Search results for: virtual and constructive models
7432 An Artificially Intelligent Teaching-Agent to Enhance Learning Interactions in Virtual Settings
Authors: Abdulwakeel B. Raji
Abstract:
This paper introduces a concept of an intelligent virtual learning environment that involves communication between learners and an artificially intelligent teaching agent in an attempt to replicate classroom learning interactions. The benefits of this technology over current e-learning practices is that it creates a virtual classroom where real time adaptive learning interactions are made possible. This is a move away from the static learning practices currently being adopted by e-learning systems. Over the years, artificial intelligence has been applied to various fields, including and not limited to medicine, military applications, psychology, marketing etc. The purpose of e-learning applications is to ensure users are able to learn outside of the classroom, but a major limitation has been the inability to fully replicate classroom interactions between teacher and students. This study used comparative surveys to gain information and understanding of the current learning practices in Nigerian universities and how they compare to these practices compare to the use of a developed e-learning system. The study was conducted by attending several lectures and noting the interactions between lecturers and tutors and as an aftermath, a software has been developed that deploys the use of an artificial intelligent teaching-agent alongside an e-learning system to enhance user learning experience and attempt to create the similar learning interactions to those found in classroom and lecture hall settings. Dialogflow has been used to implement a teaching-agent, which has been developed using JSON, which serves as a virtual teacher. Course content has been created using HTML, CSS, PHP and JAVASCRIPT as a web-based application. This technology can run on handheld devices and Google based home technologies to give learners an access to the teaching agent at any time. This technology also implements the use of definite clause grammars and natural language processing to match user inputs and requests with defined rules to replicate learning interactions. This technology developed covers familiar classroom scenarios such as answering users’ questions, asking ‘do you understand’ at regular intervals and answering subsequent requests, taking advanced user queries to give feedbacks at other periods. This software technology uses deep learning techniques to learn user interactions and patterns to subsequently enhance user learning experience. A system testing has been undergone by undergraduate students in the UK and Nigeria on the course ‘Introduction to Database Development’. Test results and feedback from users shows that this study and developed software is a significant improvement on existing e-learning systems. Further experiments are to be run using the software with different students and more course contents.Keywords: virtual learning, natural language processing, definite clause grammars, deep learning, artificial intelligence
Procedia PDF Downloads 1357431 Air Quality Analysis Using Machine Learning Models Under Python Environment
Authors: Salahaeddine Sbai
Abstract:
Air quality analysis using machine learning models is a method employed to assess and predict air pollution levels. This approach leverages the capabilities of machine learning algorithms to analyze vast amounts of air quality data and extract valuable insights. By training these models on historical air quality data, they can learn patterns and relationships between various factors such as weather conditions, pollutant emissions, and geographical features. The trained models can then be used to predict air quality levels in real-time or forecast future pollution levels. This application of machine learning in air quality analysis enables policymakers, environmental agencies, and the general public to make informed decisions regarding health, environmental impact, and mitigation strategies. By understanding the factors influencing air quality, interventions can be implemented to reduce pollution levels, mitigate health risks, and enhance overall air quality management. Climate change is having significant impacts on Morocco, affecting various aspects of the country's environment, economy, and society. In this study, we use some machine learning models under python environment to predict and analysis air quality change over North of Morocco to evaluate the climate change impact on agriculture.Keywords: air quality, machine learning models, pollution, pollutant emissions
Procedia PDF Downloads 917430 A Review of Literature on Theories of Construction Accident Causation Models
Authors: Samuel Opeyemi Williams, Razali Bin Adul Hamid, M. S. Misnan, Taki Eddine Seghier, D. I. Ajayi
Abstract:
Construction sites are characterized with occupational risks. Review of literature on construction accidents reveals that a lot of theories have been propounded over the years by different theorists, coupled with multifarious models developed by different proponents at different times. Accidents are unplanned events that are prominent in construction sites, involving materials, objects and people with attendant damages, loses and injuries. Models were developed to investigate the causations of accident with the aim of preventing its occurrence. Though, some of these theories were criticized, most especially, the Heinrich Domino theory, being mostly faulted for placing much blame on operatives rather than the management. The purpose of this paper is to unravel the significant construction accident causation theories and models for the benefit of understanding of the theories, and consequently enabling construction stakeholders identify the possible potential hazards on construction sites, as all stakeholders have significant roles to play in preventing accident. Accidents are preventable; hence, understanding the risk factors of accident and the causation theories paves way for its prevention. However, findings reveal that still some gaps missing in the existing models, while it is recommended that further research can be made in order to develop more models in order to maintain zero accident on construction sites.Keywords: domino theory, construction site, site safety, accident causation model
Procedia PDF Downloads 3047429 Modelling and Simulation of Diffusion Effect on the Glycol Dehydration Unit of a Natural Gas Plant
Authors: M. Wigwe, J. G Akpa, E. N Wami
Abstract:
Mathematical models of the absorber of a glycol dehydration facility was developed using the principles of conservation of mass and energy. Models which predict variation of the water content of gas in mole fraction, variation of gas and liquid temperatures across the parking height were developed. These models contain contributions from bulk and diffusion flows. The effect of diffusion on the process occurring in the absorber was studied in this work. The models were validated using the initial conditions in the plant data from Company W TEG unit in Nigeria. The results obtained showed that the effect of diffusion was noticed between z=0 and z=0.004 m. A deviation from plant data of 0% was observed for the gas water content at a residence time of 20 seconds, at z=0.004 m. Similarly, deviations of 1.584% and 2.844% were observed for the gas and TEG temperatures.Keywords: separations, absorption, simulation, dehydration, water content, triethylene glycol
Procedia PDF Downloads 4997428 Comparative Study of Experimental and Theoretical Convective, Evaporative for Two Model Distiller
Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi
Abstract:
The purification of brackish seawater becomes a necessity and not a choice against demographic and industrial growth especially in third world countries. Two models can be used in this work: simple solar still and simple solar still coupled with a heat pump. In this research, the productivity of water by Simple Solar Distiller (SSD) and Simple Solar Distiller Hybrid Heat Pump (SSDHP) was determined by the orientation, the use of heat pump, the simple or double glass cover. The productivity can exceed 1.2 L/m²h for the SSDHP and 0.5 L/m²h for SSD model. The result of the global efficiency is determined for two models SSD and SSDHP give respectively 30%, 50%. The internal efficiency attained 35% for SSD and 60% of the SSDHP models. Convective heat coefficient can be determined by attained 2.5 W/m²°C and 0.5 W/m²°C respectively for SSDHP and SSD models.Keywords: productivity, efficiency, convective heat coefficient, SSD model, SSDHPmodel
Procedia PDF Downloads 2137427 Digitalisation of Onboarding: A Case Study to Investigate the Impact of Virtual Reality Technology on Employees Social Interactions and Information Seeking During Job-Onboarding
Authors: Ewenam Gbormittah
Abstract:
Because of the effects of the pandemic, companies are focusing on the future of work arrangements for their employees. This includes adapting to a remote or hybrid working model. It is important that employers provide those working remotely or in a hybrid mode a rewarding onboarding experience and opportunities for interaction. Although, Information & Communication Technologies (ICT) have transformed the ways organisations manage employees over the years, there is still a need for a platform where organisations can adjust their onboarding to suit the social and interactive aspects of their employees, to facilitate successful integration. This study aimed to explore this matter by investigating whether Virtual Reality (VR) technology contributes to new employees integration into the organisation during their job-onboarding (JOB) process. The research questions are as follows: (1) To what extent does VR have an impact on employees successful integration into the organisation, and (2) How does VR help elements of new employees Psychological Contract (PC) during the course of interactions. An exploratory case study approach, which consisted of a semi-structured interview was conducted on 20 employees, split from two different case organisations. The results of the data were analysed according to each case, and then a cross-case comparison was provided. The results have generated 8 themes, presenting in excess of 7 sub-themes for CS1 and presented 7 themes, in excess of 7 sub-themes for CS2. The cross-case analysis has revealed that VR does have the potential to support employees integration into the organisation. However, the effects were shown to be stronger for employees in CS2, compared to employees in CS1. The results highlight practical implications for onboarding psychology and strategic talent solutions within recruitment. Such strategy this research particularly outlines, involves providing insights on how to manage the PC of employees from the recruitment stage to creating successful employment relationships.Keywords: job-onboarding, psychological contract, virtual reality, case study one, case study two
Procedia PDF Downloads 667426 Predicting Food Waste and Losses Reduction for Fresh Products in Modified Atmosphere Packaging
Authors: Matar Celine, Gaucel Sebastien, Gontard Nathalie, Guilbert Stephane, Guillard Valerie
Abstract:
To increase the very short shelf life of fresh fruits and vegetable, Modified Atmosphere Packaging (MAP) allows an optimal atmosphere composition to be maintained around the product and thus prevent its decay. This technology relies on the modification of internal packaging atmosphere due to equilibrium between production/consumption of gases by the respiring product and gas permeation through the packaging material. While, to the best of our knowledge, benefit of MAP for fresh fruits and vegetable has been widely demonstrated in the literature, its effect on shelf life increase has never been quantified and formalized in a clear and simple manner leading difficult to anticipate its economic and environmental benefit, notably through the decrease of food losses. Mathematical modelling of mass transfers in the food/packaging system is the basis for a better design and dimensioning of the food packaging system. But up to now, existing models did not permit to estimate food quality nor shelf life gain reached by using MAP. However, shelf life prediction is an indispensable prerequisite for quantifying the effect of MAP on food losses reduction. The objective of this work is to propose an innovative approach to predict shelf life of MAP food product and then to link it to a reduction of food losses and wastes. In this purpose, a ‘Virtual MAP modeling tool’ was developed by coupling a new predictive deterioration model (based on visual surface prediction of deterioration encompassing colour, texture and spoilage development) with models of the literature for respiration and permeation. A major input of this modelling tool is the maximal percentage of deterioration (MAD) which was assessed from dedicated consumers’ studies. Strawberries of the variety Charlotte were selected as the model food for its high perishability, high respiration rate; 50-100 ml CO₂/h/kg produced at 20°C, allowing it to be a good representative of challenging post-harvest storage. A value of 13% was determined as a limit of acceptability for the consumers, permitting to define products’ shelf life. The ‘Virtual MAP modeling tool’ was validated in isothermal conditions (5, 10 and 20°C) and in dynamic temperature conditions mimicking commercial post-harvest storage of strawberries. RMSE values were systematically lower than 3% for respectively, O₂, CO₂ and deterioration profiles as a function of time confirming the goodness of model fitting. For the investigated temperature profile, a shelf life gain of 0.33 days was obtained in MAP compared to the conventional storage situation (no MAP condition). Shelf life gain of more than 1 day could be obtained for optimized post-harvest conditions as numerically investigated. Such shelf life gain permitted to anticipate a significant reduction of food losses at the distribution and consumer steps. This food losses' reduction as a function of shelf life gain has been quantified using a dedicated mathematical equation that has been developed for this purpose.Keywords: food losses and wastes, modified atmosphere packaging, mathematical modeling, shelf life prediction
Procedia PDF Downloads 1827425 Integrated Models of Reading Comprehension: Understanding to Impact Teaching—The Teacher’s Central Role
Authors: Sally A. Brown
Abstract:
Over the last 30 years, researchers have developed models or frameworks to provide a more structured understanding of the reading comprehension process. Cognitive information processing models and social cognitive theories both provide frameworks to inform reading comprehension instruction. The purpose of this paper is to (a) provide an overview of the historical development of reading comprehension theory, (b) review the literature framed by cognitive information processing, social cognitive, and integrated reading comprehension theories, and (c) demonstrate how these frameworks inform instruction. As integrated models of reading can guide the interpretation of various factors related to student learning, an integrated framework designed by the researcher will be presented. Results indicated that features of cognitive processing and social cognitivism theory—represented in the integrated framework—highlight the importance of the role of the teacher. This model can aid teachers in not only improving reading comprehension instruction but in identifying areas of challenge for students.Keywords: explicit instruction, integrated models of reading comprehension, reading comprehension, teacher’s role
Procedia PDF Downloads 977424 A Fast Silhouette Detection Algorithm for Shadow Volumes in Augmented Reality
Authors: Hoshang Kolivand, Mahyar Kolivand, Mohd Shahrizal Sunar, Mohd Azhar M. Arsad
Abstract:
Real-time shadow generation in virtual environments and Augmented Reality (AR) was always a hot topic in the last three decades. Lots of calculation for shadow generation among AR needs a fast algorithm to overcome this issue and to be capable of implementing in any real-time rendering. In this paper, a silhouette detection algorithm is presented to generate shadows for AR systems. Δ+ algorithm is presented based on extending edges of occluders to recognize which edges are silhouettes in the case of real-time rendering. An accurate comparison between the proposed algorithm and current algorithms in silhouette detection is done to show the reduction calculation by presented algorithm. The algorithm is tested in both virtual environments and AR systems. We think that this algorithm has the potential to be a fundamental algorithm for shadow generation in all complex environments.Keywords: silhouette detection, shadow volumes, real-time shadows, rendering, augmented reality
Procedia PDF Downloads 4437423 Hydrological Modeling of Watersheds Using the Only Corresponding Competitor Method: The Case of M’Zab Basin, South East Algeria
Authors: Oulad Naoui Noureddine, Cherif ELAmine, Djehiche Abdelkader
Abstract:
Water resources management includes several disciplines; the modeling of rainfall-runoff relationship is the most important discipline to prevent natural risks. There are several models to study rainfall-runoff relationship in watersheds. However, the majority of these models are not applicable in all basins of the world. In this study, a new stochastic method called The Only Corresponding Competitor method (OCC) was used for the hydrological modeling of M’ZAB Watershed (South East of Algeria) to adapt a few empirical models for any hydrological regime. The results obtained allow to authorize a certain number of visions, in which it would be interesting to experiment with hydrological models that improve collectively or separately the data of a catchment by the OCC method.Keywords: modelling, optimization, rainfall-runoff relationship, empirical model, OCC
Procedia PDF Downloads 2657422 Study Concerning the Energy-to-Mass Ratio in Pneumatic Muscles
Authors: Tudor Deaconescu, Andrea Deaconescu
Abstract:
The utilization of pneumatic muscles in the actuation of industrial systems is still in its early stages, hence studies on the constructive solutions which include an assessment of their functional performance with a focus on one of the most important characteristics-energy efficiency are required. A quality indicator that adequately reflects the energy efficiency of an actuator is the energy-to-mass ratio. This ratio is computed in the paper for various types and sizes of pneumatic muscles manufactured by Festo, and is subsequently compared to the similar ratios determined for two categories of pneumatic cylinders.Keywords: pneumatic cylinders, pneumatic muscles, energy-to-mass ratio, muscle stroke
Procedia PDF Downloads 3467421 Lumped Parameter Models for Numerical Simulation of The Dynamic Response of Hoisting Appliances
Authors: Candida Petrogalli, Giovanni Incerti, Luigi Solazzi
Abstract:
This paper describes three lumped parameters models for the study of the dynamic behaviour of a boom crane. The models proposed here allow evaluating the fluctuations of the load arising from the rope and structure elasticity and from the type of the motion command imposed by the winch. A calculation software was developed in order to determine the actual acceleration of the lifted mass and the dynamic overload during the lifting phase. Some application examples are presented, with the aim of showing the correlation between the magnitude of the stress and the type of the employed motion command.Keywords: crane, dynamic model, overloading condition, vibration
Procedia PDF Downloads 5757420 Digital Reconstruction of Museum's Statue Using 3D Scanner for Cultural Preservation in Indonesia
Authors: Ahmad Zaini, F. Muhammad Reza Hadafi, Surya Sumpeno, Muhtadin, Mochamad Hariadi
Abstract:
The lack of information about museum’s collection reduces the number of visits of museum. Museum’s revitalization is an urgent activity to increase the number of visits. The research's roadmap is building a web-based application that visualizes museum in the virtual form including museum's statue reconstruction in the form of 3D. This paper describes implementation of three-dimensional model reconstruction method based on light-strip pattern on the museum statue using 3D scanner. Noise removal, alignment, meshing and refinement model's processes is implemented to get a better 3D object reconstruction. Model’s texture derives from surface texture mapping between object's images with reconstructed 3D model. Accuracy test of dimension of the model is measured by calculating relative error of virtual model dimension compared against the original object. The result is realistic three-dimensional model textured with relative error around 4.3% to 5.8%.Keywords: 3D reconstruction, light pattern structure, texture mapping, museum
Procedia PDF Downloads 4657419 Advances in Artificial intelligence Using Speech Recognition
Authors: Khaled M. Alhawiti
Abstract:
This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.Keywords: speech recognition, acoustic phonetic, artificial intelligence, hidden markov models (HMM), statistical models of speech recognition, human machine performance
Procedia PDF Downloads 4777418 Optimization and Simulation Models Applied in Engineering Planning and Management
Authors: Abiodun Ladanu Ajala, Wuyi Oke
Abstract:
Mathematical simulation and optimization models packaged within interactive computer programs provide a common way for planners and managers to predict the behaviour of any proposed water resources system design or management policy before it is implemented. Modeling presents a principal technique of predicting the behaviour of the proposed infrastructural designs or management policies. Models can be developed and used to help identify specific alternative plans that best meet those objectives. This study discusses various types of models, their development, architecture, data requirements, and applications in the field of engineering. It also outlines the advantages and limitations of each the optimization and simulation models presented. The techniques explored in this review include; dynamic programming, linear programming, fuzzy optimization, evolutionary algorithms and finally artificial intelligence techniques. Previous studies carried out using some of the techniques mentioned above were reviewed, and most of the results from different researches showed that indeed optimization and simulation provides viable alternatives and predictions which form a basis for decision making in building engineering structures and also in engineering planning and management.Keywords: linear programming, mutation, optimization, simulation
Procedia PDF Downloads 5897417 Return to Work after a Mental Health Problem: Analysis of Two Different Management Models
Authors: Lucie Cote, Sonia McFadden
Abstract:
Mental health problems in the workplace are currently one of the main causes of absences. Research work has highlighted the importance of a collaborative process involving the stakeholders in the return-to-work process and has established the best management practices to ensure a successful return-to-work. However, very few studies have specifically explored the combination of various management models and determined whether they could satisfy the needs of the stakeholders. The objective of this study is to analyze two models for managing the return to work: the ‘medical-administrative’ and the ‘support of the worker’ in order to understand the actions and actors involved in these models. The study also aims to explore whether these models meet the needs of the actors involved in the management of the return to work. A qualitative case study was conducted in a Canadian federal organization. An abundant internal documentation and semi-directed interviews with six managers, six workers and four human resources professionals involved in the management of records of employees returning to work after a mental health problem resulted in a complete picture of the return to work management practices used in this organization. The triangulation of this data facilitated the examination of the benefits and limitations of each approach. The results suggest that the actions of management for employee return to work from both models of management ‘support of the worker’ and ‘medical-administrative’ are compatible and can meet the needs of the actors involved in the return to work. More research is needed to develop a structured model integrating best practices of the two approaches to ensure the success of the return to work.Keywords: return to work, mental health, management models, organizations
Procedia PDF Downloads 2127416 Effect of Traffic Volume and Its Composition on Vehicular Speed under Mixed Traffic Conditions: A Kriging Based Approach
Authors: Subhadip Biswas, Shivendra Maurya, Satish Chandra, Indrajit Ghosh
Abstract:
Use of speed prediction models sometimes appears as a feasible alternative to laborious field measurement particularly, in case when field data cannot fulfill designer’s requirements. However, developing speed models is a challenging task specifically in the context of developing countries like India where vehicles with diverse static and dynamic characteristics use the same right of way without any segregation. Here the traffic composition plays a significant role in determining the vehicular speed. The present research was carried out to examine the effects of traffic volume and its composition on vehicular speed under mixed traffic conditions. Classified traffic volume and speed data were collected from different geometrically identical six lane divided arterials in New Delhi. Based on these field data, speed prediction models were developed for individual vehicle category adopting Kriging approximation technique, an alternative for commonly used regression. These models are validated with the data set kept aside earlier for validation purpose. The predicted speeds showed a great deal of agreement with the observed values and also the model outperforms all other existing speed models. Finally, the proposed models were utilized to evaluate the effect of traffic volume and its composition on speed.Keywords: speed, Kriging, arterial, traffic volume
Procedia PDF Downloads 3537415 An Era of Arts: Examining Intersection of Technology and Museums
Authors: Vivian Li
Abstract:
With the rapid development of technology, virtual reality (VR) and augmented reality (AR) are becoming increasingly prominent in our lives. Museums have led the way in digitization, offering their collections to the wider public through the open internet, which is dramatically changing our experience of art. Technology is also being implemented into our physical art-viewing experience, enabling museums to capture historical sites while creating a more immersive experience for patrons. This study takes a qualitative approach, examining secondary sources and synthesizing information from interviews with field professionals to answer the question: to what extent is the contemporary perception of art transformed by the digitization of art museums? The findings establish that museums are becoming increasingly open with their collections, utilizing digitization to spread their intellectual content to people worldwide and to diversify their audiences. The use of VR and AR is also enabling museums to preserve and showcase historical artifacts and sites in a more interactive and user-focused way. Technology is also crafting new forms of art and art museums. Ultimately, the intersection of technology and museums is not changing the definition of art but rather offering new modes for the public to experience and learn about arts and history.Keywords: art, augmented reality, digitization, museums, technology, virtual reality
Procedia PDF Downloads 1277414 Artificial Intelligence for Generative Modelling
Authors: Shryas Bhurat, Aryan Vashistha, Sampreet Dinakar Nayak, Ayush Gupta
Abstract:
As the technology is advancing more towards high computational resources, there is a paradigm shift in the usage of these resources to optimize the design process. This paper discusses the usage of ‘Generative Design using Artificial Intelligence’ to build better models that adapt the operations like selection, mutation, and crossover to generate results. The human mind thinks of the simplest approach while designing an object, but the intelligence learns from the past & designs the complex optimized CAD Models. Generative Design takes the boundary conditions and comes up with multiple solutions with iterations to come up with a sturdy design with the most optimal parameter that is given, saving huge amounts of time & resources. The new production techniques that are at our disposal allow us to use additive manufacturing, 3D printing, and other innovative manufacturing techniques to save resources and design artistically engineered CAD Models. Also, this paper discusses the Genetic Algorithm, the Non-Domination technique to choose the right results using biomimicry that has evolved for current habitation for millions of years. The computer uses parametric models to generate newer models using an iterative approach & uses cloud computing to store these iterative designs. The later part of the paper compares the topology optimization technology with Generative Design that is previously being used to generate CAD Models. Finally, this paper shows the performance of algorithms and how these algorithms help in designing resource-efficient models.Keywords: genetic algorithm, bio mimicry, generative modeling, non-dominant techniques
Procedia PDF Downloads 1497413 Cryptocurrency-Based Mobile Payments with Near-Field Communication-Enabled Devices
Authors: Marko Niinimaki
Abstract:
Cryptocurrencies are getting increasingly popular, but very few of them can be conveniently used in daily mobile phone purchases. To solve this problem, we demonstrate how to build a functional prototype of a mobile cryptocurrency-based e-commerce application the communicates with Near-Field Communication (NFC) tags. Using the system, users are able to purchase physical items with an NFC tag that contains an e-commerce URL. The payment is done simply by touching the tag with a mobile device and accepting the payment. Our method is constructive: we describe the design and technologies used in the implementation and evaluate the security and performance of the solution. Our main finding is that the analysis and measurements show that our solution is feasible for e-commerce.Keywords: cryptocurrency, e-commerce, NFC, mobile devices
Procedia PDF Downloads 1847412 Digital Self-Identity and the Role of Interactivity in Psychiatric Assessment and Treatment
Authors: Kevin William Taylor
Abstract:
This work draws upon research in the fields of games development and mental health treatments to assess the influence that interactive entertainment has on the populous, and the potential of technology to affect areas of psychiatric assessment and treatment. It will use studies to establish the evolving direction of interactive media in the development of ‘digital self-identity,’ and how this can be incorporated into treatment to the benefit of psychiatry. It will determine that this approach will require collaborative production between developers and psychiatrists in order to ensure precise goals are met, improving the success of serious gaming for psychiatric assessment and treatment. Analysis documents the reach of video games across a growing global community of gamers, highlighting cases of the positives and negatives of video game usage. The games industry is largely oblivious to the psychological negatives, with psychiatrists encountering new conditions such as gaming addiction, which is now recognized by the World Health Organization. With an increasing amount of gamers worldwide, and an additional time per day invested in online gaming and character development, the concept of virtual identity as a means of expressing the id needs further study to ensure successful treatment. In conclusion, the assessment and treatment of game-related conditions are currently reactionary, and while some mental health professionals have begun utilizing interactive technologies to assist with the assessment and treatment of conditions, this study will determine how the success of these products can be enhanced. This will include collaboration between software developers and psychiatrists, allowing new avenues of skill-sharing in interactive design and development. Outlining how to innovate approaches to engagement will reap greater rewards in future interactive products developed for psychiatric assessment and treatment.Keywords: virtual reality, virtual identity, interactivity, psychiatry
Procedia PDF Downloads 1467411 Mixed Effects Models for Short-Term Load Forecasting for the Spanish Regions: Castilla-Leon, Castilla-La Mancha and Andalucia
Authors: C. Senabre, S. Valero, M. Lopez, E. Velasco, M. Sanchez
Abstract:
This paper focuses on an application of linear mixed models to short-term load forecasting. The challenge of this research is to improve a currently working model at the Spanish Transport System Operator, programmed by us, and based on linear autoregressive techniques and neural networks. The forecasting system currently forecasts each of the regions within the Spanish grid separately, even though the behavior of the load in each region is affected by the same factors in a similar way. A load forecasting system has been verified in this work by using the real data from a utility. In this research it has been used an integration of several regions into a linear mixed model as starting point to obtain the information from other regions. Firstly, the systems to learn general behaviors present in all regions, and secondly, it is identified individual deviation in each regions. The technique can be especially useful when modeling the effect of special days with scarce information from the past. The three most relevant regions of the system have been used to test the model, focusing on special day and improving the performance of both currently working models used as benchmark. A range of comparisons with different forecasting models has been conducted. The forecasting results demonstrate the superiority of the proposed methodology.Keywords: short-term load forecasting, mixed effects models, neural networks, mixed effects models
Procedia PDF Downloads 1897410 Predominance of Teaching Models Used by Math Teachers in Secondary Education
Authors: Verónica Diaz Quezada
Abstract:
This research examines the teaching models used by secondary math teachers when teaching logarithmic, quadratic and exponential functions. For this, descriptive case studies have been carried out on 5 secondary teachers. These teachers have been chosen from 3 scientific-humanistic and technical schools, in Chile. Data have been obtained through non-participant class observation and the application of a questionnaire and a rubric to teachers. According to the results, the didactic model that prevails is the one that starts with an interactive strategy, moves to a more content-based structure, and ends with a reinforcement stage. Nonetheless, there is always influence from teachers, their methods, and the group of students.Keywords: teaching models, math teachers, functions, secondary education
Procedia PDF Downloads 1897409 A Super-Efficiency Model for Evaluating Efficiency in the Presence of Time Lag Effect
Authors: Yanshuang Zhang, Byungho Jeong
Abstract:
In many cases, there is a time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in evaluating the performance of organizations. Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. Multi-periods input(MpI) and Multi-periods output(MpO) models are integrated models to calculate simple efficiency considering time lag effect. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. That is, efficient DMUs can’t be discriminated because their efficiency scores are same. Thus, this paper suggests a super-efficiency model for efficiency evaluation under the consideration of time lag effect based on the MpO model. A case example using a long-term research project is given to compare the suggested model with the MpO model.Keywords: DEA, super-efficiency, time lag, multi-periods input
Procedia PDF Downloads 4737408 TeleEmergency Medicine: Transforming Acute Care through Virtual Technology
Authors: Ashley L. Freeman, Jessica D. Watkins
Abstract:
TeleEmergency Medicine (TeleEM) is an innovative approach leveraging virtual technology to deliver specialized emergency medical care across diverse healthcare settings, including internal acute care and critical access hospitals, remote patient monitoring, and nurse triage escalation, in addition to external emergency departments, skilled nursing facilities, and community health centers. TeleEM represents a significant advancement in the delivery of emergency medical care, providing healthcare professionals the capability to deliver expertise that closely mirrors in-person emergency medicine, exceeding geographical boundaries. Through qualitative research, the extension of timely, high-quality care has proven to address the critical needs of patients in remote and underserved areas. TeleEM’s service design allows for the expansion of existing services and the establishment of new ones in diverse geographic locations. This ensures that healthcare institutions can readily scale and adapt services to evolving community requirements by leveraging on-demand (non-scheduled) telemedicine visits through the deployment of multiple video solutions. In terms of financial management, TeleEM currently employs billing suppression and subscription models to enhance accessibility for a wide range of healthcare facilities. Plans are in motion to transition to a billing system routing charges through a third-party vendor, further enhancing financial management flexibility. To address state licensure concerns, a patient location verification process has been integrated through legal counsel and compliance authorities' guidance. The TeleEM workflow is designed to terminate if the patient is not physically located within licensed regions at the time of the virtual connection, alleviating legal uncertainties. A distinctive and pivotal feature of TeleEM is the introduction of the TeleEmergency Medicine Care Team Assistant (TeleCTA) role. TeleCTAs collaborate closely with TeleEM Physicians, leading to enhanced service activation, streamlined coordination, and workflow and data efficiencies. In the last year, more than 800 TeleEM sessions have been conducted, of which 680 were initiated by internal acute care and critical access hospitals, as evidenced by quantitative research. Without this service, many of these cases would have necessitated patient transfers. Barriers to success were examined through thorough medical record review and data analysis, which identified inaccuracies in documentation leading to activation delays, limitations in billing capabilities, and data distortion, as well as the intricacies of managing varying workflows and device setups. TeleEM represents a transformative advancement in emergency medical care that nurtures collaboration and innovation. Not only has advanced the delivery of emergency medicine care virtual technology through focus group participation with key stakeholders, rigorous attention to legal and financial considerations, and the implementation of robust documentation tools and the TeleCTA role, but it’s also set the stage for overcoming geographic limitations. TeleEM assumes a notable position in the field of telemedicine by enhancing patient outcomes and expanding access to emergency medical care while mitigating licensure risks and ensuring compliant billing.Keywords: emergency medicine, TeleEM, rural healthcare, telemedicine
Procedia PDF Downloads 827407 Exploring Tweet Geolocation: Leveraging Large Language Models for Post-Hoc Explanations
Authors: Sarra Hasni, Sami Faiz
Abstract:
In recent years, location prediction on social networks has gained significant attention, with short and unstructured texts like tweets posing additional challenges. Advanced geolocation models have been proposed, increasing the need to explain their predictions. In this paper, we provide explanations for a geolocation black-box model using LIME and SHAP, two state-of-the-art XAI (eXplainable Artificial Intelligence) methods. We extend our evaluations to Large Language Models (LLMs) as post hoc explainers for tweet geolocation. Our preliminary results show that LLMs outperform LIME and SHAP by generating more accurate explanations. Additionally, we demonstrate that prompts with examples and meta-prompts containing phonetic spelling rules improve the interpretability of these models, even with informal input data. This approach highlights the potential of advanced prompt engineering techniques to enhance the effectiveness of black-box models in geolocation tasks on social networks.Keywords: large language model, post hoc explainer, prompt engineering, local explanation, tweet geolocation
Procedia PDF Downloads 257406 Classification of Business Models of Italian Bancassurance by Balance Sheet Indicators
Authors: Andrea Bellucci, Martina Tofi
Abstract:
The aim of paper is to analyze business models of bancassurance in Italy for life business. The life insurance business is very developed in the Italian market and banks branches have 80% of the market share. Given its maturity, the life insurance market needs to consolidate its organizational form to allow for the development of non-life business, which nowadays collects few premiums but represents a great opportunity to enlarge the market share of bancassurance using its strength in the distribution channel while the market share of independent agents is decreasing. Starting with the main business model of bancassurance for life business, this paper will analyze the performances of life companies in the Italian market by balance sheet indicators and by main discriminant variables of business models. The study will observe trends from 2013 to 2015 for the Italian market by exploiting a database managed by Associazione Nazionale delle Imprese di Assicurazione (ANIA). The applied approach is based on a bottom-up analysis starting with variables and indicators to define business models’ classification. The statistical classification algorithm proposed by Ward is employed to design business models’ profiles. Results from the analysis will be a representation of the main business models built by their profile related to indicators. In that way, an unsupervised analysis is developed that has the limit of its judgmental dimension based on research opinion, but it is possible to obtain a design of effective business models.Keywords: bancassurance, business model, non life bancassurance, insurance business value drivers
Procedia PDF Downloads 2987405 Reducing Uncertainty in Climate Projections over Uganda by Numerical Models Using Bias Correction
Authors: Isaac Mugume
Abstract:
Since the beginning of the 21st century, climate change has been an issue due to the reported rise in global temperature and changes in the frequency as well as severity of extreme weather and climatic events. The changing climate has been attributed to rising concentrations of greenhouse gases, including environmental changes such as ecosystems and land-uses. Climatic projections have been carried out under the auspices of the intergovernmental panel on climate change where a couple of models have been run to inform us about the likelihood of future climates. Since one of the major forcings informing the changing climate is emission of greenhouse gases, different scenarios have been proposed and future climates for different periods presented. The global climate models project different areas to experience different impacts. While regional modeling is being carried out for high impact studies, bias correction is less documented. Yet, the regional climate models suffer bias which introduces uncertainty. This is addressed in this study by bias correcting the regional models. This study uses the Weather Research and Forecasting model under different representative concentration pathways and correcting the products of these models using observed climatic data. This study notes that bias correction (e.g., the running-mean bias correction; the best easy systematic estimator method; the simple linear regression method, nearest neighborhood, weighted mean) improves the climatic projection skill and therefore reduce the uncertainty inherent in the climatic projections.Keywords: bias correction, climatic projections, numerical models, representative concentration pathways
Procedia PDF Downloads 1197404 The Biomechanical Analysis of Pelvic Osteotomies Applied for Developmental Dysplasia of the Hip Treatment in Pediatric Patients
Authors: Suvorov Vasyl, Filipchuk Viktor
Abstract:
Developmental Dysplasia of the Hip (DDH) is a frequent pathology in pediatric orthopedist’s practice. Neglected or residual cases of DDH in walking patients are usually treated using pelvic osteotomies. Plastic changes take place in hinge points due to acetabulum reorientation during surgery. Classically described hinge points and a traditional division of pelvic osteotomies on reshaping and reorientation are currently debated. The purpose of this article was to evaluate biomechanical changes during the most commonly used pelvic osteotomies (Salter, Dega, Pemberton) for DDH treatment in pediatric patients. Methods: virtual pelvic models of 2- and 6-years old patients were created, material properties were assigned, pelvic osteotomies were simulated and biomechanical changes were evaluated using finite element analysis (FEA). Results: it was revealed that the patient's age has an impact on pelvic bones and cartilages density (in younger patients the pelvic elements are more pliable - p<0.05). Stress distribution after each of the abovementioned pelvic osteotomy was assessed in 2- and 6-years old patients’ pelvic models; hinge points were evaluated. The new term "restriction point" was introduced, which means a place where restriction of acetabular deformity correction occurs. Pelvic ligaments attachment points were mainly these restriction points. Conclusions: it was found out that there are no purely reshaping and reorientation pelvic osteotomies as previously believed; the pelvic ring acts as a unit in carrying out the applied load. Biomechanical overload of triradiate cartilage during Salter osteotomy in 2-years old patient and in 2- and 6-years old patients during Pemberton osteotomy was revealed; overload of the posterior cortical layer in the greater sciatic notch in 2-years old patient during Dega osteotomy was revealed. Level of Evidence – Level IV, prognostic.Keywords: developmental dysplasia of the hip, pelvic osteotomy, finite element analysis, hinge point, biomechanics
Procedia PDF Downloads 987403 A Nonlinear Dynamical System with Application
Authors: Abdullah Eqal Al Mazrooei
Abstract:
In this paper, a nonlinear dynamical system is presented. This system is a bilinear class. The bilinear systems are very important kind of nonlinear systems because they have many applications in real life. They are used in biology, chemistry, manufacturing, engineering, and economics where linear models are ineffective or inadequate. They have also been recently used to analyze and forecast weather conditions. Bilinear systems have three advantages: First, they define many problems which have a great applied importance. Second, they give us approximations to nonlinear systems. Thirdly, they have a rich geometric and algebraic structures, which promises to be a fruitful field of research for scientists and applications. The type of nonlinearity that is treated and analyzed consists of bilinear interaction between the states vectors and the system input. By using some properties of the tensor product, these systems can be transformed to linear systems. But, here we discuss the nonlinearity when the state vector is multiplied by itself. So, this model will be able to handle evolutions according to the Lotka-Volterra models or the Lorenz weather models, thus enabling a wider and more flexible application of such models. Here we apply by using an estimator to estimate temperatures. The results prove the efficiency of the proposed system.Keywords: Lorenz models, nonlinear systems, nonlinear estimator, state-space model
Procedia PDF Downloads 254