Search results for: vaginal electrical resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5197

Search results for: vaginal electrical resistance

4597 Thermal Resistance Analysis of Flexible Composites Based on Al2O3 Aerogels

Authors: Jianzheng Wei, Duo Zhen, Zhihan Yang, Huifeng Tan

Abstract:

The deployable descent technology is a lightweight entry method using an inflatable heat shield. The heatshield consists of a pressurized core which is covered by different layers of thermal insulation and flexible ablative materials in order to protect against the thermal loads. In this paper, both aluminum and silicon-aluminum aerogels were prepared by freeze-drying method. The latter material has bigger specific surface area and nano-scale pores. Mullite fibers are used as the reinforcing fibers to prepare the aerogel matrix to improve composite flexibility. The flexible composite materials were performed as an insulation layer to an underlying aramid fabric by a thermal shock test at a heat flux density of 120 kW/m2 and uniaxial tensile test. These results show that the aramid fabric with untreated mullite fibers as the thermal protective layer is completely carbonized at the heat of about 60 s. The aramid fabric as a thermal resistance layer of the composite material still has good mechanical properties at the same heat condition.

Keywords: aerogel, aramid fabric, flexibility, thermal resistance

Procedia PDF Downloads 153
4596 Hierarchical Surface Inspired by Lotus-Leaf for Electrical Generators from Waterdrop

Authors: Jaewook Ha, Jin-beak Kim, Seongmin Kim

Abstract:

In order to solve global warming and climate change issues, increased efforts have been devoted towards clean and sustainable energy sources as well as new energy generating devices. Nanogenerator is a device that converts mechanical/thermal energy as produced by small-scale physical change into electricity. Here we propose that nature-leaf surface could be used for preparation of a triboelectric nanogenerator. The nature-leaf surface consists of polydimethylsiloxane microscale pillars and polytetrafluoroethylene nanoparticles. Interaction between the nature-leaf surface and water was studied and the electrical outputs from the motion of single water drop were measured. A 40-μL water drop can generate a peak voltage of 1 V and a peak current of 0.7 μA. This nanogenerator might be used to drive electric devices in the outdoor environments in a sustainable manner.

Keywords: hierarchical surface, lotus-leaf, electrical generator, waterdrop

Procedia PDF Downloads 293
4595 Waste-Based Surface Modification to Enhance Corrosion Resistance of Aluminium Bronze Alloy

Authors: Wilson Handoko, Farshid Pahlevani, Isha Singla, Himanish Kumar, Veena Sahajwalla

Abstract:

Aluminium bronze alloys are well known for their superior abrasion, tensile strength and non-magnetic properties, due to the co-presence of iron (Fe) and aluminium (Al) as alloying elements and have been commonly used in many industrial applications. However, continuous exposure to the marine environment will accelerate the risk of a tendency to Al bronze alloys parts failures. Although a higher level of corrosion resistance properties can be achieved by modifying its elemental composition, it will come at a price through the complex manufacturing process and increases the risk of reducing the ductility of Al bronze alloy. In this research, the use of ironmaking slag and waste plastic as the input source for surface modification of Al bronze alloy was implemented. Microstructural analysis conducted using polarised light microscopy and scanning electron microscopy (SEM) that is equipped with energy dispersive spectroscopy (EDS). An electrochemical corrosion test was carried out through Tafel polarisation method and calculation of protection efficiency against the base-material was determined. Results have indicated that uniform modified surface which is as the result of selective diffusion process, has enhanced corrosion resistance properties up to 12.67%. This approach has opened a new opportunity to access various industrial utilisations in commercial scale through minimising the dependency on natural resources by transforming waste sources into the protective coating in environmentally friendly and cost-effective ways.

Keywords: aluminium bronze, waste-based surface modification, tafel polarisation, corrosion resistance

Procedia PDF Downloads 236
4594 Electrical and Thermal Characteristics of a Photovoltaic Solar Wall with Passive and Active Ventilation through a Room

Authors: Himanshu Dehra

Abstract:

An experimental study was conducted for ascertaining electrical and thermal characteristics of a pair of photovoltaic (PV) modules integrated with solar wall of an outdoor room. A pre-fabricated outdoor room was setup for conducting outdoor experiments on a PV solar wall with passive and active ventilation through the outdoor room. The selective operating conditions for glass coated PV modules were utilized for establishing their electrical and thermal characteristics. The PV solar wall was made up of glass coated PV modules, a ventilated air column, and an insulating layer of polystyrene filled plywood board. The measurements collected were currents, voltages, electric power, air velocities, temperatures, solar intensities, and thermal time constant. The results have demonstrated that: i) a PV solar wall installed on a wooden frame was of more heat generating capacity in comparison to a window glass or a standalone PV module; ii) generation of electric power was affected with operation of vertical PV solar wall; iii) electrical and thermal characteristics were not significantly affected by heat and thermal storage losses; and iv) combined heat and electricity generation were function of volume of thermal and electrical resistances developed across PV solar wall. Finally, a comparison of temperature plots of passive and active ventilation envisaged that fan pressure was necessary to avoid overheating of the PV solar wall. The active ventilation was necessary to avoid over-heating of the PV solar wall and to maintain adequate ventilation of room under mild climate conditions.

Keywords: photovoltaic solar wall, solar energy, passive ventilation, active ventilation

Procedia PDF Downloads 395
4593 Combination of Diane-35 and Metformin to Treat Early Endometrial Carcinoma in PCOS Women with Insulin Resistance

Authors: Xin Li, Yan-Rong Guo, Jin-Fang Lin, Yi Feng, Håkan Billig, Ruijin Shao

Abstract:

Background: Young women with polycystic ovary syndrome (PCOS) have a high risk of developing endometrial carcinoma. There is a need for the development of new medical therapies that can reduce the need for surgical intervention so as to preserve the fertility of these patients. The aim of the study was to describe and discuss cases of PCOS and insulin resistance (IR) women with early endometrial carcinoma while being co-treated with Diane-35 and metformin. Methods: Five PCOS-IR women who were scheduled for diagnosis and therapy for early endometrial carcinoma were recruited. The hospital records and endometrial pathology reports were reviewed. All patients were co-treated with Diane-35 and metformin for 6 months to reverse the endometrial carcinoma and preserve their fertility. Before, during, and after treatment, endometrial biopsies and blood samples were obtained and oral glucose tolerance tests were performed. Endometrial pathology was evaluated. Body weight (BW), body mass index (BMI), follicle-stimulating hormone (FSH), luteinizing hormone (LH), total testosterone (TT), sex hormone-binding globulin (SHBG), free androgen index (FAI), insulin area under curve (IAUC), and homeostasis model assessment of insulin resistance (HOMA-IR) were determined. Results: Clinical stage 1a, low grade endometrial carcinoma was confirmed before treatment. After 6 months of co-treatment, all patients showed normal epithelia. No evidence of atypical hyperplasia or endometrial carcinoma was found. Co-treatment resulted in significant decreases in BW, BMI, TT, FAI, IAUC, and HOMA-IR in parallel with a significant increase in SHBG. There were no differences in the FSH and LH levels after co-treatment. Conclusions: Combined treatment with Diane-35 and metformin has the potential to revert the endometrial carcinoma into normal endometrial cells in PCOS-IR women. The cellular and molecular mechanisms behind this effect merit further investigation.

Keywords: PCOS, progesterone resistance, insulin resistance, steroid hormone receptors, endometrial carcinoma

Procedia PDF Downloads 409
4592 Effects of Starvation, Glucose Treatment and Metformin on Resistance in Chronic Myeloid Leukemia Cells

Authors: Nehir Nebioglu

Abstract:

Chemotherapy is widely used for the treatment of cancer. Doxorubicin is an anti-cancer chemotherapy drug that is classified as an anthracycline antibiotic. Antitumor antibiotics consist of natural products produced by species of the soil fungus Streptomyces. These drugs act in multiple phases of the cell cycle and are known cell-cycle specific. Although DOX is a precious clinical antineoplastic agent, resistance is also a problem that limits its utility besides cardiotoxicity problem. The drug resistance of cancer cells results from multiple factors including individual variation, genetic heterogeneity within a tumor, and cellular evolution. The mechanism of resistance is thought to involve, in particular, ABCB1 (MDR1, Pgp) and ABCC1 (MRP1) as well as other transporters. Several studies on DOX-resistant cell lines have shown that resistance can be overcome by an inhibition of ABCB1, ABCC1, and ABCC2. This study attempts to understand the effects of different concentration levels of glucose treatment and starvation on the proliferation of Doxorubicin resistant cancer cells lines. To understand the effect of starvation, K562/Dox and K562 cell lines were treated with 0, 5 nM, 50 nM, 500 nM, 5 uM and 50 uM Dox concentrations in both starvation and normal medium conditions. In addition to this, to interpret the effect of glucose treatment, different concentrations (0, 1 mM, 5 mM, 25 mM) of glucose were applied to Dox-treated (with 0, 5 nM, 50 nM, 500 nM, 5 uM and 50 uM) K562/Dox and K652 cell lines. All results show significant decreasing in the cell count of K562/Dox, when cells were starved. However, while proliferation of K562/Dox lines decrease is associated with the increasingly applied Dox concentration, K562/Dox starved ones remain at the same proliferation level. Thus, the results imply that an amount of K562/Dox lines gain starvation resistance and remain resistant. Furthermore, for K562/Dox, there is no clear effect of glucose treatment in terms of cell proliferation. In the presence of a moderate level of glucose (5 mM), proliferation increases compared to other concentration of glucose for each different Dox application. On the other hand, a significant increase in cell proliferation in moderate level of glucose is only observed in 5 uM Dox concentration. The moderate concentration level of Dox can be examined in further studies. For the high amount of glucose (25 mM), cell proliferation levels are lower than moderate glucose application. The reason could be high amount of glucose may not be absorbable by cells. Also, in the presence of low amount of glucose, proliferation is decreasing in an orderly manner of increase in Dox concentration. This situation can be explained by the glucose depletion -Warburg effect- in the literature.

Keywords: drug resistance, cancer cells, chemotherapy, doxorubicin

Procedia PDF Downloads 176
4591 The Effect of High Intensity by Intervals Training on Plasma Interleukin 13 and Insulin Resistance in Patients with Attention Deficit Hyperactivity Disorder (ADHD)

Authors: Goodarzvand Fatemeh, Soori Rahman, Effatpanah Mohammad, Ajbarnejad Ali

Abstract:

Attention deficit hyperactivity disorder (ADHD) is characterized by a pervasive pattern of developmentally inappropriate inattentive, impulsive and hyperactive behaviors that typically begin during the preschool ages and often persist into adulthood. This disorder is related to autism and schizophrenia and other psychological disorders and clinical conditions such as insulin resistance and they may operate through common pathways, and treatments used exclusively for one of these conditions may prove beneficial for the others. While ADHD is not fully understood as developmental disorder with an etiopathogeny, but studies show that core symptom of disorder was associated with and increased by the interleukins IL-13, where relation of IL-13 with inattention was notable. Regular exercise improves functions associated with attention deficit hyperactivity disorder (ADHD). However, the impact of exercise on cytokines associated with the disease activity remains relatively unexplored. The aim of this study was to examine the effects of 6 weeks high intensity by intervals training (HIIT) on IL-13 levels and insulin resistance in boys with ADHD. Twenty eight boys with ADHD disease in a range of 12-18 year of old participated in this study as the subject. Subjects were divided into control group (n=10) and training group (n=18) randomly. The training group performed progressive HIIT program, 3 days a week for 6 weeks. The control group was in absolute rest at the same time. The results showed that after six weeks of HIIT, IL-13 decreased in the exercise group and these changes achieved (p= 0.002) statistical significance (p < 0.005). The results suggest HIIT with specific intensity and duration utilized in this study had not significant effect on insulin resistance levels in female patients with ADHD (p=0.39), while the difference in the average control and case group was decreased.

Keywords: attention deficit hyperactivity disorder, interleukin 13, insulin resistance, high intensity by intervals training

Procedia PDF Downloads 511
4590 Phenotypic Characterization of Listeria Spp Isolated from Chicken Carcasses Marketed in Northeast of Iran

Authors: Abdollah Jamshidi, Tayebeh Zeinali, Mehrnaz Rad, Jamshid Razmyar

Abstract:

Listeria infections occur worldwide in variety of animals and man. Listeriae are widely distributed in nature. The organism has been isolated from the feces of humans and several animals, different soils, plants, aquatic environments and food of animal and vegetable origin. Listeria monocytogenes is recognized as important food-borne pathogens due to its high mortality rate. This organism is able to growth at refrigeration temperature, and high osmotic pressure. Poultry can become contaminated environmentally or through healthy carrier birds. In recent decades, prophylactic use of antimicrobial agents may be lead to emergence of antibiotic resistant organisms, which can be transmitted to human through consumption of contaminated foods. In this study, from 200 fresh chicken carcasses samples which were collected randomly from different supermarkets and butcheries, 80 samples were detected as contaminate with Listeria spp. and 19% of the isolates identified as Listeria monocytogene using multiplex PCR assay. Conventional methods were used to differentiate other species of the listeria genus. The results showed the most prevalent isolates as L. monocytogenes (48.75%). Other isolates were detected as Listeria innocua (28.75%), Listeria murrayi (20%), Listeria grayi (3.75%) and Listeria welshimeri (2.5%).The Majority of the isolates had multidrug resistance to commonly used antibiotics. Most of them were resistant to erythromycin (50%), followed by Tetracycline (44.44%), Clindamycin (41.66%), and Trimethoprim (25%). Some of them showed resistance to chloramphenicol (17.65%). The results indicate the resistance of the isolates to antimicrobials commonly used to treat human listeriosis, which could be a potential health hazard for consumers.

Keywords: listeria species, L. monocytogenes, antibiotic resistance, chicken carcass

Procedia PDF Downloads 382
4589 Evaluation of Antimicrobial Susceptibility Profile of Urinary Tract Infections in Massoud Medical Laboratory: 2018-2021

Authors: Ali Ghorbanipour

Abstract:

The aim of this study is to investigate the drug resistance pattern and the value of the MIC (minimum inhibitory concentration)method to reduce the impact of infectious diseases and the slow development of resistance. Method: The study was conducted on clinical specimens collected between 2018 to 2021. identification of isolates and antibiotic susceptibility testing were performed using conventional biochemical tests. Antibiotic resistance was determined using kibry-Bauer disk diffusion and MIC by E-test methods comparative with microdilution plate elisa method. Results were interpreted according to CLSI. Results: Out of 249600 different clinical specimens, 18720 different pathogenic bacteria by overall detection ratio 7.7% were detected. Among pathogen bacterial were Gram negative bacteria (70%,n=13000) and Gram positive bacteria(30%,n=5720).Medically relevant gram-negative bacteria include a multitude of species such as E.coli , Klebsiella .spp , Pseudomonas .aeroginosa , Acinetobacter .spp , Enterobacterspp ,and gram positive bacteria Staphylococcus.spp , Enterococcus .spp , Streptococcus .spp was isolated . Conclusion: Our results highlighted that the resistance ratio among Gram Negative bacteria and Gram positive bacteria with different infection is high it suggest constant screening and follow-up programs for the detection of antibiotic resistance and the value of MIC drug susceptibility reporting that provide a new way to the usage of resistant antibiotic in combination with other antibiotics or accurate weight of antibiotics that inhibit or kill bacteria. Evaluation of wrong medication in the expansion of resistance and side effects of over usage antibiotics are goals. Ali ghorbanipour presently working as a supervision at the microbiology department of Massoud medical laboratory. Iran. Earlier, he worked as head department of pulmonary infection in firoozgarhospital, Iran. He received master degree in 2012 from Fergusson College. His research prime objective is a biologic wound dressing .to his credit, he has Published10 articles in various international congresses by presenting posters.

Keywords: antimicrobial profile, MIC & MBC Method, microplate antimicrobial assay, E-test

Procedia PDF Downloads 133
4588 Characterization of Inkjet-Printed Carbon Nanotube Electrode Patterns on Cotton Fabric

Authors: N. Najafi, Laleh Maleknia , M. E. Olya

Abstract:

An aqueous conductive ink of single-walled carbon nanotubes for inkjet printing was formulated. To prepare the homogeneous SWCNT ink in a size small enough not to block a commercial inkjet printer nozzle, we used a kinetic ball-milling process to disperse the SWCNTs in an aqueous suspension. When a patterned electrode was overlaid by repeated inkjet printings of the ink on various types of fabric, the fabric resistance decreased rapidly following a power law, reaching approximately 760 X/sq, which is the lowest value ever for a dozen printings. The Raman and Fourier transform infrared spectra revealed that the oxidation of the SWCNTs was the source of the doped impurities. This study proved also that the droplet ejection velocity can have an impact on the CNT distribution and consequently on the electrical performances of the ink.

Keywords: ink-jet printing, carbon nanotube, fabric ink, cotton fabric, raman spectroscopy, fourier transform infrared spectroscopy, dozen printings

Procedia PDF Downloads 422
4587 Grain Size Effect of Durability of Bio-Clogging Treatment

Authors: Tahani Farah, Hanène Souli, Jean-Marie Fleureau, Guillaume Kermouche, Jean-Jacques Fry, Benjamin Girard, Denis Aelbrecht

Abstract:

In this work, the bio-clogging of two soils with different granulometries is presented. The durability of the clogging is also studied under cycles of hydraulic head and under cycles of desaturation- restauration. The studied materials present continuous grain size distributions. The first one corresponding to the "material 1", presents grain sizes between 0.4 and 4 mm. The second material called "material 2" is composed of grains with size varying between 1 and 10 mm. The results show that clogging occurs very quickly after the injection of nutrition and an outlet flow near to 0 is observed. The critical hydraulic head is equal to 0.76 for "material 1", and 0.076 for "material 2". The durability tests show a good resistance to unclogging under cycles of hydraulic head and desaturation-restauration for the "material 1". Indeed, the flow after the cycles is very low. In contrast, "material 2", shows a very bad resistance, especially under the hydraulic head cycles. The resistance under the cycles of desaturation-resaturation is better but an important increase of the flow is observed. The difference of behavior is due to the granulometry of the materials. Indeed, the large grain size contributes to the reduction of the efficiency of the bio-clogging treatment in this material.

Keywords: bio-clogging, granulometry, permeability, nutrition

Procedia PDF Downloads 407
4586 Effect of Preoxidation on the Effectiveness of Gd₂O₃ Nanoparticles Applied as a Source of Active Element in the Crofer 22 APU Coated with a Protective-conducting Spinel Layer

Authors: Łukasz Mazur, Kamil Domaradzki, Maciej Bik, Tomasz Brylewski, Aleksander Gil

Abstract:

Interconnects used in solid oxide fuel and electrolyzer cells (SOFCₛ/SOECs) serve several important functions, and therefore interconnect materials must exhibit certain properties. Their thermal expansion coefficient needs to match that of the ceramic components of these devices – the electrolyte, anode and cathode. Interconnects also provide structural rigidity to the entire device, which is why interconnect materials must exhibit sufficient mechanical strength at high temperatures. Gas-tightness is also a prerequisite since they separate gas reagents, and they also must provide very good electrical contact between neighboring cells over the entire operating time. High-chromium ferritic steels meets these requirements to a high degree but are affected by the formation of a Cr₂O₃ scale, which leads to increased electrical resistance. The final criterion for interconnect materials is chemical inertness in relation to the remaining cell components. In the case of ferritic steels, this has proved difficult due to the formation of volatile and reactive oxyhydroxides observed when Cr₂O3 is exposed to oxygen and water vapor. This process is particularly harmful on the cathode side in SOFCs and the anode side in SOECs. To mitigate this, protective-conducting ceramic coatings can be deposited on an interconnect's surface. The area-specific resistance (ASR) of a single interconnect cannot exceed 0.1 m-2 at any point of the device's operation. The rate at which the CrO₃ scale grows on ferritic steels can be reduced significantly via the so-called reactive element effect (REE). Research has shown that the deposition of Gd₂O₃ nanoparticles on the surface of the Crofer 22 APU, already modified using a protective-conducting spinel layer, further improves the oxidation resistance of this steel. However, the deposition of the manganese-cobalt spinel layer is a rather complex process and is performed at high temperatures in reducing and oxidizing atmospheres. There was thus reason to believe that this process may reduce the effectiveness of Gd₂O₃ nanoparticles added as an active element source. The objective of the present study was, therefore, to determine any potential impact by introducing a preoxidation stage after the nanoparticle deposition and before the steel is coated with the spinel. This should have allowed the nanoparticles to incorporate into the interior of the scale formed on the steel. Different samples were oxidized for 7000 h in air at 1073 K under quasi-isothermal conditions. The phase composition, chemical composition, and microstructure of the oxidation products formed on the samples were determined using X-ray diffraction, Raman spectroscopy, and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. A four-point, two-probe DC method was applied to measure ASR. It was found that coating deposition does indeed reduce the beneficial effect of Gd₂O₃ addition, since the smallest mass gain and the lowest ASR value were determined for the sample for which the additional preoxidation stage had been performed. It can be assumed that during this stage, gadolinium incorporates into and segregates at grain boundaries in the thin Cr₂O₃ that is forming. This allows the Gd₂O₃ nanoparticles to be a more effective source of the active element.

Keywords: interconnects, oxide nanoparticles, reactive element effect, SOEC, SOFC

Procedia PDF Downloads 84
4585 Effects of Arcing in Air on the Microstructure, Morphology and Photoelectric Work Function of Ag-Ni (60/40) Contact Materials

Authors: Mohamed Akbi, Aissa Bouchou

Abstract:

The present work aims to throw light on the effects of arcing in air on the surface state of contact pastilles made of silver-nickel Ag-Ni (60/40). Also, the photoelectric emission from these electrical contacts has been investigated in the spectral range of 196-256 nm. In order to study the effects of arcing on the EWF, the metallic samples were subjected to electrical arcs in air, at atmospheric pressure and room temperature, after that, they have been introduced into the vacuum chamber of an experimental UHV set-up for EWF measurements. Both Fowler method of isothermal curves and linearized Fowler plots were used for the measurement of the EWF by the photoelectric effect. It has been found that the EWF varies with the number of applied arcs. Thus, after 500 arcs in air, the observed EWF increasing is probably due to progressive inclusion of oxide on alloy surface. Microscopic examination is necessary to get better understandings on EWF of silver alloys, for both virgin and arced electrical contacts.

Keywords: Ag-Ni contact materials, arcing effects, electron work function, Fowler methods, photoemission

Procedia PDF Downloads 385
4584 RANS Simulation of Viscous Flow around Hull of Multipurpose Amphibious Vehicle

Authors: M. Nakisa, A. Maimun, Yasser M. Ahmed, F. Behrouzi, A. Tarmizi

Abstract:

The practical application of the Computational Fluid Dynamics (CFD), for predicting the flow pattern around Multipurpose Amphibious Vehicle (MAV) hull has made much progress over the last decade. Today, several of the CFD tools play an important role in the land and water going vehicle hull form design. CFD has been used for analysis of MAV hull resistance, sea-keeping, maneuvering and investigating its variation when changing the hull form due to varying its parameters, which represents a very important task in the principal and final design stages. Resistance analysis based on CFD (Computational Fluid Dynamics) simulation has become a decisive factor in the development of new, economically efficient and environmentally friendly hull forms. Three-dimensional finite volume method (FVM) based on Reynolds Averaged Navier-Stokes equations (RANS) has been used to simulate incompressible flow around three types of MAV hull bow models in steady-state condition. Finally, the flow structure and streamlines, friction and pressure resistance and velocity contours of each type of hull bow will be compared and discussed.

Keywords: RANS simulation, multipurpose amphibious vehicle, viscous flow structure, mechatronic

Procedia PDF Downloads 312
4583 An Advanced Numerical Tool for the Design of Through-Thickness Reinforced Composites for Electrical Applications

Authors: Bing Zhang, Jingyi Zhang, Mudan Chen

Abstract:

Fibre-reinforced polymer (FRP) composites have been extensively utilised in various industries due to their high specific strength, e.g., aerospace, renewable energy, automotive, and marine. However, they have relatively low electrical conductivity than metals, especially in the out-of-plane direction. Conductive metal strips or meshes are typically employed to protect composites when designing lightweight structures that may be subjected to lightning strikes, such as composite wings. Unfortunately, this approach downplays the lightweight advantages of FRP composites, thereby limiting their potential applications. Extensive studies have been undertaken to improve the electrical conductivity of FRP composites. The authors are amongst the pioneers who use through-thickness reinforcement (TTR) to tailor the electrical conductivity of composites. Compared to the conventional approaches using conductive fillers, the through-thickness reinforcement approach has been proven to be able to offer a much larger improvement to the through-thickness conductivity of composites. In this study, an advanced high-fidelity numerical modelling strategy is presented to investigate the effects of through-thickness reinforcement on both the in-plane and out-of-plane electrical conductivities of FRP composites. The critical micro-structural features of through-thickness reinforced composites incorporated in the modelling framework are 1) the fibre waviness formed due to TTR insertion; 2) the resin-rich pockets formed due to resin flow in the curing process following TTR insertion; 3) the fibre crimp, i.e., fibre distortion in the thickness direction of composites caused by TTR insertion forces. In addition, each interlaminar interface is described separately. An IMA/M21 composite laminate with a quasi-isotropic stacking sequence is employed to calibrate and verify the modelling framework. The modelling results agree well with experimental measurements for bothering in-plane and out-plane conductivities. It has been found that the presence of conductive TTR can increase the out-of-plane conductivity by around one order, but there is less improvement in the in-plane conductivity, even at the TTR areal density of 0.1%. This numerical tool provides valuable references as a design tool for through-thickness reinforced composites when exploring their electrical applications. Parametric studies are undertaken using the numerical tool to investigate critical parameters that affect the electrical conductivities of composites, including TTR material, TTR areal density, stacking sequence, and interlaminar conductivity. Suggestions regarding the design of electrical through-thickness reinforced composites are derived from the numerical modelling campaign.

Keywords: composite structures, design, electrical conductivity, numerical modelling, through-thickness reinforcement

Procedia PDF Downloads 88
4582 Increasing Soybean (Glycine Max L) Drought Resistance with Osmolit Sorbitol

Authors: Aminah Muchdar

Abstract:

Efforts to increase soybean production have been pursued for years in Indonesia through the process of intensification and extensification. Increased production through intensification of increasing grain yield per hectare, among others includes the improvement of cultivation system such as the use of cultivars that have superior resistance to drought. Increased soybean production has been through the expansion of planting areas utilizing available idle dry land. However, one of the constraints faced in dryland agriculture was the limited water supply due to low intensity of rainfall that leads to low crop production. In order to ensure that soybeans are cultivated on dry land remains capable of high production, it is necessary to physiologically engineer the soybean with open stomata. The study was conducted in the greenhouse of Balai Penelitian Tanaman Serealia (BALITSEREAL) Maros, Sulawesi, Indonesia with a completely randomized block design h factorial pattern. The first factor was the water stress stadia while the second was the amount of sorbitol osmolit concentration application. Results indicated that there was an interaction between the plant height growth and number of leaves between the water clamping time and concentration of the osmolit sorbitol. The vegetative stage especially during flowering and pod formation was inhibited when the water was clamped, but by spraying osmolit sorbitol, soybean growth in terms of its height and number of leaves was enhanced. This study implies that the application of osmolit sorbitol may enhance the drought resistance of soybean growth. Future research suggested that more work should be done on the application of osmolit sorbital to other agriculture crops to increase their drought resistance in the drylands.

Keywords: DROUGHT, engineered physiology, osmolit sorbitol, soybean

Procedia PDF Downloads 217
4581 Enhancing of Paraffin Wax Properties by Adding of Low Density Polyethylene (LDPE)

Authors: Siham Mezher Yousif, Intisar Yahiya Mohammed, Salma Nagem Mouhy

Abstract:

Low Density Polyethylene is a thermoplastic resin extracted from petroleum based, whereas the wax is an oily organic component that is contains of alkanes, ester, polyester, and hydroxyl ester. The purpose of this research is to find out the optimum conditions of the wax produced by inducing with LDPE. The experiments were carried out by mixing different percentages of wax and LDPE to produce different polymer/wax compositions, in which lower values of the penetration, thickness, and electrical conductivity are obtained with increasing of mixing ratio of LDPE/wax which showed results of 19 mm penetration, 692 micron thickness and 5.9 mA electrical conductivity for 90 wt % of LDPE/wax) maximum mixing ratio (. It’s found that the optimum results regarding penetration, enamel thickness, and electrical conductivity “according to the enamel hardness, insulation properties, and economic aspects” are 20 mm, 276 micron, and 6.2 mA respectively.

Keywords: paraffin wax, low density polyethylene, blending, mixing ratio, bleaching

Procedia PDF Downloads 110
4580 Dietary Ergosan as a Supplemental Nutrient on Growth Performance, and Stress in Zebrafish (Danio Rerio)

Authors: Ehsan Ahmadifar, Mohammad Ali Yousefi, Zahra Roohi

Abstract:

In this study, the effects of different levels of Ergosan (control group (0), 2, 4 and 6 gr Ergosan per Kg diet) as a nutritional supplement were investigated on growth indices and stress in Zebrafish for 3 months. Larvae (4-day-old after hatching) were fed with experimental diet from the beginning of feeding until adult (adolescence) (average weight: 69.3 g, length: 5.1 cm). Different levels of Ergosan had no significant effect on rate survival (P < 0.05). The results showed that diet containing 6 gr Ergosan significantly caused the best FCR in Zebrafish (P < 0.05). By increasing the Ergosan diet, specific growth rate increased. Body weight gain and condition factor had significant differences (P < 0.05) as the highest and the lowest were observed in treatment 3 gr of Ergosan and control, respectively. The results showed that fish fed with experimental diet, had the highest resistance to environmental stresses compared to control, and the test temperature, oxygen, salinity and alkalinity samples containing 6 gr/kg, was significantly more resistance compared to the other treatments (P < 0.05). Overall, to achieve high resistance to environmental stress and increase final biomass using 6 gr/kg Ergosan in diet fish Zebrafish.

Keywords: Ergosan, stress, growth performance, Danio rerio

Procedia PDF Downloads 248
4579 Multiple Insecticide Resistance in Culex quinquefasciatus Say, from Siliguri, West Bengal, India

Authors: Minu Bharati, Priyanka Rai, Satarupa Dutta, Dhiraj Saha

Abstract:

Culex quinquefasciatus Say, is a mosquito of immense public health concern due to its role in transmission of filariasis, which is an endemic disease in 20 states and union territories of India, putting about 600 million people at the risk of infection. The main strategies to control filaria in India include anti-larval measures in urban areas, Indoor Residual Spray (IRS) in rural areas and mass diethylcarbamazine citrate (DEC) administration. Larval destruction measures and IRS are done with the use of insecticides. In this study, Susceptibility/ Resistance to insecticides were assessed in Culex quinquefasciatus mosquitoes collected from eight densely populated areas of Siliguri subdivision, which has a high rate of filarial infection. To unveil the insecticide susceptibility status of Culex quinquefasciatus, bioassays were performed on field-caught mosquitoes against two major groups of insecticides, i.e. Synthetic Pyrethroids (SPs): 0.05% deltamethrin and 0.05% lambda-cyhalothrin and Organophosphates (OPs): 5% malathion and temephos using World Health Organisation (WHO) discriminating doses. The knockdown rates and knockdown times (KDT50) were also noted against deltamethrin, lambda-cyhalothrin and malathion. Also, activities of major detoxifying enzymes, i.e. α-carboxylesterases, β-carboxylesterases and cytochrome P450 (CYP450) monooxygenases were determined to find the involvement of biochemical mechanisms in resistance phenomenon (if any). The results obtained showed that, majority of the mosquito populations were moderately to severely resistant against both the SPs and one OP, i.e. temephos. Whereas, most of the populations showed 100% susceptibility to malathion. The knockdown rates and KDT50 in response to above-mentioned insecticides showed significant variation among different populations. Variability in activities of carboxylesterases and CYP450 monooxygenases were also observed with hints of their involvement in contribution towards insecticide resistance in some of the tested populations. It may be concluded that, Culex quinquefasciatus has started developing resistance against deltamethrin, lambda-cyhalothrin and temephos in Siliguri subdivision. Malathion seems to hold the greatest potentiality for control of these mosquitoes in this area as revealed through this study. Adoption of Integrated mosquito management (IMM) strategy should be the prime objective of the concerned authorities to delimit the insecticide resistance phenomenon and filariasis infections.

Keywords: Culex quinquefasciatus, detoxifying enzymes, insecticide resistance, knockdown rate

Procedia PDF Downloads 255
4578 Use of Cold In-Place Asphalt Mixtures Technique in Road Maintenance in Egypt

Authors: Mohammed Mamdouh Mohammed, Ali Zain Elabdeen Heikal, Hassan Mahdy, Sherif El-Badawy

Abstract:

The main purpose of this research is to assess the effectiveness of the Cold In-Place Recycling (CIR) technique in asphalt maintenance by analyzing performance outcomes. To achieve this, fifteen CIR mixtures were prepared using slow-setting emulsified asphalt as the recycling agent, with percentages ranging from 2% to 4% in 0.5% increments. Additionally, pure water was incorporated in percentages ranging from 2% to 4% in 1% increments, and Portland cement was added at a constant content of 1%. The components were mixed at room temperature and subsequently compacted using a gyratory compactor with 150 gyrations. Prior to testing, the samples underwent a two-stage treatment process: initially, they were placed in an oven at 60°C for 48 hours, followed by a 24-hour period of air curing. The Hamburg wheel tracking test was performed to evaluate the samples’ resistance to rutting. Additionally, the Indirect Tensile Strength (ITS) test and the Semi-Circular Beam (SCB) test were conducted to assess their resistance to cracking. Upon analyzing the test results, it was observed that the samples’ resistance to rutting decreased with higher asphalt and moisture content. In contrast, ITS and SCB tests revealed that the samples’ resistance to cracking initially increased with higher asphalt and moisture content, peaking at a certain point, and then decreased, forming a bell-curve pattern.

Keywords: cold in-place, indirect tensile strength, recycling, emulsified asphalt, semi-circular beam

Procedia PDF Downloads 18
4577 Study of Tool Shape during Electrical Discharge Machining of AISI 52100 Steel

Authors: Arminder Singh Walia, Vineet Srivastava, Vivek Jain

Abstract:

In Electrical Discharge Machining (EDM) operations, the workpiece confers to the shape of the tool. Further, the cost of the tool contributes the maximum effect on total operation cost. Therefore, the shape and profile of the tool become highly significant. Thus, in this work, an attempt has been made to study the effect of process parameters on the shape of the tool. Copper has been used as the tool material for the machining of AISI 52100 die steel. The shape of the tool has been evaluated by determining the difference in out of roundness of tool before and after machining. Statistical model has been developed and significant process parameters have been identified which affect the shape of the tool. Optimum process parameters have been identified which minimizes the shape distortion.

Keywords: discharge current, flushing pressure, pulse-on time, pulse-off time, out of roundness, electrical discharge machining

Procedia PDF Downloads 287
4576 Urgent Need for E -Waste Management in Mongolia

Authors: Enkhjargal Bat-Ochir

Abstract:

The global market of electrical and electronic equipment (EEE) has increasing rapidly while the lifespan of these products has become increasingly shorter. So, e-waste is becoming the world’s fastest growing waste stream. E-waste is a huge problem when it’s not properly disposed of, as these devices contain substances that are harmful to the environment and to human health as they contaminate the land, water, and air. This paper tends to highlight e-waste problem and harmful effects and can grasp the extent of the problem and take the necessary measures to solve it in Mongolia and to improve standards and human health.

Keywords: e -waste, recycle, electrical, Mongolia

Procedia PDF Downloads 419
4575 Full Length Transcriptome Sequencing and Differential Expression Gene Analysis of Hybrid Larch under PEG Stress

Authors: Zhang Lei, Zhao Qingrong, Wang Chen, Zhang Sufang, Zhang Hanguo

Abstract:

Larch is the main afforestation and timber tree species in Northeast China, and drought is one of the main factors limiting the growth of Larch and other organisms in Northeast China. In order to further explore the mechanism of Larch drought resistance, PEG was used to simulate drought stress. The full-length sequencing of Larch embryogenic callus under PEG simulated drought stress was carried out by combining Illumina-Hiseq and SMRT-seq. A total of 20.3Gb clean reads and 786492 CCS reads were obtained from the second and third generation sequencing. The de-redundant transcript sequences were predicted by lncRNA, 2083 lncRNAs were obtained, and the target genes were predicted, and a total of 2712 target genes were obtained. The de-redundant transcripts were further screened, and 1654 differentially expressed genes (DEGs )were obtained. Among them, different DEGs respond to drought stress in different ways, such as oxidation-reduction process, starch and sucrose metabolism, plant hormone pathway, carbon metabolism, lignin catabolic/biosynthetic process and so on. This study provides basic full-length sequencing data for the study of Larch drought resistance, and excavates a large number of DEGs in response to drought stress, which helps us to further understand the function of Larch drought resistance genes and provides a reference for in-depth analysis of the molecular mechanism of Larch drought resistance.

Keywords: larch, drought stress, full-length transcriptome sequencing, differentially expressed genes

Procedia PDF Downloads 173
4574 Two-Dimensional Material-Based Negative Differential Resistance Device with High Peak-to- Valley Current Ratio for Multi-Valued Logic Circuits

Authors: Kwan-Ho Kim, Jin-Hong Park

Abstract:

The multi-valued logic (MVL) circuits, which can handle more than two logic states, are one of the promising solutions to overcome the bit density limitations of conventional binary logic systems. Recently, tunneling devices such as Esaki diode and resonant tunneling diode (RTD) have been extensively explored to construct the MVL circuits. These tunneling devices present a negative differential resistance (NDR) phenomenon in which a current decreases as a voltage increases in a specific applied voltage region. Due to this non-monotonic current behavior, the tunneling devices have more than two threshold voltages, consequently enabling construction of MVL circuits. Recently, the emergence of two dimensional (2D) van der Waals (vdW) crystals has opened up the possibility to fabricate such tunneling devices easily. Owing to the defect-free surface of the 2D crystals, a very abrupt junction interface could be formed through a simple stacking process, which subsequently allowed the implementation of a high-performance tunneling device. Here, we report a vdW heterostructure based tunneling device with multiple threshold voltages, which was fabricated with black phosphorus (BP) and hafnium diselenide (HfSe₂). First, we exfoliated BP on the SiO₂ substrate and then transferred HfSe₂ on BP using dry transfer method. The BP and HfSe₂ form type-Ⅲ heterojunction so that the highly doped n+/p+ interface can be easily implemented without additional electrical or chemical doping process. Owing to high natural doping at the junction, record high peak to valley ratio (PVCR) of 16 was observed to the best our knowledge in 2D materials based NDR device. Furthermore, based on this, we first demonstrate the feasibility of the ternary latch by connecting two multi-threshold voltage devices in series.

Keywords: two dimensional van der Waals crystal, multi-valued logic, negative differential resistnace, tunneling device

Procedia PDF Downloads 213
4573 Bulk Electrical Resistivity of Geopolymer Mortars: The Effect of Binder Composition and Alkali Concentration

Authors: Mahdi Babaee, Arnaud Castel

Abstract:

One of the main hurdles for commercial adaptation of geopolymer concrete (GPC) as a low-embodied-carbon alternative for Portland cement concrete (PCC) is the durability aspects and its long-term performance in aggressive/corrosive environments. GPC is comparatively a new engineering material and in the absence of a track record of successful durability performance, proper experimental studies to investigate different durability-related characteristics of GPC seem inevitable. In this context, this paper aims to study the bulk electrical resistivity of geopolymer mortars fabricated of blends of low-calcium fly ash (FA) and ground granulated blast-furnace slag (GGBS). Bulk electrical resistivity is recognized as one of the most important parameters influencing the rate of corrosion of reinforcing bars during the propagation phase of corrosion. To investigate the effect of alkali concentration on the resistivity of the samples, 100x200 mm mortar cylinders were cast at different alkali concentration levels, whereas the modulus ratio (the molar ratio of SiO2/Na2O) was fixed for the mixes, and the bulk electrical resistivity was then measured. Also, the effect of the binder composition was assessed with respect to the ratio of FA to GGBS used. Results show a superior performance of samples with higher GGBS content. Lower concentration of the solution has increased the resistivity by reducing the amount of mobile alkali ions in the pore solution. Moreover, GGBS-based samples showed a much sharper increase in the electrical resistivity with decreasing the moisture content.

Keywords: bulk resistivity, corrosion, durability, geopolymer concrete

Procedia PDF Downloads 265
4572 Engineering in Saudi Arabia: Importance of Communications and Power Engineering

Authors: Hamed D. Alsharari

Abstract:

This paper first analyses the current status regarding electrical engineering higher education in Saudi Arabian public universities. The paper focuses on the two EE sub-specialties most commonly present in Saudi Arabia, power and communications and discusses recruitment in this field, showing various market and employment demand for EE.

Keywords: communications, electrical engineering, higher education, Saudi Arabia, power

Procedia PDF Downloads 407
4571 Changing Governance and the Role of People's Involvement in Municipal Solid Waste Management: Study of Two Municipal Corporations in Kerala

Authors: Prathibha Ganesan

Abstract:

This paper discusses discontents of inhabitants in the landfills and its culmination into resistance against centralised waste disposal during the last three decades in Kerala. The study is based on a sample survey of 175 households located in the landfill sites and city limits of two Municipal Corporations viz. Thrissur and Cochin. The study found that waste is dumped in the periphery of the urban area where economically and socially vulnerable people are densely populated. Moreover, landfill sites are unscientifically managed to cause severe socio-economic and health issues to the local people, finally leading to their mobilisation and persistent struggle. The struggles often culminate in the closure of landfills or forced relocation or abandonment of the region by the community. The study concluded that persistent people’s struggles compel the local state to either find alternatives to centralised solid waste management system or use political power to subsume the local resistance. The persistence of the struggles determined the type waste governance adopted by the local governments.

Keywords: solid waste management, municipal corporation, resistance movements, urban, Kerala

Procedia PDF Downloads 267
4570 Correlation between Resistance to Non-Specific Inhibitor and Mammalian Pathogenicity of an Egg Adapted H9N2 Virus

Authors: Chung-Young Lee, Se-Hee Ahn, Jun-Gu Choi, Youn-Jeong Lee, Hyuk-Joon Kwon, Jae-Hong Kim

Abstract:

A/chicken/Korea/01310/2001 (H9N2) (01310) was passaged through embryonated chicken eggs (ECEs) by 20 times (01310-E20), and it has been used for an inactivated oil emulsion vaccine in Korea. After sequential passages, 01310-E20 showed higher pathogenicity in ECEs and acquired multiple mutations including a potential N-glycosylation at position 133 (H3 numbering) in HA and 18aa-deletion in NA stalk. To evaluate the effect of these mutations on the mammalian pathogenicity and resistance to non-specific inhibitors, we generated four PR8-derived recombinant viruses with different combinations of HA and NA from 01310-E2 and 01310-E20 (rH2N2, rH2N20, rH20N2, and rH20N20). According to our results, recombinant viruses containing 01310 E20 HA showed higher growth property in MDCK cells and higher virulence on mice than those containing 01310 E2 HA regardless of NA. The hemagglutination activity of rH20N20 was less inhibited by egg white and mouse lung extract than that of other recombinant viruses. Thus, the increased pathogenicity of 01310-E20 may be related to both higher replication efficiency and resistance to non-specific inhibitors in mice.

Keywords: avian influenza virus, egg adaptation, H9N2, N-glycosylation, stalk deletion of neuraminidase

Procedia PDF Downloads 287
4569 Modelling and Simulation of Photovoltaic Cell

Authors: Fouad Berrabeh, Sabir Messalti

Abstract:

The performances of the photovoltaic systems are very dependent on different conditions, such as solar irradiation, temperature, etc. Therefore, it is very important to provide detailed studies for different cases in order to provide continuously power, so the photovoltaic system must be properly sized. This paper presents the modelling and simulation of the photovoltaic cell using single diode model. I-V characteristics and P-V characteristics are presented and it verified at different conditions (irradiance effect, temperature effect, series resistance effect).

Keywords: photovoltaic cell, BP SX 150 BP solar photovoltaic module, irradiance effect, temperature effect, series resistance effect, I–V characteristics, P–V characteristics

Procedia PDF Downloads 490
4568 Therapeutic Effect of Indane 1,3-Dione Derivatives in the Restoration of Insulin Resistance in Human Liver Cells and in Db/Db Mice Model: Biochemical, Physiological and Molecular Insights of Investigation

Authors: Gulnaz Khan, Meha F. Aftab, Munazza Murtaza, Rizwana S. Waraich

Abstract:

Advanced glycation end products (AGEs) precursor and its abnormal accumulation cause damage to various tissues and organs. AGEs have pathogenic implication in several diseases including diabetes. Existing AGEs inhibitors are not in clinical use, and there is a need for development of novel inhibitors. The present investigation aimed at identifying the novel AGEs inhibitors and assessing their mechanism of action for treating insulin resistance in mice model of diabetes. Novel derivatives of benzylidene of indan-1,3-dione were synthesized. The compounds were selected to study their action mechanism in improving insulin resistance, in vitro, in human hepatocytes and murine adipocytes and then, in vivo, in mice genetic model of diabetes (db/db). Mice were treated with novel derivatives of benzylidene of indane 1,3-dione. AGEs mediated ROS production was measured by dihydroethidium fluorescence assay. AGEs level in the serum of treated mice was observed by ELISA. Gene expression of receptor for AGEs (RAGE), PPAR-gamma, TNF-alpha and GLUT-4 was evaluated by RT-PCR. Glucose uptake was measured by fluorescent method. Microscopy was used to analyze glycogen synthesis in muscle. Among several derivatives of benzylidene of indan-1,3-dione, IDD-24, demonstrated highest inhibition of AGESs. IDD-24 significantly reduced AGEs formation and expression of receptor for advanced glycation end products (RAGE) in fat, liver of db/db mice. Suppression of AGEs mediated ROS production was also observed in hepatocytes and fat cell, after treatment with IDD-24. Glycogen synthesis was increased in muscle tissue of mice treated with IDD-24. In adipocytes, IDD-24 prevented AGEs induced reduced glucose uptake. Mice treated with IDD-24 exhibited increased glucose tolerance, serum adiponectin levels and decreased insulin resistance. The result of present study suggested that IDD-24 can be a possible treatment target to address glycotoxins induced insulin resistance.

Keywords: advance glycation end product, hyperglycemia, indan-1, 3-dione, insulin resistance

Procedia PDF Downloads 158