Search results for: oil field
2029 The Effect of Excel on Undergraduate Students’ Understanding of Statistics and the Normal Distribution
Authors: Masomeh Jamshid Nejad
Abstract:
Nowadays, statistical literacy is no longer a necessary skill but an essential skill with broad applications across diverse fields, especially in operational decision areas such as business management, finance, and economics. As such, learning and deep understanding of statistical concepts are essential in the context of business studies. One of the crucial topics in statistical theory and its application is the normal distribution, often called a bell-shaped curve. To interpret data and conduct hypothesis tests, comprehending the properties of normal distribution (the mean and standard deviation) is essential for business students. This requires undergraduate students in the field of economics and business management to visualize and work with data following a normal distribution. Since technology is interconnected with education these days, it is important to teach statistics topics in the context of Python, R-studio, and Microsoft Excel to undergraduate students. This research endeavours to shed light on the effect of Excel-based instruction on learners’ knowledge of statistics, specifically the central concept of normal distribution. As such, two groups of undergraduate students (from the Business Management program) were compared in this research study. One group underwent Excel-based instruction and another group relied only on traditional teaching methods. We analyzed experiential data and BBA participants’ responses to statistic-related questions focusing on the normal distribution, including its key attributes, such as the mean and standard deviation. The results of our study indicate that exposing students to Excel-based learning supports learners in comprehending statistical concepts more effectively compared with the other group of learners (teaching with the traditional method). In addition, students in the context of Excel-based instruction showed ability in picturing and interpreting data concentrated on normal distribution.Keywords: statistics, excel-based instruction, data visualization, pedagogy
Procedia PDF Downloads 532028 Integrating Human Rights into Countering Violent Extremism: A Comparative Analysis of Women Without Borders and Hedayah Initiatives
Authors: Portia Muehlbauer
Abstract:
This paper examines the evolving landscape of preventing and countering violent extremism (PCVE) by delving into the growing importance of integrating human rights principles into violence prevention strategies on the local, community level. This study sheds light on the underlying theoretical frameworks of violent extremism and the influence of gender while investigating the intersection between human rights preservation and violent extremism prevention. To gain practical insight, the research focuses on two prominent international non-governmental organizations, Women without Borders (WwB) and Hedayah, and their distinct PCVE initiatives. WwB adopts a gender-sensitive approach, implementing parental education programs that empower mothers in at-risk communities to prevent the spread of violent extremism. In contrast, Hedayah takes an indirect route, employing capacity building programs that enhance the capabilities of educators, social workers, and psychologists in early intervention, rehabilitation and reintegration efforts. Qualitative data for this comparative analysis was collected through an extensive four-month internship at WwB during the fall of 2020, a three-month internship at Hedayah in the spring of 2021, a thought-provoking semi-structured interview with the executive director of WwB, personal field notes, and a comprehensive discourse analysis of the prevailing literature on human rights considerations in PCVE practices. This study examines the merits and challenges of integrating human rights into PCVE programming through the lens of both organizations, WwB and Hedayah. The findings of this study will inform policymakers, practitioners, and researchers on the intricate relationship between human rights protection and effective PCVE strategies.Keywords: preventing and countering violent extremism, human rights, counterterrorism, peacebuilding, capacity building programs, gender studies
Procedia PDF Downloads 622027 Chassis Level Control Using Proportional Integrated Derivative Control, Fuzzy Logic and Deep Learning
Authors: Atakan Aral Ormancı, Tuğçe Arslantaş, Murat Özcü
Abstract:
This study presents the design and implementation of an experimental chassis-level system for various control applications. Specifically, the height level of the chassis is controlled using proportional integrated derivative, fuzzy logic, and deep learning control methods. Real-time data obtained from height and pressure sensors installed in a 6x2 truck chassis, in combination with pulse-width modulation signal values, are utilized during the tests. A prototype pneumatic system of a 6x2 truck is added to the setup, which enables the Smart Pneumatic Actuators to function as if they were in a real-world setting. To obtain real-time signal data from height sensors, an Arduino Nano is utilized, while a Raspberry Pi processes the data using Matlab/Simulink and provides the correct output signals to control the Smart Pneumatic Actuator in the truck chassis. The objective of this research is to optimize the time it takes for the chassis to level down and up under various loads. To achieve this, proportional integrated derivative control, fuzzy logic control, and deep learning techniques are applied to the system. The results show that the deep learning method is superior in optimizing time for a non-linear system. Fuzzy logic control with a triangular membership function as the rule base achieves better outcomes than proportional integrated derivative control. Traditional proportional integrated derivative control improves the time it takes to level the chassis down and up compared to an uncontrolled system. The findings highlight the superiority of deep learning techniques in optimizing the time for a non-linear system, and the potential of fuzzy logic control. The proposed approach and the experimental results provide a valuable contribution to the field of control, automation, and systems engineering.Keywords: automotive, chassis level control, control systems, pneumatic system control
Procedia PDF Downloads 812026 Ecosystem Engineering Strengthens Bottom-Up and Weakens Top-Down Effects via Trait-Mediated Indirect Interactions
Authors: Zhiwei Zhong, Xiaofei Li, Deli Wang
Abstract:
Ecosystem engineering is a powerful force shaping community structure and ecosystem function. Yet, very little is known about the mechanisms by which engineers affect vital ecosystem processes like trophic interactions. Here, we examine the potential for a herbivore ecosystem engineer, domestic sheep, to affect trophic interactions between the web-building spider Argiope bruennichi, its grasshopper prey Euchorthippus spp., and the grasshoppers’ host plant Leymus chinensis. By integrating small- and large-scale field experiments, we demonstrate that: 1) moderate sheep grazing changed the structure of plant communities by suppressing strongly interacting forbs within a grassland matrix; 2) this change in plant community structure drove interaction modifications between the grasshoppers and their grass host plants and between grasshoppers and their spider predators, and 3) these interaction modifications were entirely mediated by plasticity in grasshopper behavior. Overall, ecosystem engineering by sheep grazing strengthened bottom-up effects and weakened top-down effects via trait-mediated interactions, resulting in a nearly two-fold increase in grasshopper densities. Interestingly, the grasshopper behavioral shifts which reduced spider per capita predation rates in the microcosms did not translate to reduced spider predation rates at the larger system scale because increased grasshopper densities offset behavioral effects at larger scales. Our findings demonstrate that 1) ecosystem engineering can strongly alter trophic interactions, 2) such effects can be driven by cryptic trait-mediated interactions, and 3) the relative importance of trait- versus density effects as measured by microcosm experiments may not reflect the importance of these processes at realistic ecological scales due to scale-dependent interactions.Keywords: bottom-up effects, ecosystem engineering, trait-mediated indirect effects, top-down effects
Procedia PDF Downloads 3572025 Cultural Regeneration and Social Impacts of Industrial Heritage Transformation: The Case of Westergasfabriek Cultural Park, Netherland
Authors: Hsin Hua He
Abstract:
The purpose of this study is to strengthen the social cohesion of the local community by injecting the cultural and creative concept into the industrial heritage transformation. The paradigms of industrial heritage research tend to explore from the perspective of space analysis, which concerned less about the cultural regeneration and the development of local culture. The paradigms of cultural quarter research use to from the perspective of creative economy and urban planning, concerned less about the social impacts and the interaction between residents and industrial sites. This research combines these two research areas of industrial heritage and cultural quarter, and focus on the social and cultural aspects. The transformation from the industrial heritage into a cultural park not only enhances the cultural capital and the quality of residents’ lives, but also preserves the unique local values. Internally it shapes the local identity, while externally establishes the image of the city. This paper uses Westergasfabriek Cultural Park in Amsterdam as the case study, through literature analysis, field work, and depth interview to explore how the cultural regeneration transforms industrial heritage. In terms of the planners’ and residents’ point of view adopt the theory of community participation, social capital, and sense of place to analyze the social impact of the industrial heritage transformation. The research finding is through cultural regeneration policies like holding cultural activities, building up public space, social network and public-private partnership, and adopting adaptive reuse to fulfil the people’s need and desire and reach the social cohesion. Finally, the study will examine the transformation of Taiwan's industrial heritage into cultural and creative quarters. The results are expected to use the operating experience of the Amsterdam cases and provide directions for Taiwan’s industrial heritage management to meet the cultural, social, economic symbiosis.Keywords: cultural regeneration, community participation, social capital, sense of place, industrial heritage transformation
Procedia PDF Downloads 5042024 Validation of Escherichia coli O157:H7 Inactivation on Apple-Carrot Juice Treated with Manothermosonication by Kinetic Models
Authors: Ozan Kahraman, Hao Feng
Abstract:
Several models such as Weibull, Modified Gompertz, Biphasic linear, and Log-logistic models have been proposed in order to describe non-linear inactivation kinetics and used to fit non-linear inactivation data of several microorganisms for inactivation by heat, high pressure processing or pulsed electric field. First-order kinetic parameters (D-values and z-values) have often been used in order to identify microbial inactivation by non-thermal processing methods such as ultrasound. Most ultrasonic inactivation studies employed first-order kinetic parameters (D-values and z-values) in order to describe the reduction on microbial survival count. This study was conducted to analyze the E. coli O157:H7 inactivation data by using five microbial survival models (First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic). First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic kinetic models were used for fitting inactivation curves of Escherichia coli O157:H7. The residual sum of squares and the total sum of squares criteria were used to evaluate the models. The statistical indices of the kinetic models were used to fit inactivation data for E. coli O157:H7 by MTS at three temperatures (40, 50, and 60 0C) and three pressures (100, 200, and 300 kPa). Based on the statistical indices and visual observations, the Weibull and Biphasic models were best fitting of the data for MTS treatment as shown by high R2 values. The non-linear kinetic models, including the Modified Gompertz, First-order, and Log-logistic models did not provide any better fit to data from MTS compared the Weibull and Biphasic models. It was observed that the data found in this study did not follow the first-order kinetics. It is possibly because of the cells which are sensitive to ultrasound treatment were inactivated first, resulting in a fast inactivation period, while those resistant to ultrasound were killed slowly. The Weibull and biphasic models were found as more flexible in order to determine the survival curves of E. coli O157:H7 treated by MTS on apple-carrot juice.Keywords: Weibull, Biphasic, MTS, kinetic models, E.coli O157:H7
Procedia PDF Downloads 3662023 Tracking of Intramuscular Stem Cells by Magnetic Resonance Diffusion Weighted Imaging
Authors: Balakrishna Shetty
Abstract:
Introduction: Stem Cell Imaging is a challenging field since the advent of Stem Cell treatment in humans. Series of research on tagging and tracking the stem cells has not been very effective. The present study is an effort by the authors to track the stem cells injected into calf muscles by Magnetic Resonance Diffusion Weighted Imaging. Materials and methods: Stem Cell injection deep into the calf muscles of patients with peripheral vascular disease is one of the recent treatment modalities followed in our institution. 5 patients who underwent deep intramuscular injection of stem cells as treatment were included for this study. Pre and two hours Post injection MRI of bilateral calf regions was done using 1.5 T Philips Achieva, 16 channel system using 16 channel torso coils. Axial STIR, Axial Diffusion weighted images with b=0 and b=1000 values with back ground suppression (DWIBS sequence of Philips MR Imaging Systems) were obtained at 5 mm interval covering the entire calf. The invert images were obtained for better visualization. 120ml of autologous bone marrow derived stem cells were processed and enriched under c-GMP conditions and reduced to 40ml solution containing mixture of above stem cells. Approximately 40 to 50 injections, each containing 0.75ml of processed stem cells, was injected with marked grids over the calf region. Around 40 injections, each of 1ml normal saline, is injected into contralateral leg as control. Results: Significant Diffusion hyper intensity is noted at the site of injected stem cells. No hyper intensity noted before the injection and also in the control side where saline was injected conclusion: This is one of the earliest studies in literature showing diffusion hyper intensity in intramuscularly injected stem cells. The advantages and deficiencies in this study will be discussed during the presentation.Keywords: stem cells, imaging, DWI, peripheral vascular disease
Procedia PDF Downloads 742022 Analysis of Lift Arm Failure and Its Improvement for the Use in Farm Tractor
Authors: Japinder Wadhawan, Pradeep Rajan, Alok K. Saran, Navdeep S. Sidhu, Daanvir K. Dhir
Abstract:
Currently, research focus in the development of agricultural equipment and tractor parts in India is innovation and use of alternate materials like austempered ductile iron (ADI). Three-point linkage mechanism of the tractor is susceptible to unpredictable load conditions in the field, and one of the critical components vulnerable to failure is lift arm. Conventionally, lift arm is manufactured either by forging or casting (SG Iron) and main objective of the present work is to reduce the failure occurrences in the lift arm, which is achieved by changing the manufacturing material, i.e ADI, without changing existing design. Effect of four pertinent variables of manufacturing ADI, viz. austenitizing temperature, austenitizing time, austempering temperature, austempering time, was investigated using Taguchi method for design of experiments. To analyze the effect of parameters on the mechanical properties, mean average and signal-to-noise (S/N) ratio was calculated based on the design of experiments with L9 orthogonal array and the linear graph. The best combination for achieving the desired mechanical properties of lift arm is austenitization at 860°C for 90 minutes and austempering at 350°C for 60 minutes. Results showed that the developed component is having 925 MPA tensile strength, 7.8 per cent elongation and 120 joules toughness making it more suitable material for lift arm manufacturing. The confirmatory experiment has been performed and found a good agreement between predicted and experimental value. Also, the CAD model of the existing design was developed in computer aided design software, and structural loading calculations were performed by a commercial finite element analysis package. An optimized shape of the lift arm has also been proposed resulting in light weight and cheaper product than the existing design, which can withstand the same loading conditions effectively.Keywords: austempered ductile iron, design of experiment, finite element analysis, lift arm
Procedia PDF Downloads 2332021 Understanding Team Member Autonomy and Team Collaboration: A Qualitative Study
Authors: Ayşen Bakioğlu, Gökçen Seyra Çakır
Abstract:
This study aims to explore how research assistants who work in project teams experience team member autonomy and how they reconcile team member autonomy with team collaboration. The study utilizes snowball sampling. 20 research assistants who work the faculties of education in Marmara University and Yıldız Technical University have been interviewed. The analysis of data involves a content analysis MAXQDAPlus 11 which is a qualitative data analysis software is used as the data analysis tool. According to the findings of this study, emerging themes include team norm formation, team coordination management, the role of individual tasks in team collaboration, leadership distribution. According to the findings, interviewees experience team norm formation process in terms of processes, which pertain to task fulfillment, and processes, which pertain to the regulation of team dynamics. Team norm formation process instills a sense of responsibility amongst individual team members. Apart from that, the interviewees’ responses indicate that the realization of the obligation to work in a team contributes to the team norm formation process. The participants indicate that individual expectations are taken into consideration during the coordination of the team. The supervisor of the project team also has a crucial role in maintaining team collaboration. Coordination problems arise when an individual team member does not relate his/her academic field with the research topic of the project team. The findings indicate that the leadership distribution in the project teams involves two leadership processes: leadership distribution which is based on the processes that focus on individual team members and leadership distribution which is based on the processes that focus on team interaction. Apart from that, individual tasks serve as a facilitator of collaboration amongst team members. Interviewees also indicate that individual tasks also facilitate the expression of individuality.Keywords: project teams in higher education, research assistant teams, team collaboration, team member autonomy
Procedia PDF Downloads 3622020 Numerical Modelling of 3-D Fracture Propagation and Damage Evolution of an Isotropic Heterogeneous Rock with a Pre-Existing Surface Flaw under Uniaxial Compression
Authors: S. Mondal, L. M. Olsen-Kettle, L. Gross
Abstract:
Fracture propagation and damage evolution are extremely important for many industrial applications including mining industry, composite materials, earthquake simulations, hydraulic fracturing. The influence of pre-existing flaws and rock heterogeneity on the processes and mechanisms of rock fracture has important ramifications in many mining and reservoir engineering applications. We simulate the damage evolution and fracture propagation in an isotropic sandstone specimen containing a pre-existing 3-D surface flaw in different configurations under uniaxial compression. We apply a damage model based on the unified strength theory and solve the solid deformation and damage evolution equations using the Finite Element Method (FEM) with tetrahedron elements on unstructured meshes through the simulation software, eScript. Unstructured meshes provide higher geometrical flexibility and allow a more accurate way to model the varying flaw depth, angle, and length through locally adapted FEM meshes. The heterogeneity of rock is considered by initializing material properties using a Weibull distribution sampled over a cubic grid. In our model, we introduce a length scale related to the rock heterogeneity which is independent of the mesh size. We investigate the effect of parameters including the heterogeneity of the elastic moduli and geometry of the single flaw in the stress strain response. The generation of three typical surface cracking patterns, called wing cracks, anti-wing cracks and far-field cracks were identified, and these depend on the geometry of the pre-existing surface flaw. This model results help to advance our understanding of fracture and damage growth in heterogeneous rock with the aim to develop fracture simulators for different industry applications.Keywords: finite element method, heterogeneity, isotropic damage, uniaxial compression
Procedia PDF Downloads 2182019 Prospectivity Mapping of Orogenic Lode Gold Deposits Using Fuzzy Models: A Case Study of Saqqez Area, Northwestern Iran
Authors: Fanous Mohammadi, Majid H. Tangestani, Mohammad H. Tayebi
Abstract:
This research aims to evaluate and compare Geographical Information Systems (GIS)-based fuzzy models for producing orogenic gold prospectivity maps in the Saqqez area, NW of Iran. Gold occurrences are hosted in sericite schist and mafic to felsic meta-volcanic rocks in this area and are associated with hydrothermal alterations that extend over ductile to brittle shear zones. The predictor maps, which represent the Pre-(Source/Trigger/Pathway), syn-(deposition/physical/chemical traps) and post-mineralization (preservation/distribution of indicator minerals) subsystems for gold mineralization, were generated using empirical understandings of the specifications of known orogenic gold deposits and gold mineral systems and were then pre-processed and integrated to produce mineral prospectivity maps. Five fuzzy logic operators, including AND, OR, Fuzzy Algebraic Product (FAP), Fuzzy Algebraic Sum (FAS), and GAMMA, were applied to the predictor maps in order to find the most efficient prediction model. Prediction-Area (P-A) plots and field observations were used to assess and evaluate the accuracy of prediction models. Mineral prospectivity maps generated by AND, OR, FAP, and FAS operators were inaccurate and, therefore, unable to pinpoint the exact location of discovered gold occurrences. The GAMMA operator, on the other hand, produced acceptable results and identified potentially economic target sites. The P-A plot revealed that 68 percent of known orogenic gold deposits are found in high and very high potential regions. The GAMMA operator was shown to be useful in predicting and defining cost-effective target sites for orogenic gold deposits, as well as optimizing mineral deposit exploitation.Keywords: mineral prospectivity mapping, fuzzy logic, GIS, orogenic gold deposit, Saqqez, Iran
Procedia PDF Downloads 1212018 Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads
Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill
Abstract:
Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc⁄d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20° as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios.Keywords: slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), pull-out capacity
Procedia PDF Downloads 3432017 Healthy Feeding and Drinking Troughs for Profitable Intensive Deep-Litter Poultry Farming
Authors: Godwin Ojochogu Adejo, Evelyn UnekwuOjo Adejo, Sunday UnenwOjo Adejo
Abstract:
The mainstream contemporary approach to controlling the impact of diseases among poultry birds rely largely on curative measures through the administration of drugs to infected birds. Most times as observed in the deep liter poultry farming system, entire flocks including uninfected birds receive the treatment they do not need. As such, unguarded use of chemical drugs and antibiotics has led to wastage and accumulation of chemical residues in poultry products with associated health hazards to humans. However, wanton and frequent drug usage in poultry is avoidable if feeding and drinking equipment are designed to curb infection transmission among birds. Using toxicological assays as guide and with efficiency and simplicity in view, two newly field-tested and recently patented equipments called 'healthy liquid drinking trough (HDT)' and 'healthy feeding trough (HFT)' that systematically eliminate contamination of the feeding and drinking channels, thereby, curbing wide-spread infection and transmission of diseases in the (intensive) deep litter poultry farming system were designed. Upon combined usage, they automatically and drastically reduced both the amount and frequency of antibiotics use in poultry by over > 50%. Additionally, they conferred optimization of feed and water utilization/elimination of wastage by > 80%, reduced labour by > 70%, reduced production cost by about 15%, and reduced chemical residues in poultry meat or eggs by > 85%. These new and cheap technologies which require no energy input are likely to elevate safety of poultry products for consumers' health, increase marketability locally and for export, and increase output and profit especially among poultry farmers and poor people who keep poultry or inevitably utilize poultry products in developing countries.Keywords: healthy, trough, toxicological, assay-guided, poultry
Procedia PDF Downloads 1562016 A Collaborative Problem Driven Approach to Design an HR Analytics Application
Authors: L. Atif, C. Rosenthal-Sabroux, M. Grundstein
Abstract:
The requirements engineering process is a crucial phase in the design of complex systems. The purpose of our research is to present a collaborative problem-driven requirements engineering approach that aims at improving the design of a Decision Support System as an Analytics application. This approach has been adopted to design a Human Resource management DSS. The Requirements Engineering process is presented as a series of guidelines for activities that must be implemented to assure that the final product satisfies end-users requirements and takes into account the limitations identified. For this, we know that a well-posed statement of the problem is “a problem whose crucial character arises from collectively produced estimation and a formulation found to be acceptable by all the parties”. Moreover, we know that DSSs were developed to help decision-makers solve their unstructured problems. So, we thus base our research off of the assumption that developing DSS, particularly for helping poorly structured or unstructured decisions, cannot be done without considering end-user decision problems, how to represent them collectively, decisions content, their meaning, and the decision-making process; thus, arise the field issues in a multidisciplinary perspective. Our approach addresses a problem-driven and collaborative approach to designing DSS technologies: It will reflect common end-user problems in the upstream design phase and in the downstream phase these problems will determine the design choices and potential technical solution. We will thus rely on a categorization of HR’s problems for a development mirroring the Analytics solution. This brings out a new data-driven DSS typology: Descriptive Analytics, Explicative or Diagnostic Analytics, Predictive Analytics, Prescriptive Analytics. In our research, identifying the problem takes place with design of the solution, so, we would have to resort a significant transformations of representations associated with the HR Analytics application to build an increasingly detailed representation of the goal to be achieved. Here, the collective cognition is reflected in the establishment of transfer functions of representations during the whole of the design process.Keywords: DSS, collaborative design, problem-driven requirements, analytics application, HR decision making
Procedia PDF Downloads 2952015 Family Quality of Life in the Context of Pediatric Sickle Cell Disease in Oman
Authors: Wafa Al Jabri
Abstract:
Sickle cell disease (SCD) is a genetic blood disorder that is characterized by a severe painful crisis. SCD among children requires long term dependencies and high caregiving demands that increase the overall family burdens. It is, therefore, essential to examine, support, and promote the well-being of families of children with SCD. Although there has been considerable progress in the international research on family quality of life (FQOL) in recent years; however, research in this field is relatively recent and diverse. Oman is a country in which family quality of life has definitely been under-researched. Therefore, the purpose of the study is to describe the FQOL in families of children with SCD in Oman. The study will also examine the relationships between child, mother, and family-related factors that may influence the overall FQOL. Theoretical Framework: The study is guided by the unified theory of family quality of life to help in understanding the concept of FQOL and the factors that shape it. Method:A convenience sample of 98 mothers of children with SCD will be recruited from the pediatric hematology clinic at Sultan Qaboos University Hospital in Oman to participate in this descriptive, cross sectional, correlational study. Data will be obtained using a self-administered questionnaire that includes child and mother socio-demographic data, questions about the number of visits and admissions to health care facilities for vaso- occlusive crises (VOCs), the Perceived Stress Scale-10, and the Beachcenter-FQOL scale. Anticipated Results: It is expected to find an association among frequency of VOCs, mother’s perceived stress level, and FQOL in families of children with SCD in Oman. Family type, socio-economic status, and number of SCD children in the family are also expected to influence the overall FQOL. Conclusion: The findings of the study might be pivotal in designing and implementing tailored family-based interventions to improve families’ wellbeing.Keywords: family quality of life, sickle cell disaes, children, family well-being
Procedia PDF Downloads 1382014 Seed Priming Winter Wheat (Triticum aestivum L.) for Germination and Emergence
Authors: Pakize Ozlem Kurt Polat, Gizem Metin, Koksal Yagdi
Abstract:
In order to evaluate the effect of the different sources of salt on germination and early growth of five wheat cultivars (Katea, Bezostaja, Koksal-2000, Golia, Pehlivan) an experiment was conducted at the seed laboratory of the Uludag University, Agricultural Faculty, Department of Field Crops in Bursa/Turkey. Seeds were applied in five different resources media (KCl % 2, KCl %4, KNO₃ %0,5, KH₂PO₄ %0,5, PEG %10) and distilled water as the control). The seed was fully immersed in priming media at a temperature of 24ᵒC for durations of 12 and 24hours. Six different agronomic characters (seed germination, stem length, stem weight, radicle length, fresh weight, dry weight) were measured in 7th days and 14th days. Maximum seed germination percentage of seven days are Pehlivan was observed when the seeds were applied by KH₂PO₄ and Katea by distilled water as a control. The most stem length and stem weight were obtained for seeds were applied by KH₂PO₄ %0,5 with Katea and Bezostja immersed in priming media at 12h intervals beginning 7d after planting. Seeds were applied KH₂PO₄ %0,5 media produced maximum radicle length by Koksal and dry weight by Katea. The freshest weight obtains in Katea by KNO₃ %0,5 immersed in priming media at 24h. The most germination percent, dry weight, stem length of fourteen days was observed in Katea which subjected to KH₂PO₄ %0,5 solution. The most radicle length was observed Katea and Koksal in media of KH₂PO₄ %0,5. The most stem length was obtained for seeds were applied by KH₂PO₄ %0,5 and KNO₃ with Katea and Bezostaja. When the applied chemicals and all days examined KH₂PO₄ %0,5 treatment in fourteen days and immersed for the duration of 24 hours had better effects than other medias, seven days treatments and 12hours immersed. As a result of this research, the best response of media for the wheat germination can be said that the KH₂PO₄ %0,5 immersed in priming media at 24h intervals beginning 14 days after planting.Keywords: germination, priming, seedling growth, wheat
Procedia PDF Downloads 1792013 Empowering Teachers to Bolster Vocational Education in Cameroon
Authors: Ambissah Asah Brigitte
Abstract:
This research is guided by observations in the types of education offered at the secondary level in Cameroon. The secondary education system in Cameroon comprises two types of education, including General Education and Technical and Vocational Education. Although General Education and, Technical and Vocational Education are given equal importance by public authorities, General Education remains on the thriving trend, enjoying the greatest enrolment. In the meantime, Technical and Vocational Education is still to reach the adequate momentum expected to fostering the country’s full-fledged development, as specified in the National Development Strategy, which is the blue print of State policies in Cameroon for the 2020-2030 decade. Vocational Education is credited for its ability to foster a country’s development, since it teaches students the precise skills and knowledge needed to carry out a specific craft, technical skill or trade. Yet, formal training on Vocational Education for teachers offers a pale face in secondary education. This limits the ability of the educational system to nurture vocations and provide the country’s economy with the manpower necessary to achieving development goals. This article seeks to analyse how concretely does the institutional framework spur vocational skills in secondary school teachers. It overviews the instruments instituting Vocational Education at the secondary level in Cameroon, then assesses their effective implementation on the ground. Questionnaires addressed to both active teachers and vocational education policy-makers serve to collect data which are analysed using descriptive statistics. The final objective is to contribute in the debate urging to rethink the role of teachers in bolstering Vocational Education, which is the cornerstone of industrial development. This is true everywhere in the world. In Cameroon and in Africa in general, teachers must be empowered in this field with specific sets of competencies they will need to pass on to learners. They equally need to be given opportunities to acquire and adapt their knowledge and teaching skills accordingly.Keywords: vocational education, cameroon, institutional framework, national development, competencies and skills
Procedia PDF Downloads 732012 A Study on Effect of Almahdi Aluminium Factory of Bandar Abbas on Environment Status of the Region with an Emphasis on Measuring of Some Scarce Metals Existing in the Air (Atmosphere)
Authors: Maryam Ehsanpour, Maryam Malekpour, Rastin Afkhami
Abstract:
Today, industry is one of the indices of growth and development of countries and is a suitable applicable criterion to compare the countries. Bandar Abbas has a high industrial centralization in term of geographical redundancy of industries in comparison with other rural and urban places of Hormozgan province. Most important and major industries of the province are located in Bandar abbas eighth refinery, power plant, zinc melting company, Almahdi Aluminium, Hormozgan steel, south steel, which are the most important of these industries. So, it is necessary to study pollution from these industries and their destructive effects on environment of region. In respect of these things, general purpose of this research is codling and presenting managing solution of Almahdi Aluminium factory in them of measuring of air (atmosphere) parameters. For gaining this purpose it is necessary to determine measure of heavy metals suspension in the air (atmosphere) in the neighborhood of industries and also in residential regions close to them as partial purposes. So, for achieving the purposes above, operation of sampling from the air in two hot and cold seasons of the year (2010-2011) was performed, after field reviews to recognize the sources of effluence and to choose place of sampling stations. Sampling and preparation way to read was based on EPA and NIOSH. Also, decreasing process was included Fe>Al>Cd>Pb>Ni respectively, in term of results gaining from sampling of ingredients existing in the air (atmosphere). Also Ni and Fe elements in samples of air were higher than permissive measure in both of cold and hot season. Average of these two metals was 34% and 33% in cold season and 44% and 34% micrograms/m3 in hot season. Finally, suitable managing solutions to improve existing situation is presented in term for all results.Keywords: Almahdi aluminium factory, Bandar Abbas, scarce metals, atmosphere
Procedia PDF Downloads 5862011 Indoor Air Quality Analysis for Renovating Building: A Case Study of Student Studio, Department of Landscape, Chiangmai, Thailand
Authors: Warangkana Juangjandee
Abstract:
The rapidly increasing number of population in the limited area creates an effect on the idea of the improvement of the area to suit the environment and the needs of people. Faculty of architecture Chiang Mai University is also expanding in both variety fields of study and quality of education. In 2020, the new department will be introduced in the faculty which is Department of Landscape Architecture. With the limitation of the area in the existing building, the faculty plan to renovate some parts of its school for anticipates the number of students who will join the program in the next two years. As a result, the old wooden workshop area is selected to be renovated as student studio space. With such condition, it is necessary to study the restriction and the distinctive environment of the site prior to the improvement in order to find ways to manage the existing space due to the fact that the primary functions that have been practiced in the site, an old wooden workshop space and the new function, studio space, are too different. 72.9% of the annual times in the room are considered to be out of the thermal comfort condition with high relative humidity. This causes non-comfort condition for occupants which could promote mould growth. This study aims to analyze thermal comfort condition in the Landscape Learning Studio Area for finding the solution to improve indoor air quality and respond to local conditions. The research methodology will be in two parts: 1) field gathering data on the case study 2) analysis and finding the solution of improving indoor air quality. The result of the survey indicated that the room needs to solve non-comfort condition problem. This can be divided into two ways which are raising ventilation and indoor temperature, e.g. improving building design and stack driven ventilation, using fan for enhancing more internal ventilation.Keywords: relative humidity, renovation, temperature, thermal comfort
Procedia PDF Downloads 2162010 Impact of Drainage Defect on the Railway Track Surface Deflections; A Numerical Investigation
Authors: Shadi Fathi, Moura Mehravar, Mujib Rahman
Abstract:
The railwaytransportation network in the UK is over 100 years old and is known as one of the oldest mass transit systems in the world. This aged track network requires frequent closure for maintenance. One of the main reasons for closure is inadequate drainage due to the leakage in the buried drainage pipes. The leaking water can cause localised subgrade weakness, which subsequently can lead to major ground/substructure failure.Different condition assessment methods are available to assess the railway substructure. However, the existing condition assessment methods are not able to detect any local ground weakness/damageand provide details of the damage (e.g. size and location). To tackle this issue, a hybrid back-analysis technique based on artificial neural network (ANN) and genetic algorithm (GA) has been developed to predict the substructurelayers’ moduli and identify any soil weaknesses. At first, afinite element (FE) model of a railway track section under Falling Weight Deflection (FWD) testing was developed and validated against field trial. Then a drainage pipe and various scenarios of the local defect/ soil weakness around the buried pipe with various geometriesand physical properties were modelled. The impact of the soil local weaknesson the track surface deflection wasalso studied. The FE simulations results were used to generate a database for ANN training, and then a GA wasemployed as an optimisation tool to optimise and back-calculate layers’ moduli and soil weakness moduli (ANN’s input). The hybrid ANN-GA back-analysis technique is a computationally efficient method with no dependency on seed modulus values. The modelcan estimate substructures’ layer moduli and the presence of any localised foundation weakness.Keywords: finite element (FE) model, drainage defect, falling weight deflectometer (FWD), hybrid ANN-GA
Procedia PDF Downloads 1522009 Design Transformation to Reduce Cost in Irrigation Using Value Engineering
Authors: F. S. Al-Anzi, M. Sarfraz, A. Elmi, A. R. Khan
Abstract:
Researchers are responding to the environmental challenges of Kuwait in localized, innovative, effective and economic ways. One of the vital and significant examples of the natural challenges is lack or water and desertification. In this research, the project team focuses on redesigning a prototype, using Value Engineering Methodology, which would provide similar functionalities to the well-known technology of Waterboxx kits while reducing the capital and operational costs and simplifying the process of manufacturing and usability by regular farmers. The design employs used tires and recycled plastic sheets as raw materials. Hence, this approach is going to help not just fighting desertification but also helping in getting rid of ever growing huge tire dumpsters in Kuwait, as well as helping in avoiding hazards of tire fires yielding in a safer and friendlier environment. Several alternatives for implementing the prototype have been considered. The best alternative in terms of value has been selected after thorough Function Analysis System Technique (FAST) exercise has been developed. A prototype has been fabricated and tested in a controlled simulated lab environment that is being followed by real environment field testing. Water and soil analysis conducted on the site of the experiment to cross compare between the composition of the soil before and after the experiment to insure that the prototype being tested is actually going to be environment safe. Experimentation shows that the design was equally as effective as, and may exceed, the original design with significant savings in cost. An estimated total cost reduction using the VE approach of 43.84% over the original design. This cost reduction does not consider the intangible costs of environmental issue of waste recycling which many further intensify the total savings of using the alternative VE design. This case study shows that Value Engineering Methodology can be an important tool in innovating new designs for reducing costs.Keywords: desertification, functional analysis, scrap tires, value engineering, waste recycling, water irrigation rationing
Procedia PDF Downloads 2002008 Finite Element-Based Stability Analysis of Roadside Settlements Slopes from Barpak to Yamagaun through Laprak Village of Gorkha, an Epicentral Location after the 7.8Mw 2015 Barpak, Gorkha, Nepal Earthquake
Authors: N. P. Bhandary, R. C. Tiwari, R. Yatabe
Abstract:
The research employs finite element method to evaluate the stability of roadside settlements slopes from Barpak to Yamagaon through Laprak village of Gorkha, Nepal after the 7.8Mw 2015 Barpak, Gorkha, Nepal earthquake. It includes three major villages of Gorkha, i.e., Barpak, Laprak and Yamagaun that were devastated by 2015 Gorkhas’ earthquake. The road head distance from the Barpak to Laprak and Laprak to Yamagaun are about 14 and 29km respectively. The epicentral distance of main shock of magnitude 7.8 and aftershock of magnitude 6.6 were respectively 7 and 11 kilometers (South-East) far from the Barpak village nearer to Laprak and Yamagaon. It is also believed that the epicenter of the main shock as said until now was not in the Barpak village, it was somewhere near to the Yamagaun village. The chaos that they had experienced during the earthquake in the Yamagaun was much more higher than the Barpak. In this context, we have carried out a detailed study to investigate the stability of Yamagaun settlements slope as a case study, where ground fissures, ground settlement, multiple cracks and toe failures are the most severe. In this regard, the stability issues of existing settlements and proposed road alignment, on the Yamagaon village slope are addressed, which is surrounded by many newly activated landslides. Looking at the importance of this issue, field survey is carried out to understand the behavior of ground fissures and multiple failure characteristics of the slopes. The results suggest that the Yamgaun slope in Profile 2-2, 3-3 and 4-4 are not safe enough for infrastructure development even in the normal soil slope conditions as per 2, 3 and 4 material models; however, the slope seems quite safe for at Profile 1-1 for all 4 material models. The result also indicates that the first three profiles are marginally safe for 2, 3 and 4 material models respectively. The Profile 4-4 is not safe enough for all 4 material models. Thus, Profile 4-4 needs a special care to make the slope stable.Keywords: earthquake, finite element method, landslide, stability
Procedia PDF Downloads 3482007 Swift Rising Pattern of Emerging Construction Technology Trends in the Construction Management
Authors: Gayatri Mahajan
Abstract:
Modern Construction Technology (CT) includes a broad range of advanced techniques and practices that bound the recent developments in material technology, design methods, quantity surveying, facility management, services, structural analysis and design, and other management education. Adoption of recent digital transformation technology is the need of today to speed up the business and is also the basis of construction improvement. Incorporating and practicing the technologies such as cloud-based communication and collaboration solution, Mobile Apps and 5G,3D printing, BIM and Digital Twins, CAD / CAM, AR/ VR, Big Data, IoT, Wearables, Blockchain, Modular Construction, Offsite Manifesting, Prefabrication, Robotic, Drones and GPS controlled equipment expedite the progress in the Construction industry (CI). Resources used are journaled research articles, web/net surfing, books, thesis, reports/surveys, magazines, etc. The outline of the research organization for this study is framed at four distinct levels in context to conceptualization, resources, innovative and emerging trends in CI, and better methods for completion of the construction projects. The present study conducted during 2020-2022 reveals that implementing these technologies improves the level of standards, planning, security, well-being, sustainability, and economics too. Application uses, benefits, impact, advantages/disadvantages, limitations and challenges, and policies are dealt with to provide information to architects and builders for smooth completion of the project. Results explain that construction technology trends vary from 4 to 15 for CI, and eventually, it reaches 27 for Civil Engineering (CE). The perspective of the most recent innovations, trends, tools, challenges, and solutions is highly embraced in the field of construction. The incorporation of the above said technologies in the pandemic Covid -19 and post-pandemic might lead to a focus on finding out effective ways to adopt new-age technologies for CI.Keywords: BIM, drones, GPS, mobile apps, 5G, modular construction, robotics, 3D printing
Procedia PDF Downloads 1052006 Training for Digital Manufacturing: A Multilevel Teaching Model
Authors: Luís Rocha, Adam Gąska, Enrico Savio, Michael Marxer, Christoph Battaglia
Abstract:
The changes observed in the last years in the field of manufacturing and production engineering, popularly known as "Fourth Industry Revolution", utilizes the achievements in the different areas of computer sciences, introducing new solutions at almost every stage of the production process, just to mention such concepts as mass customization, cloud computing, knowledge-based engineering, virtual reality, rapid prototyping, or virtual models of measuring systems. To effectively speed up the production process and make it more flexible, it is necessary to tighten the bonds connecting individual stages of the production process and to raise the awareness and knowledge of employees of individual sectors about the nature and specificity of work in other stages. It is important to discover and develop a suitable education method adapted to the specificities of each stage of the production process, becoming an extremely crucial issue to exploit the potential of the fourth industrial revolution properly. Because of it, the project “Train4Dim” (T4D) intends to develop complex training material for digital manufacturing, including content for design, manufacturing, and quality control, with a focus on coordinate metrology and portable measuring systems. In this paper, the authors present an approach to using an active learning methodology for digital manufacturing. T4D main objective is to develop a multi-degree (apprenticeship up to master’s degree studies) and educational approach that can be adapted to different teaching levels. It’s also described the process of creating the underneath methodology. The paper will share the steps to achieve the aims of the project (training model for digital manufacturing): 1) surveying the stakeholders, 2) Defining the learning aims, 3) producing all contents and curriculum, 4) training for tutors, and 5) Pilot courses test and improvements.Keywords: learning, Industry 4.0, active learning, digital manufacturing
Procedia PDF Downloads 972005 Women Entrepreneuship in Croatia: Issues and Policies
Authors: Marko Kolakovic, Mihaela Mikic, Martina Taborin
Abstract:
Women entrepreneurship is often regarded as the unused economical potential in many countries, including Republic of Croatia. Although women represent a majority in the population, they are still a minority in the field of entrepreneurship and face many challenges in fulfilling their entrepreneurship potential. The reasons are often hided in historical distorted perceptions about value, credibility, competitiveness, responsibility and knowledge which women have, or can have. This is significant for at least two reasons. First, in terms of global economic crisis, the economy needs more quality, more skilled and educated people willing to face entrepreneurial challenges and create new jobs, new opportunities and higher living standards. Second, in the entrepreneurial activity, women finally have a chance to highlight their own abilities, such as knowledge, relentless work, organizational skills, communication and negotiation skills, responsibility, flexibility, etc., in order to insure their economic independence, for a better social position, and to increase confidence and faith in their own abilities. This paper empirically analyses characteristics of women entrepreneurship in Croatia and conducted policies for it improvement. An empirical research was conducted with the goal of discovering real life experiences and attitudes of Croatian women entrepreneurs. Results show that Croatian women entrepreneurs are usually highly educated, have previous work experience and operate in service sector, due to lower need for start-up capital. The biggest obstacle on their entrepreneurial path represents government bureaucracy. Although the number of women entrepreneurs is rising today and the gap between male and women entrepreneurs in Croatia, as well as women entrepreneurship levels lower than the European average, we believe that there is still a long way to reach potential and successful women entrepreneurship development. Research showed that by breaking down the barriers as access to finance, education investments, knowledge, skills and confidence development, women will be able to accomplish more significant and more efficient entrepreneurial outcome.Keywords: Croatia, policy, SMEs, women entrepreneurial strategy, women entrepreneurship
Procedia PDF Downloads 3232004 Evaluation of Simulated Noise Levels through the Analysis of Temperature and Rainfall: A Case Study of Nairobi Central Business District
Authors: Emmanuel Yussuf, John Muthama, John Ng'ang'A
Abstract:
There has been increasing noise levels all over the world in the last decade. Many factors contribute to this increase, which is causing health related effects to humans. Developing countries are not left out of the whole picture as they are still growing and advancing their development. Motor vehicles are increasing on urban roads; there is an increase in infrastructure due to the rising population, increasing number of industries to provide goods and so many other activities. All this activities lead to the high noise levels in cities. This study was conducted in Nairobi’s Central Business District (CBD) with the main objective of simulating noise levels in order to understand the noise exposed to the people within the urban area, in relation to weather parameters namely temperature, rainfall and wind field. The study was achieved using the Neighbourhood Proximity Model and Time Series Analysis, with data obtained from proxies/remotely-sensed from satellites, in order to establish the levels of noise exposed to which people of Nairobi CBD are exposed to. The findings showed that there is an increase in temperature (0.1°C per year) and a decrease in precipitation (40 mm per year), which in comparison to the noise levels in the area, are increasing. The study also found out that noise levels exposed to people in Nairobi CBD were roughly between 61 and 63 decibels and has been increasing, a level which is high and likely to cause adverse physical and psychological effects on the human body in which air temperature, precipitation and wind contribute so much in the spread of noise. As a noise reduction measure, the use of sound proof materials in buildings close to busy roads, implementation of strict laws to most emitting sources as well as further research on the study was recommended. The data used for this study ranged from the year 2000 to 2015, rainfall being in millimeters (mm), temperature in degrees Celsius (°C) and the urban form characteristics being in meters (m).Keywords: simulation, noise exposure, weather, proxy
Procedia PDF Downloads 3792003 Which Mechanisms are Involved by Legume-Rhizobia Symbiosis to Increase Its Phosphorus Use Efficiency under Low Phosphorus Level?
Authors: B. Makoudi, R. Ghanimi, A. Bargaz, M. Mouradi, M. Farissi, A. Kabbaj, J. J. Drevon, C. Ghoulam
Abstract:
Legume species are able to establish a nitrogen fixing symbiosis with soil rhizobia that allows them, when it operates normally, to ensure their necessary nitrogen nutrition. This biological process needs high phosphorus (P) supply and consequently it is limited under low phosphorus availability. To overcome this constraint, legume-rhizobia symbiosis develops many mechanisms to increase P availability in the rhizosphere and also the efficiency of P fertilizers. The objectives of our research works are to understand the physiological and biochemical mechanisms implemented by legume-rhizobia symbiosis to increase its P use efficiency (PUE) in order to select legume genotypes-rhizobia strains combination more performing for BNF under P deficiency. Our studies were carried out on two grain legume species, common bean (Phaseolus vulgaris) and faba bean (Vicia faba) tested in farmers’ fields and in experimental station fewer than two soil phosphorus levels. Under field conditions, the P deficiency caused a significant decrease of Plant and nodule biomasses in all of the tested varieties with a difference between them. This P limitation increased the contents of available P in the rhizospheric soils that was positively correlated with the increase of phosphatases activities in the nodules and the rhizospheric soil. Some legume genotypes showed a significant increase of their P use efficiency under P deficiency. The P solubilization test showed that some rhizobia strains isolated from Haouz region presented an important capacity to grow on solid and liquid media with tricalcium phosphate as the only P source and their P solubilizing activity was confirmed by the assay of the released P in the liquid medium. Also, this P solubilizing activity was correlated with medium acidification and the excretion of acid phosphatases and phytases in the medium. Thus, we concluded that medium acidification and excretion of phosphatases in the rhizosphere are the prominent reactions for legume-rhizobia symbiosis to improve its P nutrition.Keywords: legume, phosphorus deficiency, rhizobia, rhizospheric soil
Procedia PDF Downloads 3122002 Chemical Warfare Agent Simulant by Photocatalytic Filtering Reactor: Effect of Operating Parameters
Authors: Youcef Serhane, Abdelkrim Bouzaza, Dominique Wolbert, Aymen Amin Assadi
Abstract:
Throughout history, the use of chemical weapons is not exclusive to combats between army corps; some of these weapons are also found in very targeted intelligence operations (political assassinations), organized crime, and terrorist organizations. To improve the speed of action, important technological devices have been developed in recent years, in particular in the field of protection and decontamination techniques to better protect and neutralize a chemical threat. In order to assess certain protective, decontaminating technologies or to improve medical countermeasures, tests must be conducted. In view of the great toxicity of toxic chemical agents from (real) wars, simulants can be used, chosen according to the desired application. Here, we present an investigation about using a photocatalytic filtering reactor (PFR) for highly contaminated environments containing diethyl sulfide (DES). This target pollutant is used as a simulant of CWA, namely of Yperite (Mustard Gas). The influence of the inlet concentration (until high concentrations of DES (1200 ppmv, i.e., 5 g/m³ of air) has been studied. Also, the conversion rate was monitored under different relative humidity and different flow rates (respiratory flow - standards: ISO / DIS 8996 and NF EN 14387 + A1). In order to understand the efficacity of pollutant neutralization by PFR, a kinetic model based on the Langmuir–Hinshelwood (L–H) approach and taking into account the mass transfer step was developed. This allows us to determine the adsorption and kinetic degradation constants with no influence of mass transfer. The obtained results confirm that this small configuration of reactor presents an extremely promising way for the use of photocatalysis for treatment to deal with highly contaminated environments containing real chemical warfare agents. Also, they can give birth to an individual protection device (an autonomous cartridge for a gas mask).Keywords: photocatalysis, photocatalytic filtering reactor, diethylsulfide, chemical warfare agents
Procedia PDF Downloads 1052001 Simulation Study on Effects of Surfactant Properties on Surfactant Enhanced Oil Recovery from Fractured Reservoirs
Authors: Xiaoqian Cheng, Jon Kleppe, Ole Torsaeter
Abstract:
One objective of this work is to analyze the effects of surfactant properties (viscosity, concentration, and adsorption) on surfactant enhanced oil recovery at laboratory scale. The other objective is to obtain the functional relationships between surfactant properties and the ultimate oil recovery and oil recovery rate. A core is cut into two parts from the middle to imitate the matrix with a horizontal fracture. An injector and a producer are at the left and right sides of the fracture separately. The middle slice of the core is used as the model in this paper, whose size is 4cm x 0.1cm x 4.1cm, and the space of the fracture in the middle is 0.1 cm. The original properties of matrix, brine, oil in the base case are from Ekofisk Field. The properties of surfactant are from literature. Eclipse is used as the simulator. The results are followings: 1) The viscosity of surfactant solution has a positive linear relationship with surfactant oil recovery time. And the relationship between viscosity and oil production rate is an inverse function. The viscosity of surfactant solution has no obvious effect on ultimate oil recovery. Since most of the surfactant has no big effect on viscosity of brine, the viscosity of surfactant solution is not a key parameter of surfactant screening for surfactant flooding in fractured reservoirs. 2) The increase of surfactant concentration results a decrease of oil recovery rate and an increase of ultimate oil recovery. However, there are no functions could describe the relationships. Study on economy should be conducted because of the price of surfactant and oil. 3) In the study of surfactant adsorption, assume that the matrix wettability is changed to water-wet when the surfactant adsorption is to the maximum at all cases. And the ratio of surfactant adsorption and surfactant concentration (Cads/Csurf) is used to estimate the functional relationship. The results show that the relationship between ultimate oil recovery and Cads/Csurf is a logarithmic function. The oil production rate has a positive linear relationship with exp(Cads/Csurf). The work here could be used as a reference for the surfactant screening of surfactant enhanced oil recovery from fractured reservoirs. And the functional relationships between surfactant properties and the oil recovery rate and ultimate oil recovery help to improve upscaling methods.Keywords: fractured reservoirs, surfactant adsorption, surfactant concentration, surfactant EOR, surfactant viscosity
Procedia PDF Downloads 1742000 Effective Teaching Pyramid and Its Impact on Enhancing the Participation of Students in Swimming Classes
Authors: Salam M. H. Kareem
Abstract:
Instructional or teaching procedures and their proper sequence are essential for high-quality learning outcomes. These actions are the path that the teacher takes during the learning process after setting the learning objectives. Teachers and specialists in the education field should include teaching procedures with putting in place an effective mechanism for the procedure’s implementation to achieve a logical sequence with the desired output of overall education process. Determining the sequence of these actions may be a strategic process outlined by a strategic educational plan or drawn by teachers with a high level of experience, enabling them to determine those logical procedures. While specific actions may be necessary for a specific form, many Physical Education (PE) teachers can work out on various sports disciplines. This study was conducted to investigate the impact of using the teaching sequence of the teaching pyramid in raising the level of enjoyment in swimming classes. Four months later of teaching swimming skills to the control and experimental groups of the study, we figured that using the tools shown in the teaching pyramid with the experimental group led to statistically significant differences in the positive tendencies of students to participate in the swimming classes by using the traditional procedures of teaching and using of successive procedures in the teaching pyramid, and in favor of the teaching pyramid, The students are influenced by enhancing their tendency to participate in swimming classes when the teaching procedures followed are sensitive to individual differences and are based on the element of pleasure in learning, and less positive levels of the tendency of students when using traditional teaching procedures, by getting the level of skills' requirements higher and more difficult to perform. The level of positive tendencies of students when using successive procedures in the teaching pyramid was increased, by getting the level of skills' requirements higher and more difficult to perform, because of the high level of motivation and the desire to challenge the self-provided by the teaching pyramid.Keywords: physical education, swimming classes, teaching process, teaching pyramid
Procedia PDF Downloads 147