Search results for: collaboration learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8140

Search results for: collaboration learning

1840 Using Automated Agents to Facilitate Instructions in a Large Online Course

Authors: David M Gilstrap

Abstract:

In an online course with a large enrollment, the potential exists for the instructor to become overburdened with having to respond to students’ emails, which consequently decreases the instructor’s efficiency in teaching the course. Repetition of instructions is an effective way of reducing confusion among students, which in turn increases their efficiencies, as well. World of Turf is the largest online course at Michigan State University, which employs Brightspace as its management system (LMS) software. Recently, the LMS upgraded its capabilities to utilize agents, which are auto generated email notifications to students based on certain criteria. Agents are additional tools that can enhance course design. They can be run on-demand or according to a schedule. Agents can be timed to effectively remind students of approaching deadlines. The content of these generated emails can also include reinforced instructions. With a large online course, even a small percentage of students that either do not read or do not comprehend the course syllabus or do not notice instructions on course pages can result in numerous emails to the instructor, often near the deadlines for assignments. Utilizing agents to decrease the number of emails from students has enabled the instructor to efficiently instruct more than one thousand students per semester without any graduate student teaching assistants.

Keywords: agents, Brightspace, large enrollment, learning management system, repetition of instructions

Procedia PDF Downloads 205
1839 Expansive-Restrictive Style: Conceptualizing Knowledge Workers

Authors: Ram Manohar Singh, Meenakshi Gupta

Abstract:

Various terms such as ‘learning style’, ‘cognitive style’, ‘conceptual style’, ‘thinking style’, ‘intellectual style’ are used in literature to refer to an individual’s characteristic and consistent approach to organizing and processing information. However, style concepts are criticized for mutually overlapping definitions and confusing classification. This confusion should be addressed at the conceptual as well as empirical level. This paper is an attempt to bridge this gap in literature by proposing a new concept: expansive-restrictive intellectual style based on phenomenological analysis of an auto-ethnography and interview of 26 information technology (IT) professionals working in knowledge intensive organizations (KIOs) in India. Expansive style is an individual’s preference to expand his/her horizon of knowledge and understanding by gaining real meaning and structure of his/her work. On the contrary restrictive style is characterized by an individual’s preference to take minimalist approach at work reflected in executing a job efficiently without an attempt to understand the real meaning and structure of the work. The analysis suggests that expansive-restrictive style has three dimensions: (1) field dependence-independence (2) cognitive involvement and (3) epistemological beliefs.

Keywords: expansive, knowledge workers, restrictive, style

Procedia PDF Downloads 427
1838 A Data Science Pipeline for Algorithmic Trading: A Comparative Study in Applications to Finance and Cryptoeconomics

Authors: Luyao Zhang, Tianyu Wu, Jiayi Li, Carlos-Gustavo Salas-Flores, Saad Lahrichi

Abstract:

Recent advances in AI have made algorithmic trading a central role in finance. However, current research and applications are disconnected information islands. We propose a generally applicable pipeline for designing, programming, and evaluating algorithmic trading of stock and crypto tokens. Moreover, we provide comparative case studies for four conventional algorithms, including moving average crossover, volume-weighted average price, sentiment analysis, and statistical arbitrage. Our study offers a systematic way to program and compare different trading strategies. Moreover, we implement our algorithms by object-oriented programming in Python3, which serves as open-source software for future academic research and applications.

Keywords: algorithmic trading, AI for finance, fintech, machine learning, moving average crossover, volume weighted average price, sentiment analysis, statistical arbitrage, pair trading, object-oriented programming, python3

Procedia PDF Downloads 151
1837 A Study of Primary School Parents’ Interaction with Teachers’ in Malaysia

Authors: Shireen Simon

Abstract:

This study explores the interactions between primary school parents-teachers in Malaysia. Schools in the country are organized to promote participation between parents and teachers. Exchanges of dialogue are most valued between parents and teachers because teachers are in daily contact with pupils’ and the first line of communication with parents. Teachers are considered by parents as the most important connection to improve children learning and well-being. Without a good communication, interaction or involvement between parent-teacher might tarnish a pupils’ performance in school. This study tries to find out multiple emotions among primary school parents-teachers, either estranged or cordial, when they communicate in a multi-cultured society in Malaysia. Important issues related to parent-teacher interactions are discussed further. Parents’ involvement in an effort to boost better education in school is significantly more effective with parents’ involvement. Lastly, this article proposes some suggestions for parents and teachers to build a positive relationship with effective communication and establish more democratic open door policy.

Keywords: multi-cultured society, parental involvement, parent-teacher relationships, parents’ interaction

Procedia PDF Downloads 252
1836 A Dynamic Neural Network Model for Accurate Detection of Masked Faces

Authors: Oladapo Tolulope Ibitoye

Abstract:

Neural networks have become prominent and widely engaged in algorithmic-based machine learning networks. They are perfect in solving day-to-day issues to a certain extent. Neural networks are computing systems with several interconnected nodes. One of the numerous areas of application of neural networks is object detection. This is a prominent area due to the coronavirus disease pandemic and the post-pandemic phases. Wearing a face mask in public slows the spread of the virus, according to experts’ submission. This calls for the development of a reliable and effective model for detecting face masks on people's faces during compliance checks. The existing neural network models for facemask detection are characterized by their black-box nature and large dataset requirement. The highlighted challenges have compromised the performance of the existing models. The proposed model utilized Faster R-CNN Model on Inception V3 backbone to reduce system complexity and dataset requirement. The model was trained and validated with very few datasets and evaluation results shows an overall accuracy of 96% regardless of skin tone.

Keywords: convolutional neural network, face detection, face mask, masked faces

Procedia PDF Downloads 72
1835 Perceptions of Senior Academics in Teacher Education Colleges Regarding the Integration of Digital Games during the Pandemic

Authors: Merav Hayakac, Orit Avidov-Ungarab

Abstract:

The current study adopted an interpretive-constructivist approach to examine how senior academics from a large sample of Israeli teacher education colleges serving general or religious populations perceived the integration of digital games into their teacher instruction and what their policy and vision were in this regard in the context of the COVID-19 pandemic. Half the participants expressed a desire to integrate digital games into their teaching and learning but acknowledged that this practice was uncommon. Only a small minority believed they had achieved successful integration, with doubt and skepticism expressed by some religious colleges. Most colleges had policies encouraging technology integration supported by ongoing funding. Although a considerable gap between policy and implementation remained, the COVID-19 pandemic was viewed as having accelerated the integration of digital games into pre-service teacher instruction. The findings suggest that discussions around technology-related vision and policy and their translation into practice should relate to the specific cultural needs and academic preparedness of the population(s) served by the college.

Keywords: COVID-19, digital games, pedagogy, teacher education colleges

Procedia PDF Downloads 100
1834 Regulation of Cultural Relationship between Russia and Ukraine after Crimea’s Annexation: A Comparative Socio-Legal Study

Authors: Elena Sherstoboeva, Elena Karzanova

Abstract:

This paper explores the impact of the annexation of Crimea on the regulation of live performances and tour management of Russian pop music performers in Ukraine and of Ukrainian performers in Russia. Without a doubt, the cultural relationship between Russia and Ukraine is not limited to this issue. Yet concert markets tend to respond particularly rapidly to political, economic, and social changes, especially in Russia and Ukraine, where the high level of digital piracy means that the music businesses mainly depend upon income from performances rather than from digital rights sales. This paper argues that the rules formed in both countries after Russia’s annexation of Crimea in 2014 have contributed to the separation of a single cultural space that had existed in Soviet and Post-Soviet Russia and Ukraine before the annexation. These rules have also facilitated performers’ self-censorship and increased the politicisation of the music businesses in the two neighbouring countries. This study applies a comparative socio-legal approach to study Russian and Ukrainian live events and tour regulation. A qualitative analysis of Russian and Ukrainian national and intergovernmental legal frameworks is applied to examine formal regulations. Soviet and early post-Soviet laws and policies are also studied, but only to the extent that they help to track the changes in the Russian–Ukrainian cultural relationship. To identify and analyse the current informal rules, the study design includes in-depth semi-structured interviews with 30 live event or tour managers working in Russia and Ukraine. A case study is used to examine how the Eurovision Song Contest, an annual international competition, has played out within the Russian–Ukrainian conflict. The study suggests that modern Russian and Ukrainian frameworks for live events and tours have developed Soviet regulatory traditions when cultural policies served as a means of ideological control. At the same time, contemporary regulations mark a considerable perspective shift, as the previous rules have been aimed at maintaining close cultural connections between the Russian and Ukrainian nations. Instead of collaboration, their current frameworks mostly serve as forms of repression, implying that performers must choose only one national market in which to work. The regulatory instruments vary and often impose limitations that typically exist in non-democratic regimes to restrict foreign journalism, such as visa barriers or bans on entry. The more unexpected finding is that, in comparison with Russian law, Ukrainian regulations have created more obstacles to the organisation of live tours and performances by Russian artists in Ukraine. Yet this stems from commercial rather than political factors. This study predicts that the more economic challenges the Russian or Ukrainian music businesses face, the harsher the regulations will be regarding the organisation of live events or tours in the other country. This study recommends that international human rights organisations and non-governmental organisations develop and promote specific standards for artistic rights and freedoms, given the negative effects of the increasing politicisation of the entertainment business and cultural spheres to freedom of expression and cultural rights and pluralism.

Keywords: annexation of Crimea, artistic freedom, censorship, cultural policy

Procedia PDF Downloads 120
1833 Artificial Intelligence and Distributed System Computing: Application and Practice in Real Life

Authors: Lai Junzhe, Wang Lihao, Burra Venkata Durga Kumar

Abstract:

In recent years, due to today's global technological advances, big data and artificial intelligence technologies have been widely used in various industries and fields, playing an important role in reducing costs and increasing efficiency. Among them, artificial intelligence has derived another branch in its own continuous progress and the continuous development of computer personnel, namely distributed artificial intelligence computing systems. Distributed AI is a method for solving complex learning, decision-making, and planning problems, characterized by the ability to take advantage of large-scale computation and the spatial distribution of resources, and accordingly, it can handle problems with large data sets. Nowadays, distributed AI is widely used in military, medical, and human daily life and brings great convenience and efficient operation to life. In this paper, we will discuss three areas of distributed AI computing systems in vision processing, blockchain, and smart home to introduce the performance of distributed systems and the role of AI in distributed systems.

Keywords: distributed system, artificial intelligence, blockchain, IoT, visual information processing, smart home

Procedia PDF Downloads 115
1832 Investigations of Protein Aggregation Using Sequence and Structure Based Features

Authors: M. Michael Gromiha, A. Mary Thangakani, Sandeep Kumar, D. Velmurugan

Abstract:

The main cause of several neurodegenerative diseases such as Alzhemier, Parkinson, and spongiform encephalopathies is formation of amyloid fibrils and plaques in proteins. We have analyzed different sets of proteins and peptides to understand the influence of sequence-based features on protein aggregation process. The comparison of 373 pairs of homologous mesophilic and thermophilic proteins showed that aggregation-prone regions (APRs) are present in both. But, the thermophilic protein monomers show greater ability to ‘stow away’ the APRs in their hydrophobic cores and protect them from solvent exposure. The comparison of amyloid forming and amorphous b-aggregating hexapeptides suggested distinct preferences for specific residues at the six positions as well as all possible combinations of nine residue pairs. The compositions of residues at different positions and residue pairs have been converted into energy potentials and utilized for distinguishing between amyloid forming and amorphous b-aggregating peptides. Our method could correctly identify the amyloid forming peptides at an accuracy of 95-100% in different datasets of peptides.

Keywords: aggregation, amyloids, thermophilic proteins, amino acid residues, machine learning techniques

Procedia PDF Downloads 617
1831 Multi-Modal Visualization of Working Instructions for Assembly Operations

Authors: Josef Wolfartsberger, Michael Heiml, Georg Schwarz, Sabrina Egger

Abstract:

Growing individualization and higher numbers of variants in industrial assembly products raise the complexity of manufacturing processes. Technical assistance systems considering both procedural and human factors allow for an increase in product quality and a decrease in required learning times by supporting workers with precise working instructions. Due to varying needs of workers, the presentation of working instructions leads to several challenges. This paper presents an approach for a multi-modal visualization application to support assembly work of complex parts. Our approach is integrated within an interconnected assistance system network and supports the presentation of cloud-streamed textual instructions, images, videos, 3D animations and audio files along with multi-modal user interaction, customizable UI, multi-platform support (e.g. tablet-PC, TV screen, smartphone or Augmented Reality devices), automated text translation and speech synthesis. The worker benefits from more accessible and up-to-date instructions presented in an easy-to-read way.

Keywords: assembly, assistive technologies, augmented reality, manufacturing, visualization

Procedia PDF Downloads 168
1830 Barriers and Enablers to Climate and Health Adaptation Planning in Small Urban Areas in the Great Lakes Region

Authors: Elena Cangelosi, Wayne Beyea

Abstract:

This research expands the resilience planning literature by exploring the barriers and enablers to climate and health adaptation planning for small urban, coastal Great Lakes communities. With funding from the United States Centers for Disease Control and Prevention (CDC) Climate Ready City and States Initiative, this research took place during a 3-year pilot intervention project which integrates urban planning and public health. The project used the CDC’s Building Resilience Against Climate Effects (BRACE) framework to prevent or reduce the human health impacts from climate change in Marquette County, Michigan. Using a deliberation with the analysis planning process, interviews, focus groups, and community meetings with over 25 stakeholder groups and over 100 participants identified the area’s climate-related health concerns and adaptation interventions to address those concerns. Marquette County, on the shores of Lake Superior, the largest of the Great Lakes, was selected for the project based on their existing adaptive capacity and proactive approach to climate adaptation planning. With Marquette County as the context, this study fills a gap in the adaptation literature, which currently heavily emphasizes large-urban or agriculturally-based rural areas, and largely neglects small urban areas. This research builds on the qualitative case-study, survey, and interview approach established by previous researchers on contextual barriers and enablers for adaptation planning. This research uses a case study approach, including surveys and interviews of public officials, to identify the barriers and enablers for climate and health adaptation planning for small-urban areas within a large, non-agricultural, Great Lakes county. The researchers hypothesize that the barriers and enablers will, in some cases, overlap those found in other contexts, but in many cases, will be unique to a rural setting. The study reveals that funding, staff capacity, and communication across a large, rural geography act as the main barriers, while strong networks and collaboration, interested leaders, and community interest through a strong human-land connection act as the primary enablers. Challenges unique to rural areas are revealed, including weak opportunities for grant funding, large geographical distances, communication challenges with an aging and remote population, and the out-migration of education residents. Enablers that may be unique to rural contexts include strong collaborative relationships across jurisdictions for regional work and strong connections between residents and the land. As the factors that enable and prevent climate change planning are highly contextual, understanding, and appropriately addressing the unique factors at play for small-urban communities is key for effective planning in those areas. By identifying and addressing the barriers and enablers to climate and health adaptation planning for small-urban, coastal areas, this study can help Great Lakes communities appropriately build resilience to the adverse impacts of climate change. In addition, this research expands the breadth of research and understanding of the challenges and opportunities planners confront in the face of climate change.

Keywords: climate adaptation and resilience, climate change adaptation, climate change and urban resilience, governance and urban resilience

Procedia PDF Downloads 121
1829 The Relationships between Second Language Proficiency (L2) and Interpersonal Relationships of Students and Teachers: Pilot Study in Wenzhou-Kean University

Authors: Hu Yinyao

Abstract:

Learning and using a second language have become more and more common in daily life. Understanding the complexity of second language proficiency can help students develop their interpersonal relationships with their friends and professors, even enhancing intimacy. This paper examines Wenzhou-Kean University students' second language proficiency and interpersonal relationships. The purpose of the research was to explore the relationship between second language proficiency, extent of intimacy, and interpersonal relationships of the 100 Wenzhou-Kean University students. A mixed methodology was utilized in the research study. Student respondents from Wenzhou-Kean University were chosen randomly by using random sampling. The data analysis used descriptive data in terms of figures and thematical data in the table. The researcher found that Wenzhou-Kean University’s students have shown lower intermediate level of second language proficiency and that their intimacy is middle when using a second language. Especially when talking about some sensitive topics, students tend not to use a second language due to low proficiency. This research project has a strong implication on interpersonal relationships and second language proficiency. The outcome of the study would be greatly helpful to enhance the interpersonal relationship and intimacy between students and students, students and professors who use.

Keywords: Interpersonal relationship, second language proficiency, intimacy, education, univeristy students

Procedia PDF Downloads 46
1828 Assessing the Threat of Dual Citizenship to State Interests: A Case Study of Sri Lanka

Authors: Kasuri Kaushalya Pathirana Pahamunu Pathirannehelage

Abstract:

Recent changes in the international system challenged the traditional idea of citizenship, prompting a need for a clearer definition. With the rapid globalization and shifting geopolitical dynamics, the concept of dual citizenship has emerged as a focal point of debate regarding its implications for state interests. As borders become less rigid and people identify with multiple nationalities, the traditional idea of citizenship is changing. This change is especially important given the increased connections between countries and the challenges that sovereign states face. While many countries accept dual citizenship, others are hesitant, seeing it as a potential threat to their national goals. This difference underscores the complicated relationship between national interests and the evolving concept of citizenship in the modern world. This study seeks to critically assess whether dual citizenship represents a significant threat to sovereign states by examining its effects across economic, social, and political sectors. Employing qualitative methodologies, including the analysis of published articles, reports, government acts, and a mix of primary and secondary sources, this research delves into the complexities surrounding dual citizenship. The findings reveal a nuanced landscape, showcasing both positive and negative impacts on state sovereignty and international cooperation. By exploring the tension between multinationalism and state interests, particularly through the lens of Sri Lanka’s evolving policies, this study aims to contribute valuable insights to the fields of political science and international relations, ultimately addressing the question of dual citizenship's implications for state interests. The evolving framework of dual citizenship in Sri Lanka provides a unique opportunity to examine its implications for various aspects of the nation. Specifically, this study will analyse the impact of dual citizenship on the country's economy, international cooperation, and social development. By exploring these dimensions, the research aims to provide a comprehensive understanding of how dual citizenship influences not only individual rights but also broader state interests and development goals within the context of globalization. It’s crucial to assess the potential threats posed by dual citizenship, as it can impact national security, economic stability, social unity, and political issues within countries. Understanding these effects is important for policymakers and researchers as they work to balance globalization with the need to protect state sovereignty. Dual citizenship presents a complex interplay of challenges and benefits to state interests, influencing critical areas such as international cooperation and state sovereignty. On the one hand, it can foster stronger ties between nations, enhance economic collaboration, and encourage cultural exchange, ultimately contributing to more robust international relationships. On the other hand, it may create tensions related to national identity, complicate governance, and raise concerns about loyalty and allegiance, which can challenge the notion of state sovereignty. As countries navigate these dual realities, it becomes essential to carefully assess and manage the implications of dual citizenship. By doing so, states can harness the potential advantages while addressing the associated risks, ultimately striving for a balance that promotes both national interests and international relations.

Keywords: dual citizenship, globalization, sustainable development, nationalism

Procedia PDF Downloads 22
1827 Lecturer’s Perception of the Role of Information and Communication Technology in Office Technology and Management Programme in Polytechnics in Nigeria

Authors: Felicia Kikelomo Oluwalola

Abstract:

This study examined lecturers’ perception of the roles of Information and Communication Technology (ICT) in Office Technology and Management (OTM) programme in polytechnics, in South-West, Nigeria. Descriptive survey design was adopted in this study. Purposive sampling technique was used to select all OTM lecturers in the nine (9) Polytechnics in the South-West, Nigeria. A 4-rating scale was adopted questionnaire titled ‘Lecturers’ Perception of the Roles of ICT in OTM Programme in Polytechnics’ with a reliability index of 0.93 was used. Two research questions were answered, and one null hypothesis was tested for the study. Data collected was analysed using descriptive statistics, independent t-test and one way Analysis of Variance (ANOVA) at 0.05 level of significance. The study revealed that lecturers have right perception of the roles of ICT in OTM programme in polytechnics. Also, the study revealed no significant difference between the mean perception of male and female lecturers in office technology and management. Based on the findings, the study recommended among others that recruitment of professionals in the field of ICT is necessary for effective teaching learning to be established and OTM curriculum should be constantly reviewed to enhance some ICT package that is acceptable globally.

Keywords: communication, information, perception, technology

Procedia PDF Downloads 458
1826 Indigenous Storytelling: Transformation for Health, Emotions and Spirituality

Authors: Annabelle Nelson

Abstract:

This literature review documents indigenous storytelling as it functions to help humans face adversity and find emotional strength by aligning with nature. Archetypes in stories can transform the inner world from a Jungian perspective. Joseph Campbell’s hero-heroine cycle depicts the structure of stories to include a call to adventure, tests, helpers, and a return as the transformed person can help him or herself and even help their communities. By showcasing certain character traits, such as bravery or perseverance or humility, stories give maps for humans to face adversity. The main characters or archetypes in stories, as Carl Jung posited, provide a vehicle that can open consciousness if a listener identifies with the character. As documented in the review, this has many benefits. First, it can open consciousness to the collective unconscious for insight and intuitive clarity, as well as healing and release emotional trauma. The resultant spacious quality of consciousness allows the spiritual self to present insights to conscious awareness. Research in applied youth development programs demonstrates the utility of storytelling to prompt healthy choices and transform difficult life experience into success.

Keywords: archetypes, learning, storytelling, transformation

Procedia PDF Downloads 190
1825 Influence of Radio Frequency Identification Technology at Cost of Supply Chain as a Driver for the Generation of Competitive Advantage

Authors: Mona Baniahmadi, Saied Haghanifar

Abstract:

Radio Frequency Identification (RFID) is regarded as a promising technology for the optimization of supply chain processes since it improves manufacturing and retail operations from forecasting demand for planning, managing inventory, and distribution. This study precisely aims at learning to know the RFID technology and at explaining how it can concretely be used for supply chain management and how it can help improving it in the case of Hejrat Company which is located in Iran and works on the distribution of medical drugs and cosmetics. This study uses some statistical analysis to calculate the expected benefits of an integrated RFID system on supply chain obtained through competitive advantages increases with decreasing cost factor. The study investigates how the cost of storage process, labor cost, the cost of missing goods, inventory management optimization, on-time delivery, order cost, lost sales and supply process optimization affect the performance of the integrated RFID supply chain regarding cost factors and provides a competitive advantage.

Keywords: cost, competitive advantage, radio frequency identification, supply chain

Procedia PDF Downloads 279
1824 Challenges in Promoting Software Usability and Applying Principles of Usage-Centred Design in Saudi Arabia

Authors: Kholod J. Alotaibi, Andrew M. Gravell

Abstract:

A study was conducted in which 212 software developers in higher education institutions in Saudi Arabia were surveyed to gather an indication of their understanding of the concept of usability, their acceptance of its importance, and to see how well its principles are applied. Interviews were then held with 20 of these developers, and a demonstration of Usage-Centred Design was attempted, a highly usability focused software development methodology, at one select institution for its redesign of an e-learning exam system interface during the requirements gathering phase. The study confirms the need to raise awareness of usability and its importance, and for Usage-Centred Design to be applied in its entirety, also need to encourage greater consultation with potential end-users of software and collaborative practices. The demonstration of Usage-Centred Design confirmed its ability to capture usability requirements more completely and precisely than would otherwise be the case, and hence its usefulness for developers concerned with improving software usability. The concluding discussion delves on the challenges for promoting usability and Usage-Centred Design in light of the research results and findings and recommendations are made for the same.

Keywords: usability, usage-centred, applying principles of usage-centred, Saudi Arabia

Procedia PDF Downloads 396
1823 A Neural Network Based Clustering Approach for Imputing Multivariate Values in Big Data

Authors: S. Nickolas, Shobha K.

Abstract:

The treatment of incomplete data is an important step in the data pre-processing. Missing values creates a noisy environment in all applications and it is an unavoidable problem in big data management and analysis. Numerous techniques likes discarding rows with missing values, mean imputation, expectation maximization, neural networks with evolutionary algorithms or optimized techniques and hot deck imputation have been introduced by researchers for handling missing data. Among these, imputation techniques plays a positive role in filling missing values when it is necessary to use all records in the data and not to discard records with missing values. In this paper we propose a novel artificial neural network based clustering algorithm, Adaptive Resonance Theory-2(ART2) for imputation of missing values in mixed attribute data sets. The process of ART2 can recognize learned models fast and be adapted to new objects rapidly. It carries out model-based clustering by using competitive learning and self-steady mechanism in dynamic environment without supervision. The proposed approach not only imputes the missing values but also provides information about handling the outliers.

Keywords: ART2, data imputation, clustering, missing data, neural network, pre-processing

Procedia PDF Downloads 276
1822 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics

Authors: Farhad Asadi, Mohammad Javad Mollakazemi

Abstract:

In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.

Keywords: time series, fluctuation in statistical characteristics, optimal learning, change-point algorithm

Procedia PDF Downloads 429
1821 Using Technology to Deliver and Scale Early Childhood Development Services in Resource Constrained Environments: Case Studies from South Africa

Authors: Sonja Giese, Tess N. Peacock

Abstract:

South African based Innovation Edge is experimenting with technology to drive positive behavior change, enable data-driven decision making, and scale quality early years services. This paper uses five case studies to illustrate how technology can be used in resource-constrained environments to first, encourage parenting practices that build early language development (using a stage-based mobile messaging pilot, ChildConnect), secondly, to improve the quality of ECD programs (using a mobile application, CareUp), thirdly, how to affordably scale services for the early detection of visual and hearing impairments (using a mobile tool, HearX), fourthly, how to build a transparent and accountable system for the registration and funding of ECD (using a blockchain enabled platform, Amply), and finally enable rapid data collection and feedback to facilitate quality enhancement of programs at scale (the Early Learning Outcomes Measure). ChildConnect and CareUp were both developed using a design based iterative research approach. The usage and uptake of ChildConnect and CareUp was evaluated with qualitative and quantitative methods. Actual child outcomes were not measured in the initial pilots. Although parents who used and engaged on either platform felt more supported and informed, parent engagement and usage remains a challenge. This is contrast to ECD practitioners whose usage and knowledge with CareUp showed both sustained engagement and knowledge improvement. HearX is an easy-to-use tool to identify hearing loss and visual impairment. The tool was tested with 10000 children in an informal settlement. The feasibility of cost-effectively decentralising screening services was demonstrated. Practical and financial barriers remain with respect to parental consent and for successful referrals. Amply uses mobile and blockchain technology to increase impact and accountability of public services. In the pilot project, Amply is being used to replace an existing paper-based system to register children for a government-funded pre-school subsidy in South Africa. Early Learning Outcomes Measure defines what it means for a child to be developmentally ‘on track’ at aged 50-69 months. ELOM administration is enabled via a tablet which allows for easy and accurate data collection, transfer, analysis, and feedback. ELOM is being used extensively to drive quality enhancement of ECD programs across multiple modalities. The nature of ECD services in South Africa is that they are in large part provided by disconnected private individuals or Non-Governmental Organizations (in contrast to basic education which is publicly provided by the government). It is a disparate sector which means that scaling successful interventions is that much harder. All five interventions show the potential of technology to support and enhance a range of ECD services, but pathways to scale are still being tested.

Keywords: assessment, behavior change, communication, data, disabilities, mobile, scale, technology, quality

Procedia PDF Downloads 135
1820 Using Speech Emotion Recognition as a Longitudinal Biomarker for Alzheimer’s Diseases

Authors: Yishu Gong, Liangliang Yang, Jianyu Zhang, Zhengyu Chen, Sihong He, Xusheng Zhang, Wei Zhang

Abstract:

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide and is characterized by cognitive decline and behavioral changes. People living with Alzheimer’s disease often find it hard to complete routine tasks. However, there are limited objective assessments that aim to quantify the difficulty of certain tasks for AD patients compared to non-AD people. In this study, we propose to use speech emotion recognition (SER), especially the frustration level, as a potential biomarker for quantifying the difficulty patients experience when describing a picture. We build an SER model using data from the IEMOCAP dataset and apply the model to the DementiaBank data to detect the AD/non-AD group difference and perform longitudinal analysis to track the AD disease progression. Our results show that the frustration level detected from the SER model can possibly be used as a cost-effective tool for objective tracking of AD progression in addition to the Mini-Mental State Examination (MMSE) score.

Keywords: Alzheimer’s disease, speech emotion recognition, longitudinal biomarker, machine learning

Procedia PDF Downloads 115
1819 Improving System Performance through User's Resource Access Patterns

Authors: K. C. Wong

Abstract:

This paper demonstrates a number of examples in the hope to shed some light on the possibility of designing future operating systems in a more adaptation-based manner. A modern operating system, we conceive, should possess the capability of 'learning' in such a way that it can dynamically adjust its services and behavior according to the current status of the environment in which it operates. In other words, a modern operating system should play a more proactive role during the session of providing system services to users. As such, a modern operating system is expected to create a computing environment, in which its users are provided with system services more matching their dynamically changing needs. The examples demonstrated in this paper show that user's resource access patterns 'learned' and determined during a session can be utilized to improve system performance and hence to provide users with a better and more effective computing environment. The paper also discusses how to use the frequency, the continuity, and the duration of resource accesses in a session to quantitatively measure and determine user's resource access patterns for the examples shown in the paper.

Keywords: adaptation-based systems, operating systems, resource access patterns, system performance

Procedia PDF Downloads 146
1818 Guard@Lis: Birdwatching Augmented Reality Mobile Application

Authors: Jose A. C. Venancio, Alexandrino J. M. Goncalves, Anabela Marto, Nuno C. S. Rodrigues, Rita M. T. Ascenso

Abstract:

Nowadays, it is common to find people who are concerned about getting away from the everyday life routine, looking forward to outcome well-being and pleasant emotions. Trying to disconnect themselves from the usual places of work and residence, they pursue different places, such as tourist destinations, aiming to have unexpected experiences. In order to make this exploration process easier, cities and tourism agencies seek new opportunities and solutions, creating routes with diverse cultural landmarks, including natural landscapes and historic buildings. These offers frequently aspire to the preservation of the local patrimony. In nature and wildlife, birdwatching is an activity that has been increasing, both in cities and in the countryside. This activity seeks to find, observe and identify the diversity of birds that live permanently or temporarily in these places, and it is usually supported by birdwatching guides. Leiria (Portugal) is a well-known city, presenting several historical and natural landmarks, like the Lis river and the castle where King D. Dinis lived in the 13th century. Along the Lis River, a conservation process was carried out and a pedestrian route was created (Polis project). This is considered an excellent spot for birdwatching, especially for the gray heron (Ardea cinerea) and for the kingfisher (Alcedo atthis). There is also a route through the city, from the riverside to the castle, which encloses a characterized variety of species, such as the barn swallow (Hirundo rustica), known for passing through different seasons of the year. Birdwatching is sometimes a difficult task since it is not always possible to see all bird species that inhabit a given place. For this reason, a need to create a technological solution was found to ease this activity. This project aims to encourage people to learn about the various species of birds that live along the Lis River and to promote the preservation of nature in a conscious way. This work is being conducted in collaboration with Leiria Municipal Council and with the Environmental Interpretation Centre. It intends to show the majesty of the Lis River, a place visited daily by several people, such as children and families, who use it for didactic and recreational activities. We are developing a mobile multi-platform application (Guard@Lis) that allows bird species to be observed along a given route, using representative digital 3D models through the integration of augmented reality technologies. Guard@Lis displays a route with points of interest for birdwatching and a list of species for each point of interest, along with scientific information, images and sounds for every species. For some birds, to ensure their observation, the user can watch them in loco, in their real and natural environment, with their mobile device by means of augmented reality, giving the sensation of presence of these birds, even if they cannot be seen in that place at that moment. The augmented reality feature is being developed with Vuforia SDK, using a hybrid approach to recognition and tracking processes, combining marks and geolocation techniques. This application proposes routes and notifies users with alerts for the possibility of viewing models of augmented reality birds. The final Guard@Lis prototype will be tested by volunteers in-situ.

Keywords: augmented reality, birdwatching route, mobile application, nature tourism, watch birds using augmented reality

Procedia PDF Downloads 178
1817 Overview of Research Contexts about XR Technologies in Architectural Practice

Authors: Adeline Stals

Abstract:

The transformation of architectural design practices has been underway for almost forty years due to the development and democratization of computer technology. New and more efficient tools are constantly being proposed to architects, amplifying a technological wave that sometimes stimulates them, sometimes overwhelms them, depending essentially on their digital culture and the context (socio-economic, structural, organizational) in which they work on a daily basis. Our focus is on VR, AR, and MR technologies dedicated to architecture. The commercialization of affordable headsets like the Oculus Rift, the HTC Vive or more low-tech like the Google CardBoard, makes it more accessible to benefit from these technologies. In that regard, researchers report the growing interest of these tools for architects, given the new perspectives they open up in terms of workflow, representation, collaboration, and client’s involvement. However, studies rarely mention the consequences of the sample studied on results. Our research provides an overview of VR, AR, and MR researches among a corpus of papers selected from conferences and journals. A closer look at the sample of these research projects highlights the necessity to take into consideration the context of studies in order to develop tools truly dedicated to the real practices of specific architect profiles. This literature review formalizes milestones for future challenges to address. The methodology applied is based on a systematic review of two sources of publications. The first one is the Cumincad database, which regroups publications from conferences exclusively about digital in architecture. Additionally, the second part of the corpus is based on journal publications. Journals have been selected considering their ranking on Scimago. Among the journals in the predefined category ‘architecture’ and in Quartile 1 for 2018 (last update when consulted), we have retained the ones related to the architectural design process: Design Studies, CoDesign, Architectural Science Review, Frontiers of Architectural Research and Archnet-IJAR. Beside those journals, IJAC, not classified in the ‘architecture’ category, is selected by the author for its adequacy with architecture and computing. For all requests, the search terms were ‘virtual reality’, ‘augmented reality’, and ‘mixed reality’ in title and/or keywords for papers published between 2015 and 2019 (included). This frame time is defined considering the fast evolution of these technologies in the past few years. Accordingly, the systematic review covers 202 publications. The literature review on studies about XR technologies establishes the state of the art of the current situation. It highlights that studies are mostly based on experimental contexts with controlled conditions (pedagogical, e.g.) or on practices established in large architectural offices of international renown. However, few studies focus on the strategies and practices developed by offices of smaller size, which represent the largest part of the market. Indeed, a European survey studying the architectural profession in Europe in 2018 reveals that 99% of offices are composed of less than ten people, and 71% of only one person. The study also showed that the number of medium-sized offices is continuously decreasing in favour of smaller structures. In doing so, a frontier seems to remain between the worlds of research and practice, especially for the majority of small architectural practices having a modest use of technology. This paper constitutes a reference for the next step of the research and for further worldwide researches by facilitating their contextualization.

Keywords: architectural design, literature review, SME, XR technologies

Procedia PDF Downloads 112
1816 1D Convolutional Networks to Compute Mel-Spectrogram, Chromagram, and Cochleogram for Audio Networks

Authors: Elias Nemer, Greg Vines

Abstract:

Time-frequency transformation and spectral representations of audio signals are commonly used in various machine learning applications. Training networks on frequency features such as the Mel-Spectrogram or Cochleogram have been proven more effective and convenient than training on-time samples. In practical realizations, these features are created on a different processor and/or pre-computed and stored on disk, requiring additional efforts and making it difficult to experiment with different features. In this paper, we provide a PyTorch framework for creating various spectral features as well as time-frequency transformation and time-domain filter-banks using the built-in trainable conv1d() layer. This allows computing these features on the fly as part of a larger network and enabling easier experimentation with various combinations and parameters. Our work extends the work in the literature developed for that end: First, by adding more of these features and also by allowing the possibility of either starting from initialized kernels or training them from random values. The code is written as a template of classes and scripts that users may integrate into their own PyTorch classes or simply use as is and add more layers for various applications.

Keywords: neural networks Mel-Spectrogram, chromagram, cochleogram, discrete Fourrier transform, PyTorch conv1d()

Procedia PDF Downloads 238
1815 Functional Neural Network for Decision Processing: A Racing Network of Programmable Neurons Where the Operating Model Is the Network Itself

Authors: Frederic Jumelle, Kelvin So, Didan Deng

Abstract:

In this paper, we are introducing a model of artificial general intelligence (AGI), the functional neural network (FNN), for modeling human decision-making processes. The FNN is composed of multiple artificial mirror neurons (AMN) racing in the network. Each AMN has a similar structure programmed independently by the users and composed of an intention wheel, a motor core, and a sensory core racing at a specific velocity. The mathematics of the node’s formulation and the racing mechanism of multiple nodes in the network will be discussed, and the group decision process with fuzzy logic and the transformation of these conceptual methods into practical methods of simulation and in operations will be developed. Eventually, we will describe some possible future research directions in the fields of finance, education, and medicine, including the opportunity to design an intelligent learning agent with application in AGI. We believe that FNN has a promising potential to transform the way we can compute decision-making and lead to a new generation of AI chips for seamless human-machine interactions (HMI).

Keywords: neural computing, human machine interation, artificial general intelligence, decision processing

Procedia PDF Downloads 128
1814 Comprehensive Lifespan Support for Quality of Life

Authors: Joann Douziech

Abstract:

Individuals with intellectual and developmental disabilities (IDD) possess characteristics that present both challenges and gifts. Individuals with IDD require and are worthy of intentional, strategic, and specialized support throughout their lifespan to ensure optimum quality-of-life outcomes. The current global advocacy movement advancing the rights of individuals with IDD emphasizes a high degree of choice over life decisions. For some individuals, this degree of choice results in a variety of negative health and well-being outcomes. Improving the quality of life outcomes requires the combination of a commitment to the rights of the individual with a responsibility to provide support and choice commensurate with individual capacity. A belief that individuals with IDD are capable of learning and they are worthy of being taught provides the foundation for a holistic model of support throughout their lifespan. This model is based on three pillars of engineering the environment, promoting skill development and maintenance, and staff support. In an ever-changing world, supporting quality of life requires attention to moments, phases, and changes in stages throughout the lifespan. Balancing these complexities with strategic, responsive, and dynamic interventions enhances the quality of life of individuals with ID throughout their lifespan.

Keywords: achieving optimum quality of life, comprehensive support, lifespan approach, philosophy and pedagogy

Procedia PDF Downloads 68
1813 The Impact of Technology on Sales Researches and Distribution

Authors: Nady Farag Faragalla Hanna

Abstract:

In the car dealership industry in Japan, the sales specialist is a key factor in the success of the company. I hypothesize that when a company understands the characteristics of sales professionals in its industry, it is easier to recruit and train salespeople effectively. Lean human resources management ensures the economic success and performance of companies, especially small and medium-sized companies.The purpose of the article is to determine the characteristics of sales specialists for small and medium-sized car dealerships using the chi-square test and the proximate variable model. Accordingly, the results show that career change experience, learning ability and product knowledge are important, while university education, career building through internal transfer, leadership experience and people development are not important for becoming a sales professional. I also show that the characteristics of sales specialists are perseverance, humility, improvisation and passion for business.

Keywords: electronics engineering, marketing, sales, E-commerce digitalization, interactive systems, sales process ARIMA models, sales demand forecasting, time series, R codetraits of sales professionals, variable precision rough sets theory, sales professional, sales professionals

Procedia PDF Downloads 54
1812 E-teaching Barriers: A Survey from Shanghai Primary School Teachers

Authors: Liu Dan

Abstract:

It was considered either unnecessary or impossible for primary school students to implement online teaching until last year. A large number of E-learning or E-teaching researches have been focused on adult-learners, andragogy and technology, however, primary school education, it is facing many problems that need to be solved. Therefore, this research is aimed at exploring barriers and influential factors on online teaching for K-12 students from teachers’ perspectives and discussing the E-pedagogy that is suitable for primary school students and teachers. Eight hundred and ninety-six teachers from 10 primary schools in Shanghai were invited to participate in a questionnaire survey. Data were analysed by hierarchical regression, and the results stress the significant three barriers by teachers with online teaching: the existing system is deficient in emotional interaction, teachers’ attitude towards the technology is negative and the present teacher training is lack of systematic E-pedagogy guidance. The barriers discovered by this study will help the software designers (E-lab) develop tools that allow for flexible and evolving pedagogical approaches whilst providing an easy entry point for cautious newcomers, so that help the teachers free to engage in E-teaching at pedagogical and disciplinary levels, to enhance their repertoire of teaching practices.

Keywords: online teaching barriers (OTB), e-teaching, primary school, teachers, technology

Procedia PDF Downloads 203
1811 Simulation of Flow through Dam Foundation by FEM and ANN Methods Case Study: Shahid Abbaspour Dam

Authors: Mehrdad Shahrbanozadeh, Gholam Abbas Barani, Saeed Shojaee

Abstract:

In this study, a finite element (Seep3D model) and an artificial neural network (ANN) model were developed to simulate flow through dam foundation. Seep3D model is capable of simulating three-dimensional flow through a heterogeneous and anisotropic, saturated and unsaturated porous media. Flow through the Shahid Abbaspour dam foundation has been used as a case study. The FEM with 24960 triangular elements and 28707 nodes applied to model flow through foundation of this dam. The FEM being made denser in the neighborhood of the curtain screen. The ANN model developed for Shahid Abbaspour dam is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning. The water level elevations of the upstream and downstream of the dam have been used as input variables and the piezometric heads as the target outputs in the ANN model. The two models are calibrated and verified using the Shahid Abbaspour’s dam piezometric data. Results of the models were compared with those measured by the piezometers which are in good agreement. The model results also revealed that the ANN model performed as good as and in some cases better than the FEM.

Keywords: seepage, dam foundation, finite element method, neural network, seep 3D model

Procedia PDF Downloads 477