research is to identify and classify the four main types of weeds (Small-Flowered Cranesbill, Chick Weed, Prickly Acacia, and Black-Grass) that are prevalent in our region’s major crops. In this work, we implemented three different deep learning techniques: YOLO-v5, Inception-v3, and Deep CNN on the same Dataset, and have concluded that deep convolutions neural network performed better with an accuracy of 97.45% for such classification. In relative to the state of the art, our proposed approach yields 2% better results. We devised the architecture in an efficient way such that it can be used in real-time.

Keywords: deep convolution networks, Yolo, machine learning, agriculture

Procedia PDF Downloads 118
7209 Professional Development in EFL Classroom: Motivation and Reflection

Authors: Iman Jabbar

Abstract:

Within the scope of professionalism and in order to compete with the modern world, teachers, are expected to develop their teaching skills and activities in addition to their professional knowledge. At the college level, the teacher should be able to face classroom challenges through his engagement with the learning situation to understand the students and their needs. In our field of TESOL, the role of the English teacher is no longer restricted to teaching English texts, but rather he should endeavor to enhance the students’ skills such as communication and critical analysis. Within the literature of professionalism, there are certain strategies and tools that an English teacher should adopt to develop his competence and performance. Reflective practice, which is an exploratory process, is one of these strategies. Another strategy contributing to classroom development is motivation. It is crucial in students’ learning as it affects the quality of learning English in the classroom in addition to determining success or failure as well as language achievement. This is a qualitative study grounded on interpretive perspectives of teachers and students regarding the process of professional development. This study aims at (a) understanding how teachers at the college level conceptualize reflective practice and motivation inside EFL classroom, and (b) exploring the methods and strategies that they implement to practice reflection and motivation. This study and is based on two questions: 1. How do EFL teachers perceive and view reflection and motivation in relation to their teaching and professional development? 2. How can reflective practice and motivation be developed into practical strategies and actions in EFL teachers’ professional context? The study is organized into two parts, theoretical and practical. The theoretical part reviews the literature on the concept of reflective practice and motivation in relation to professional development through providing certain definitions, theoretical models, and strategies. The practical part draws on the theoretical one, however; it is the core of the study since it deals with two issues. It involves the research design, methodology, and methods of data collection, sampling, and data analysis. It ends up with an overall discussion of findings and the researcher's reflections on the investigated topic. In terms of significance, the study is intended to contribute to the field of TESOL at the academic level through the selection of the topic and investigating it from theoretical and practical perspectives. Professional development is the path that leads to enhancing the quality of teaching English as a foreign or second language in a way that suits the modern trends of globalization and advanced technology.

Keywords: professional development, motivation, reflection, learning

Procedia PDF Downloads 451
7208 Different Data-Driven Bivariate Statistical Approaches to Landslide Susceptibility Mapping (Uzundere, Erzurum, Turkey)

Authors: Azimollah Aleshzadeh, Enver Vural Yavuz

Abstract:

The main goal of this study is to produce landslide susceptibility maps using different data-driven bivariate statistical approaches; namely, entropy weight method (EWM), evidence belief function (EBF), and information content model (ICM), at Uzundere county, Erzurum province, in the north-eastern part of Turkey. Past landslide occurrences were identified and mapped from an interpretation of high-resolution satellite images, and earlier reports as well as by carrying out field surveys. In total, 42 landslide incidence polygons were mapped using ArcGIS 10.4.1 software and randomly split into a construction dataset 70 % (30 landslide incidences) for building the EWM, EBF, and ICM models and the remaining 30 % (12 landslides incidences) were used for verification purposes. Twelve layers of landslide-predisposing parameters were prepared, including total surface radiation, maximum relief, soil groups, standard curvature, distance to stream/river sites, distance to the road network, surface roughness, land use pattern, engineering geological rock group, topographical elevation, the orientation of slope, and terrain slope gradient. The relationships between the landslide-predisposing parameters and the landslide inventory map were determined using different statistical models (EWM, EBF, and ICM). The model results were validated with landslide incidences, which were not used during the model construction. In addition, receiver operating characteristic curves were applied, and the area under the curve (AUC) was determined for the different susceptibility maps using the success (construction data) and prediction (verification data) rate curves. The results revealed that the AUC for success rates are 0.7055, 0.7221, and 0.7368, while the prediction rates are 0.6811, 0.6997, and 0.7105 for EWM, EBF, and ICM models, respectively. Consequently, landslide susceptibility maps were classified into five susceptibility classes, including very low, low, moderate, high, and very high. Additionally, the portion of construction and verification landslides incidences in high and very high landslide susceptibility classes in each map was determined. The results showed that the EWM, EBF, and ICM models produced satisfactory accuracy. The obtained landslide susceptibility maps may be useful for future natural hazard mitigation studies and planning purposes for environmental protection.

Keywords: entropy weight method, evidence belief function, information content model, landslide susceptibility mapping

Procedia PDF Downloads 132
7207 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling

Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed

Abstract:

The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.

Keywords: streamflow, neural network, optimisation, algorithm

Procedia PDF Downloads 152
7206 Creation and Evaluation of an Academic Blog of Tools for the Self-Correction of Written Production in English

Authors: Brady, Imelda Katherine, Da Cunha Fanego, Iria

Abstract:

Today's university students are considered digital natives and the use of Information Technologies (ITs) forms a large part of their study and learning. In the context of language studies, applications that help with revisions of grammar or vocabulary are particularly useful, especially if they are open access. There are studies that show the effectiveness of this type of application in the learning of English as a foreign language and that using IT can help learners become more autonomous in foreign language acquisition, given that these applications can enhance awareness of the learning process; this means that learners are less dependent on the teacher for corrective feedback. We also propose that the exploitation of these technologies also enhances the work of the language instructor wishing to incorporate IT into his/her practice. In this context, the aim of this paper is to present the creation of a repository of tools that provide support in the writing and correction of texts in English and the assessment of their usefulness on behalf of university students enrolled in the English Studies Degree. The project seeks to encourage the development of autonomous learning through the acquisition of skills linked to the self-correction of written work in English. To comply with the above, our methodology follows five phases. First of all, a selection of the main open-access online applications available for the correction of written texts in English is made: AutoCrit, Hemingway, Grammarly, LanguageTool, OutWrite, PaperRater, ProWritingAid, Reverso, Slick Write, Spell Check Plus and Virtual Writing Tutor. Secondly, the functionalities of each of these tools (spelling, grammar, style correction, etc.) are analyzed. Thirdly, explanatory materials (texts and video tutorials) are prepared on each tool. Fourth, these materials are uploaded into a repository of our university in the form of an institutional blog, which is made available to students and the general public. Finally, a survey was designed to collect students’ feedback. The survey aimed to analyse the usefulness of the blog and the quality of the explanatory materials as well as the degree of usefulness that students assigned to each of the tools offered. In this paper, we present the results of the analysis of data received from 33 students in the 1st semester of the 21-22 academic year. One result we highlight in our paper is that the students have rated this resource very highly, in addition to offering very valuable information on the perceived usefulness of the applications provided for them to review. Our work, carried out within the framework of a teaching innovation project funded by our university, emphasizes that teachers need to design methodological strategies that help their students improve the quality of their productions written in English and, by extension, to improve their linguistic competence.

Keywords: academic blog, open access tools, online self-correction, written production in English, university learning

Procedia PDF Downloads 102