Search results for: students with learning disabilities
4510 Focusing on the Utilization of Information and Communication Technology for Improving Childrens’ Potentials in Science: Challenges for Sustainable Development in Nigeria
Authors: Osagiede Mercy Afe
Abstract:
After the internet explosion in the 90’s, Technology was immediately integrated into the school system. Technology which symbolizes advancement in human knowledge was seen as a setback by many educators many efforts have been made to help stem this erroneous believes and help educators realize the benefits of technology and ways of implementing it in the classrooms especially in the sciences. This advancement created a constantly expanding gap between the pupil’s perception on the use of technology within the learning atmosphere and the teacher’s perception and limitations hence the focus of this paper is on the need to refocus on the potentials of Science and Technology in enhancing children learning at school especially in science for sustainable development in Nigeria. The paper recommended measures for facilitating the sustenance of science and technology in Nigerian schools so as to enhance the potentials of our children in Science and Technology for a better tomorrow.Keywords: children, information communication technology (ICT), potentials, sustainable development, science education
Procedia PDF Downloads 4954509 Music of the Openings’ Japanese Animes as a Tool for People with Reduced Visibility: The Case of Shingeki No Kyojin (Attack on Titan)
Authors: María Del Carmen Baena Lupiáñez
Abstract:
Music has been considered for decades as a tool to express emotions. In the case of people with some physical disabilities, they are able to develop what is known as echolocation. It means that the development of some of the senses to compensate the lack of one of them. For instance, it has been proved that people with reduced visibility have a more developed hearing capacity. In series or films, music is fundamental to contextualize the viewer in the story. Music becomes an indispensable element to make people with reduced visibility to understand the plot and to avoid ambiguities, in the absence of an audio description. Since the songs of Japanese animes have not been as studied as other soundtracks from this point of view to our knowledge, the three openings of the anime Shingeki no Kyojin have been chosen to carry out the experiment from which this study will start. It will test the perceptions of people with reduced visibility by reproducing the three opening songs of Shingeki no Kyojin and asking the users questions related to their thoughts about the anime, their feelings when listening to these songs and the possible story that this anime could be about. In fact, users could identify in general the plot of the story and their perceptions corresponded to what the songs should transmit, taking into account its chords and harmonies.Keywords: anime, argumental contextualization, echolocations, emotions
Procedia PDF Downloads 2064508 Development of Digital Twin Concept to Detect Abnormal Changes in Structural Behaviour
Authors: Shady Adib, Vladimir Vinogradov, Peter Gosling
Abstract:
Digital Twin (DT) technology is a new technology that appeared in the early 21st century. The DT is defined as the digital representation of living and non-living physical assets. By connecting the physical and virtual assets, data are transmitted smoothly, allowing the virtual asset to fully represent the physical asset. Although there are lots of studies conducted on the DT concept, there is still limited information about the ability of the DT models for monitoring and detecting unexpected changes in structural behaviour in real time. This is due to the large computational efforts required for the analysis and an excessively large amount of data transferred from sensors. This paper aims to develop the DT concept to be able to detect the abnormal changes in structural behaviour in real time using advanced modelling techniques, deep learning algorithms, and data acquisition systems, taking into consideration model uncertainties. finite element (FE) models were first developed offline to be used with a reduced basis (RB) model order reduction technique for the construction of low-dimensional space to speed the analysis during the online stage. The RB model was validated against experimental test results for the establishment of a DT model of a two-dimensional truss. The established DT model and deep learning algorithms were used to identify the location of damage once it has appeared during the online stage. Finally, the RB model was used again to identify the damage severity. It was found that using the RB model, constructed offline, speeds the FE analysis during the online stage. The constructed RB model showed higher accuracy for predicting the damage severity, while deep learning algorithms were found to be useful for estimating the location of damage with small severity.Keywords: data acquisition system, deep learning, digital twin, model uncertainties, reduced basis, reduced order model
Procedia PDF Downloads 1034507 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall
Procedia PDF Downloads 2844506 Analysis of the Use of a NAO Robot to Improve Social Skills in Children with Autism Spectrum Disorder in Saudi Arabia
Authors: Eman Alarfaj, Hissah Alabdullatif, Huda Alabdullatif, Ghazal Albakri, Nor Shahriza Abdul Karim
Abstract:
Autism Spectrum Disorder is extensively spread amid children; it affects their social, communication and interactive skills. As robotics technology has been proven to be a significant helpful utility those able individuals to overcome their disabilities. Robotic technology is used in ASD therapy. The purpose of this research is to show how Nao robots can improve the social skills for children who suffer from autism in Saudi Arabia by interacting with the autistic child and perform a number of tasks. The objective of this research is to identify, implement, and test the effectiveness of the module for interacting with ASD children in an autism center in Saudi Arabia. The methodology in this study followed the ten layers of protocol that needs to be followed during any human-robot interaction. Also, in order to elicit the scenario module, TEACCH Autism Program was adopted. Six different qualified interaction modules have been elicited and designed in this study; the robot will be programmed to perform these modules in a series of controlled interaction sessions with the Autistic children to enhance their social skills.Keywords: humanoid robot Nao, ASD, human-robot interaction, social skills
Procedia PDF Downloads 2684505 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms
Authors: Neha Ahirwar
Abstract:
In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree
Procedia PDF Downloads 724504 Story of Alex: Sociology of Gender
Authors: Karen V. Lee
Abstract:
The significance of this study involves autoethnographic research about a music teacher learning about the socialization of gender issues in teaching. Mentorship involving intervention helps with the consequences influencing a transgendered music teacher. Basic storytelling methodology involves the qualitative method of research as a theoretical framework where the author provides a storied reflection about political issues surrounding teachers and the sociology of gender. Sub-themes involve counseling, adult education to ensure students and teachers receive social, emotional, physical, spiritual, and educational resources that evoke visceral, emotional responses from the audience. Major findings share how stories are helpful resources for others who struggle with the socialization of gender. It is hoped the research dramatizes an episodic yet incomplete story that highlights the circumstances surrounding the protagonist having his sex reassignment surgery during his undergraduate education degree. In conclusion, the research is a reflexive storied framework that embraces a positive outlook about a transgendered teacher during his masectomy. The sensory experience seeks verisimilitude by evoking lifelike and believable feelings from others. Thus, the scholarly importance of the sociology of gender and society provides transformative aspects that contributes to social change. Overall, the surgery surrounding the story about transgendered issues are not uncommon in society. Thus, continued education supports the moral mission to help teachers overcome and understand issues of gender that can socially impacts their professional lives as teachers.Keywords: sociology of gender, transgender, music teachers, story, autoethnography as research, ideology
Procedia PDF Downloads 3094503 Development of an Optimised, Automated Multidimensional Model for Supply Chains
Authors: Safaa H. Sindi, Michael Roe
Abstract:
This project divides supply chain (SC) models into seven Eras, according to the evolution of the market’s needs throughout time. The five earliest Eras describe the emergence of supply chains, while the last two Eras are to be created. Research objectives: The aim is to generate the two latest Eras with their respective models that focus on the consumable goods. Era Six contains the Optimal Multidimensional Matrix (OMM) that incorporates most characteristics of the SC and allocates them into four quarters (Agile, Lean, Leagile, and Basic SC). This will help companies, especially (SMEs) plan their optimal SC route. Era Seven creates an Automated Multidimensional Model (AMM) which upgrades the matrix of Era six, as it accounts for all the supply chain factors (i.e. Offshoring, sourcing, risk) into an interactive system with Heuristic Learning that helps larger companies and industries to select the best SC model for their market. Methodologies: The data collection is based on a Fuzzy-Delphi study that analyses statements using Fuzzy Logic. The first round of Delphi study will contain statements (fuzzy rules) about the matrix of Era six. The second round of Delphi contains the feedback given from the first round and so on. Preliminary findings: both models are applicable, Matrix of Era six reduces the complexity of choosing the best SC model for SMEs by helping them identify the best strategy of Basic SC, Lean, Agile and Leagile SC; that’s tailored to their needs. The interactive heuristic learning in the AMM of Era seven will help mitigate error and aid large companies to identify and re-strategize the best SC model and distribution system for their market and commodity, hence increasing efficiency. Potential contributions to the literature: The problematic issue facing many companies is to decide which SC model or strategy to incorporate, due to the many models and definitions developed over the years. This research simplifies this by putting most definition in a template and most models in the Matrix of era six. This research is original as the division of SC into Eras, the Matrix of Era six (OMM) with Fuzzy-Delphi and Heuristic Learning in the AMM of Era seven provides a synergy of tools that were not combined before in the area of SC. Additionally the OMM of Era six is unique as it combines most characteristics of the SC, which is an original concept in itself.Keywords: Leagile, automation, heuristic learning, supply chain models
Procedia PDF Downloads 3964502 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique
Authors: Ghada A. Alfattni
Abstract:
Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates.Keywords: imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour
Procedia PDF Downloads 3554501 The Need for Embodiment Perspectives and Somatic Methods in Social Work Curriculum: Lessons Learned from a Decade of Developing a Program to Support College Students Who Exited the State Foster Care System
Authors: Yvonne A. Unrau
Abstract:
Social work education is a competency-based curriculum that relies mostly on cognitive frameworks and problem-solving models. Absent from the curriculum is knowledge and skills that draw from an embodiment perspective, especially somatic practice methods. Embodiment broadly encompasses the understanding that biological, political, historical, and social factors impact human development via changes to the nervous system. In the past 20 years, research has well-established that unresolved traumatic events, especially during childhood, negatively impacts long-term health and well-being. Furthermore, traumatic stress compromises cognitive processing and activates reflexive action such as ‘fight’ or ‘flight,’ which are the focus of somatic methods. The main objective of this paper is to show how embodiment perspectives and somatic methods can enhance social work practice overall. Using an exploratory approach, the author shares a decade-long journey that involved creating an education-support program for college students who exited the state foster care system. Personal experience, program outcomes and case study narratives revealed that ‘classical’ social work methods were insufficient to fully address the complex needs of college students who were living with complex traumatic stressors. The paper chronicles select case study scenarios and key program development milestones over a 10-year period to show the benefit of incorporating embodiment perspectives in social work practice. The lessons reveal that there is an immediate need for social work curriculum to include embodiment perspectives so that social workers may be equipped to respond competently to their many clients who live with unresolved trauma.Keywords: social work practice, social work curriculum, embodiment, traumatic stress
Procedia PDF Downloads 1274500 Empirical Evaluation of Gradient-Based Training Algorithms for Ordinary Differential Equation Networks
Authors: Martin K. Steiger, Lukas Heisler, Hans-Georg Brachtendorf
Abstract:
Deep neural networks and their variants form the backbone of many AI applications. Based on the so-called residual networks, a continuous formulation of such models as ordinary differential equations (ODEs) has proven advantageous since different techniques may be applied that significantly increase the learning speed and enable controlled trade-offs with the resulting error at the same time. For the evaluation of such models, high-performance numerical differential equation solvers are used, which also provide the gradients required for training. However, whether classical gradient-based methods are even applicable or which one yields the best results has not been discussed yet. This paper aims to redeem this situation by providing empirical results for different applications.Keywords: deep neural networks, gradient-based learning, image processing, ordinary differential equation networks
Procedia PDF Downloads 1774499 Teachers’ Intention to Leave: Educational Policies as External Stress Factor
Authors: A. Myrzabekova, D. Nurmukhamed, K. Nurumov, A. Zhulbarissova
Abstract:
It is widely believed that stress can affect teachers’ intention to change the workplace. While existing research primarily focuses on the intrinsic sources of stress stemming from the school climate, the current attempt analyzes educational policies as one of the determinants of teacher’s intention to leave schools. In this respect, Kazakhstan presents a unique case since the country endorsed several educational policies which directly impacted teaching and administrative practices within schools. Using Teaching and Learning International Survey 2018 (TALIS) data with the country specific questionnaire, we construct a statistical measure of stress caused by the implementation of educational policies and test its impact on teacher’s intention to leave through the logistic regression. In addition, we control for sociodemographic, professional, and students related covariates while considering the intrinsic dimension of stress stemming from the school climate. Overall, our results suggest that stress caused by the educational policies has a statistically significant positive effect on teachers’ intentions to transfer between schools. Both policy makers and educational scholars could find these results beneficial. For the former careful planning and addressing the negative effects of the educational policies is critical for the sustainability of the educational process. For the latter, accounting for exogenous sources of stress can lead to a more complete understanding of why teachers decide to change their schools.Keywords: educational policies, Kazakhstani teachers, logistic regression factor analysis, sustainability education TALIS, teacher turnover intention, work stress
Procedia PDF Downloads 1134498 Improvement of Process Competitiveness Using Intelligent Reference Models
Authors: Julio Macedo
Abstract:
Several methodologies are now available to conceive the improvements of a process so that it becomes competitive as for example total quality, process reengineering, six sigma, define measure analysis improvement control method. These improvements are of different nature and can be external to the process represented by an optimization model or a discrete simulation model. In addition, the process stakeholders are several and have different desired performances for the process. Hence, the methodologies above do not have a tool to aid in the conception of the required improvements. In order to fill this void we suggest the use of intelligent reference models. A reference model is a set of qualitative differential equations and an objective function that minimizes the gap between the current and the desired performance indexes of the process. The reference models are intelligent so when they receive the current state of the problematic process and the desired performance indexes they generate the required improvements for the problematic process. The reference models are fuzzy cognitive maps added with an objective function and trained using the improvements implemented by the high performance firms. Experiments done in a set of students show the reference models allow them to conceive more improvements than students that do not use these models.Keywords: continuous improvement, fuzzy cognitive maps, process competitiveness, qualitative simulation, system dynamics
Procedia PDF Downloads 914497 IoT Based Approach to Healthcare System for a Quadriplegic Patient Using EEG
Authors: R. Gautam, P. Sastha Kanagasabai, G. N. Rathna
Abstract:
The proposed healthcare system enables quadriplegic patients, people with severe motor disabilities to send commands to electronic devices and monitor their vitals. The growth of Brain-Computer-Interface (BCI) has led to rapid development in 'assistive systems' for the disabled called 'assistive domotics'. Brain-Computer-Interface is capable of reading the brainwaves of an individual and analyse it to obtain some meaningful data. This processed data can be used to assist people having speech disorders and sometimes people with limited locomotion to communicate. In this Project, Emotiv EPOC Headset is used to obtain the electroencephalogram (EEG). The obtained data is processed to communicate pre-defined commands over the internet to the desired mobile phone user. Other Vital Information like the heartbeat, blood pressure, ECG and body temperature are monitored and uploaded to the server. Data analytics enables physicians to scan databases for a specific illness. The Data is processed in Intel Edison, system on chip (SoC). Patient metrics are displayed via Intel IoT Analytics cloud service.Keywords: brain computer interface, Intel Edison, Emotiv EPOC, IoT analytics, electroencephalogram
Procedia PDF Downloads 1894496 Gender Role Conflict and Subjective Well-Being of Chinese Teenagers: A Study Based on High School Students from Guangdong and Yunnan
Authors: Yuan Zhang, Xin Fu, Yixin Tan
Abstract:
Gender role conflict is a key factor influencing the mental health condition of adolescents. It has a strong connection with the noticeably growing mental health crisis of high school students. This study elucidates the relationship between gender role conflict and reports of subjective well-being of teenagers through mixed-methods empirical research based on surveys conducted in two Chinese cities, namely Shenzhen and Yuxi. These two cities are from two provinces of very distinct economic and cultural backgrounds. We believe a comparison between the two cities reveals the unequally distributed social conditions in China. We found that teenagers who possess a higher degree of gender role conflict tend to exhibit more negative emotions and that this relationship is conditioned upon other important factors such as gender, only child status, and socio-economic factors. Furthermore, we discovered that the social environment that is more progressive and open to various gender roles is correlated with higher levels of subjective well-being of teenagers in Shenzhen and Yunnan.Keywords: gender role conflict, mental health conditions, subjective well-being, social environment
Procedia PDF Downloads 1304495 Active Learning through a Game Format: Implementation of a Nutrition Board Game in Diabetes Training for Healthcare Professionals
Authors: Li Jiuen Ong, Magdalin Cheong, Sri Rahayu, Lek Alexander, Pei Ting Tan
Abstract:
Background: Previous programme evaluations from the diabetes training programme conducted in Changi General Hospital revealed that healthcare professionals (HCPs) are keen to receive advance diabetes training and education, specifically in medical, nutritional therapy. HCPs also expressed a preference for interactive activities over didactic teaching methods to enhance their learning. Since the War on Diabetes was initiated by MOH in 2016, HCPs are challenged to be actively involved in continuous education to be better equipped to reduce the growing burden of diabetes. Hence, streamlining training to incorporate an element of fun is of utmost importance. Aim: The nutrition programme incorporates game play using an interactive board game that aims to provide a more conducive and less stressful environment for learning. The board game could be adapted for training of community HCPs, health ambassadors or caregivers to cope with the increasing demand of diabetes care in the hospital and community setting. Methodology: Stages for game’s conception (Jaffe, 2001) were adopted in the development of the interactive board game ‘Sweet Score™ ’ Nutrition concepts and topics in diabetes self-management are embedded into the game elements of varying levels of difficulty (‘Easy,’ ‘Medium,’ ‘Hard’) including activities such as a) Drawing/ sculpting (Pictionary-like) b)Facts/ Knowledge (MCQs/ True or False) Word definition) c) Performing/ Charades To study the effects of game play on knowledge acquisition and perceived experiences, participants were randomised into two groups, i.e., lecture group (control) and game group (intervention), to test the difference. Results: Participants in both groups (control group, n= 14; intervention group, n= 13) attempted a pre and post workshop quiz to assess the effectiveness of knowledge acquisition. The scores were analysed using paired T-test. There was an improvement of quiz scores after attending the game play (mean difference: 4.3, SD: 2.0, P<0.001) and the lecture (mean difference: 3.4, SD: 2.1, P<0.001). However, there was no significance difference in the improvement of quiz scores between gameplay and lecture (mean difference: 0.9, 95%CI: -0.8 to 2.5, P=0.280). This suggests that gameplay may be as effective as a lecture in terms of knowledge transfer. All the13 HCPs who participated in the game rated 4 out of 5 on the likert scale for the favourable learning experience and relevance of learning to their job, whereas only 8 out of 14 HCPs in the lecture reported a high rating in both aspects. 16. Conclusion: There is no known board game currently designed for diabetes training for HCPs.Evaluative data from future training can provide insights and direction to improve the game format and cover other aspects of diabetes management such as self-care, exercise, medications and insulin management. Further testing of the board game to ensure learning objectives are met is important and can assist in the development of awell-designed digital game as an alternative training approach during the COVID-19 pandemic. Learning through gameplay increases opportunities for HCPs to bond, interact and learn through games in a relaxed social setting and potentially brings more joy to the workplace.Keywords: active learning, game, diabetes, nutrition
Procedia PDF Downloads 1774494 A Support Vector Machine Learning Prediction Model of Evapotranspiration Using Real-Time Sensor Node Data
Authors: Waqas Ahmed Khan Afridi, Subhas Chandra Mukhopadhyay, Bandita Mainali
Abstract:
The research paper presents a unique approach to evapotranspiration (ET) prediction using a Support Vector Machine (SVM) learning algorithm. The study leverages real-time sensor node data to develop an accurate and adaptable prediction model, addressing the inherent challenges of traditional ET estimation methods. The integration of the SVM algorithm with real-time sensor node data offers great potential to improve spatial and temporal resolution in ET predictions. In the model development, key input features are measured and computed using mathematical equations such as Penman-Monteith (FAO56) and soil water balance (SWB), which include soil-environmental parameters such as; solar radiation (Rs), air temperature (T), atmospheric pressure (P), relative humidity (RH), wind speed (u2), rain (R), deep percolation (DP), soil temperature (ST), and change in soil moisture (∆SM). The one-year field data are split into combinations of three proportions i.e. train, test, and validation sets. While kernel functions with tuning hyperparameters have been used to train and improve the accuracy of the prediction model with multiple iterations. This paper also outlines the existing methods and the machine learning techniques to determine Evapotranspiration, data collection and preprocessing, model construction, and evaluation metrics, highlighting the significance of SVM in advancing the field of ET prediction. The results demonstrate the robustness and high predictability of the developed model on the basis of performance evaluation metrics (R2, RMSE, MAE). The effectiveness of the proposed model in capturing complex relationships within soil and environmental parameters provide insights into its potential applications for water resource management and hydrological ecosystem.Keywords: evapotranspiration, FAO56, KNIME, machine learning, RStudio, SVM, sensors
Procedia PDF Downloads 764493 A Comparative Analysis of Clustering Approaches for Understanding Patterns in Health Insurance Uptake: Evidence from Sociodemographic Kenyan Data
Authors: Nelson Kimeli Kemboi Yego, Juma Kasozi, Joseph Nkruzinza, Francis Kipkogei
Abstract:
The study investigated the low uptake of health insurance in Kenya despite efforts to achieve universal health coverage through various health insurance schemes. Unsupervised machine learning techniques were employed to identify patterns in health insurance uptake based on sociodemographic factors among Kenyan households. The aim was to identify key demographic groups that are underinsured and to provide insights for the development of effective policies and outreach programs. Using the 2021 FinAccess Survey, the study clustered Kenyan households based on their health insurance uptake and sociodemographic features to reveal patterns in health insurance uptake across the country. The effectiveness of k-prototypes clustering, hierarchical clustering, and agglomerative hierarchical clustering in clustering based on sociodemographic factors was compared. The k-prototypes approach was found to be the most effective at uncovering distinct and well-separated clusters in the Kenyan sociodemographic data related to health insurance uptake based on silhouette, Calinski-Harabasz, Davies-Bouldin, and Rand indices. Hence, it was utilized in uncovering the patterns in uptake. The results of the analysis indicate that inclusivity in health insurance is greatly related to affordability. The findings suggest that targeted policy interventions and outreach programs are necessary to increase health insurance uptake in Kenya, with the ultimate goal of achieving universal health coverage. The study provides important insights for policymakers and stakeholders in the health insurance sector to address the low uptake of health insurance and to ensure that healthcare services are accessible and affordable to all Kenyans, regardless of their socio-demographic status. The study highlights the potential of unsupervised machine learning techniques to provide insights into complex health policy issues and improve decision-making in the health sector.Keywords: health insurance, unsupervised learning, clustering algorithms, machine learning
Procedia PDF Downloads 1484492 New Methods to Acquire Grammatical Skills in A Foreign Language
Authors: Indu ray
Abstract:
In today’s digital world the internet is already flooded with information on how to master grammar in a foreign language. It is well known that one cannot master a language without grammar. Grammar is the backbone of any language. Without grammar there would be no structure to help you speak/write or listen/read. Successful communication is only possible if the form and function of linguistic utterances are firmly related to one another. Grammar has its own rules of use to formulate an easier-to-understand language. Like a tool, grammar formulates our thoughts and knowledge in a meaningful way. Every language has its own grammar. With grammar, we can quickly analyze whether there is any action in this text: (Present, past, future). Knowledge of grammar is an important prerequisite for mastering a foreign language. What’s most important is how teachers can make grammar lessons more interesting for students and thus promote grammar skills more successfully. Through this paper, we discuss a few important methods like (Interactive Grammar Exercises between students, Interactive Grammar Exercise between student to teacher, Grammar translation method, Audio -Visual Method, Deductive Method, Inductive Method). This paper is divided into two sections. In the first part, brief definitions and principles of these approaches will be provided. Then the possibility and the case of combination of this approach will be analyzed. In the last section of the paper, I would like to present a survey result conducted at my university on a few methods to quickly learn grammar in Foreign Language. We divided the Grammatical Skills in six Parts. 1.Grammatical Competence 2. Speaking Skills 3. Phonology 4. The syntax and the Semantics 5. Rule 6. Cognitive Function and conducted a survey among students. From our survey results, we can observe that phonology, speaking ability, syntax and semantics can be improved by inductive method, Audio-visual Method, and grammatical translation method, for grammar rules and cognitive functions we should choose IGE (teacher-student) method. and the IGE method (pupil-pupil). The study’s findings revealed, that the teacher delivery Methods should be blend or fusion based on the content of the Grammar.Keywords: innovative method, grammatical skills, audio-visual, translation
Procedia PDF Downloads 804491 Evaluating Perceived Usability of ProxTalker App Using Arabic Standard Usability Scale: A Student's Perspective
Authors: S. AlBustan, B. AlGhannam
Abstract:
This oral presentation discusses a proposal for a study that evaluates the usability of an evidence based application named ProxTalker App. The significance of this study will inform administration and faculty staff at the Department of Communication Sciences Disorders (CDS), College of Life Sciences, Kuwait University whether the app is a suitable tool to use for CDS students. A case study will be used involving a sample of CDS students taking practicum and internship courses during the academic year 2018/2019. The study will follow a process used by previous study. The process of calculating SUS is well documented and will be followed. ProxTalker App is an alternative and augmentative tool that speech language pathologist (SLP) can use to customize boards for their clients. SLPs can customize different boards using this app for various activities. A board can be created by the SLP to improve and support receptive and expressive language. Using technology to support therapy can aid SLPs to integrate this ProxTalker App as part of their clients therapy. Supported tools, games and motivation are some advantages of incorporating apps during therapy sessions. A quantitative methodology will be used. It involves the utilization of a standard tool that was the was adapted to the Arabic language to accommodate native Arabic language users. The tool that will be utilized in this research is the Arabic Standard Usability Scale (A-SUS) questionnaire which is an adoption of System Usability Scale (SUS). Standard usability questionnaires are reliable, valid and their process is properly documented. This study builds upon the development of A-SUS, which is a psychometrically evaluated questionnaire that targets Arabic native speakers. Results of the usability will give preliminary indication of whether the ProxTalker App under investigation is appropriate to be integrated within the practicum and internship curriculum of CDS. The results of this study will inform the CDS department of this specific app is an appropriate tool to be used for our specific students within our environment because usability depends on the product, environment, and users.Keywords: A-SUS, communication disorders practicum, evidence based app, Standard Usability Scale
Procedia PDF Downloads 1624490 DNA Methylation Score Development for In utero Exposure to Paternal Smoking Using a Supervised Machine Learning Approach
Authors: Cristy Stagnar, Nina Hubig, Diana Ivankovic
Abstract:
The epigenome is a compelling candidate for mediating long-term responses to environmental effects modifying disease risk. The main goal of this research is to develop a machine learning-based DNA methylation score, which will be valuable in delineating the unique contribution of paternal epigenetic modifications to the germline impacting childhood health outcomes. It will also be a useful tool in validating self-reports of nonsmoking and in adjusting epigenome-wide DNA methylation association studies for this early-life exposure. Using secondary data from two population-based methylation profiling studies, our DNA methylation score is based on CpG DNA methylation measurements from cord blood gathered from children whose fathers smoked pre- and peri-conceptually. Each child’s mother and father fell into one of three class labels in the accompanying questionnaires -never smoker, former smoker, or current smoker. By applying different machine learning algorithms to the accessible resource for integrated epigenomic studies (ARIES) sub-study of the Avon longitudinal study of parents and children (ALSPAC) data set, which we used for training and testing of our model, the best-performing algorithm for classifying the father smoker and mother never smoker was selected based on Cohen’s κ. Error in the model was identified and optimized. The final DNA methylation score was further tested and validated in an independent data set. This resulted in a linear combination of methylation values of selected probes via a logistic link function that accurately classified each group and contributed the most towards classification. The result is a unique, robust DNA methylation score which combines information on DNA methylation and early life exposure of offspring to paternal smoking during pregnancy and which may be used to examine the paternal contribution to offspring health outcomes.Keywords: epigenome, health outcomes, paternal preconception environmental exposures, supervised machine learning
Procedia PDF Downloads 1894489 Eye Tracking: Biometric Evaluations of Instructional Materials for Improved Learning
Authors: Janet Holland
Abstract:
Eye tracking is a great way to triangulate multiple data sources for deeper, more complete knowledge of how instructional materials are really being used and emotional connections made. Using sensor based biometrics provides a detailed local analysis in real time expanding our ability to collect science based data for a more comprehensive level of understanding, not previously possible, for teaching and learning. The knowledge gained will be used to make future improvements to instructional materials, tools, and interactions. The literature has been examined and a preliminary pilot test was implemented to develop a methodology for research in Instructional Design and Technology. Eye tracking now offers the addition of objective metrics obtained from eye tracking and other biometric data collection with analysis for a fresh perspective.Keywords: area of interest, eye tracking, biometrics, fixation, fixation count, fixation sequence, fixation time, gaze points, heat map, saccades, time to first fixation
Procedia PDF Downloads 1364488 Context Detection in Spreadsheets Based on Automatically Inferred Table Schema
Authors: Alexander Wachtel, Michael T. Franzen, Walter F. Tichy
Abstract:
Programming requires years of training. With natural language and end user development methods, programming could become available to everyone. It enables end users to program their own devices and extend the functionality of the existing system without any knowledge of programming languages. In this paper, we describe an Interactive Spreadsheet Processing Module (ISPM), a natural language interface to spreadsheets that allows users to address ranges within the spreadsheet based on inferred table schema. Using the ISPM, end users are able to search for values in the schema of the table and to address the data in spreadsheets implicitly. Furthermore, it enables them to select and sort the spreadsheet data by using natural language. ISPM uses a machine learning technique to automatically infer areas within a spreadsheet, including different kinds of headers and data ranges. Since ranges can be identified from natural language queries, the end users can query the data using natural language. During the evaluation 12 undergraduate students were asked to perform operations (sum, sort, group and select) using the system and also Excel without ISPM interface, and the time taken for task completion was compared across the two systems. Only for the selection task did users take less time in Excel (since they directly selected the cells using the mouse) than in ISPM, by using natural language for end user software engineering, to overcome the present bottleneck of professional developers.Keywords: natural language processing, natural language interfaces, human computer interaction, end user development, dialog systems, data recognition, spreadsheet
Procedia PDF Downloads 3154487 A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis
Authors: Mahdi Bazarganigilani
Abstract:
Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer.Keywords: computer-aided diagnosis systems, thermographic analysis, spatio-temporal analysis, image processing, machine learning
Procedia PDF Downloads 2154486 The Impact of Collaborative Writing through Wikis and Blogs on Iranian EFL Learners’ Writing Achievement
Authors: Farhad Ghorbandordinejad, Shamsoddin Aref
Abstract:
Wikis and blogs, defined as educational tools in line with the objectives of collaborative writing, are regarded as innovative ways of writing addressing the problems of conventional types of writing. Although writing in wikis and blogs step in different contexts, they are both aiming at betterment of collaborative writing procedures. It is believed that due to certain reasons bringing in wikis and blogs to learners' life can lead to better performance of writing. This study aimed at dipping into pedagogical aspects of wikis and blogs in the hope of eliminating prior traditional mistakes and bringing students together in a more constructive L2 context. To this end, three groups of intermediate students were experimented in three settings of wiki-group, blog-group and conventional (control) group. Despite conventional group learners, participants in both experimental groups experienced L2 writing in a new telecollaborative context. An achievement test was administered after the treatment to check learners’ degree of improvement in EFL writing. The results of this study provide a deep insight towards the effectiveness of writing in the contexts of wikis and blogs compared with conventional writing procedures. The overall conclusion drawn from the distinction of conventional writing, on one hand, and wikis and blogs, on the other hand, indicates that the latter channels of writing are more constructive for learners’ writing improvements.Keywords: collaborative writing, wikis, blogs, writing achievement
Procedia PDF Downloads 3964485 Unsupervised Learning with Self-Organizing Maps for Named Entity Recognition in the CONLL2003 Dataset
Authors: Assel Jaxylykova, Alexnder Pak
Abstract:
This study utilized a Self-Organizing Map (SOM) for unsupervised learning on the CONLL-2003 dataset for Named Entity Recognition (NER). The process involved encoding words into 300-dimensional vectors using FastText. These vectors were input into a SOM grid, where training adjusted node weights to minimize distances. The SOM provided a topological representation for identifying and clustering named entities, demonstrating its efficacy without labeled examples. Results showed an F1-measure of 0.86, highlighting SOM's viability. Although some methods achieve higher F1 measures, SOM eliminates the need for labeled data, offering a scalable and efficient alternative. The SOM's ability to uncover hidden patterns provides insights that could enhance existing supervised methods. Further investigation into potential limitations and optimization strategies is suggested to maximize benefits.Keywords: named entity recognition, natural language processing, self-organizing map, CONLL-2003, semantics
Procedia PDF Downloads 544484 Evaluation of Student Satisfaction Level Towards Anadolu University E-Services through E-Government Model and Importance Performance Analysis Method
Authors: Emrah Ayhan, Puspa Saananta Irfani, Ömer Doğukan Şahin
Abstract:
Public services, which are important for the order and continuity of social life, have begun to transform into electronic services (E-service) with the development of information and communication technologies in recent years. In particular, as a result of the widespread use of the internet and the increase in citizen demands, it has become necessary to provide public services electronically. In addition to facilitating traditional public services, new types of e-services strengthen the interaction, cooperation, accessibility, transparency, citizen participation (e-governance) and accountability between citizens and the state. In this context, the factors in the literature that are considered to influence the citizens’ satisfaction towards e-services will be examined through the example of student satisfaction with the e-services (Anasis, Mergen, E-mail, library, cafeteria and other transactions) offered by Anadolu University (Eskişehir, Türkiye) through university website and mobile application. The data for the analysis will be obtained from the survey research that will be used to measure user satisfaction with university e-services of 1,000 students studying at 9 different faculties and graduate schools of Anadolu University. These data will be analyzed with a unique methodology that uses the E-GovQual model and Importance Performance Analysis (IPA) methods together. The e-GovQual model serves as a framework for evaluating the quality of e-services, allowing a detailed understanding of students' perceptions. On the other hand, the IPA method will be used to determine the performance level of Anadolu University in the provision of e-services and to understand the areas that require improvement and student expectations. Strategic goals and suggestions will be made to decision-makers, students, and researchers in line with the findings obtained in the research. Thus, it is planned to contribute to e-governance and user satisfaction in educational institutions and to reveal practical implications for optimizing online platforms to better serve student needs.Keywords: e-service, Anadolu university, student satisfaction, e-governance, e-govqual, importance performance analysis
Procedia PDF Downloads 634483 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack
Authors: Varun Agarwal
Abstract:
Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images
Procedia PDF Downloads 1364482 The Psycho-Linguistic Aspect of Translation Gaps in Teaching English for Specific Purposes
Authors: Elizaveta Startseva, Elena Notina, Irina Bykova, Valentina Ulyumdzhieva, Natallia Zhabo
Abstract:
With the various existing models of intercultural communication that contain a vast number of stages for foreign language acquisition, there is a need for conscious perception of the foreign culture. Such a process is associated with the emergence of linguistic conflict with the consistent students’ desire to solve the problem of the language differences, along with cultural discrepancies. The aim of this study is to present the modern ways and methods of removing psycholinguistic conflict through skills development in professional translation and intercultural communication. The study was conducted in groups of 1-4-year students of Medical Institute and Agro-Technological Institute RUDN university. In the course of training, students got knowledge in such disciplines as basic grammar and vocabulary of the English language, phonetics, lexicology, introduction to linguistics, theory of translation, annotating and referencing media texts and texts in specialty. The students learned to present their research work, participated in the University and exit conferences with their reports and presentations. Common strategies of removing linguistic and cultural conflict can be attributed to the development of such abilities of a language personality as a commitment to communication and cooperation, the formation of cultural awareness and empathy of other cultures of the individual, realistic self-esteem, emotional stability, tolerance, etc. The process of mastering a foreign language and culture of the target language leads to a reduplication of linguistic identity, which leads to successive formation of the so-called 'secondary linguistic personality.' In our study, we tried to approach the problem comprehensively, focusing on the translation gaps for technical and non-technical language still missing such a typology which could classify all of the lacunas on the same principle. When obtaining the background knowledge, students learn to overcome the difficulties posed by the national-specific and linguistic differences of cultures in contact, i.e., to eliminate the gaps (to fill in and compensate). Compensation gaps is a means of fixing it, the initial phase of elimination, followed in some cases and some not is filling semantic voids (plenus). The concept of plenus occurs in most cases of translation gaps, for example in the transcription and transliteration of (intercultural and exoticism), the replication (reproduction of the morphemic structure of words or idioms. In all the above cases the task of the translator is to ensure an identical response of the receptors of the original and translated texts, since any statement is created with the goal of obtaining communicative effect, and hence pragmatic potential is the most important part of its contents. The practical value of our work lies in improving the methodology of teaching English for specific purposes on the basis of psycholinguistic concept of the secondary language personality.Keywords: lacuna, language barrier, plenus, secondary language personality
Procedia PDF Downloads 2954481 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 299