Search results for: texture synthesis
2112 The Experiment and Simulation Analysis of the Effect of CO₂ and Steam Addition on Syngas Composition of Natural Gas Non-Catalyst Partial Oxidation
Authors: Zhenghua Dai, Jianliang Xu, Fuchen Wang
Abstract:
Non-catalyst partial oxidation technology has been widely used to produce syngas by reforming of hydrocarbon, including gas (natural gas, shale gas, refinery gas, coalbed gas, coke oven gas, pyrolysis gas, etc.) and liquid (residual oil, asphalt, deoiled asphalt, biomass oil, etc.). For natural gas non-catalyst partial oxidation, the H₂/CO(v/v) of syngas is about 1.8, which is agreed well with the request of FT synthesis. But for other process, such as carbonylation and glycol, the H₂/CO(v/v) should be close to 1 and 2 respectively. So the syngas composition of non-catalyst partial oxidation should be adjusted to satisfy the request of different chemical synthesis. That means a multi-reforming method by CO₂ and H₂O addition. The natural gas non-catalytic partial oxidation hot model was established. The effects of O₂/CH4 ratio, steam, and CO₂ on the syngas composition were studied. The results of the experiment indicate that the addition of CO₂ and steam into the reformer can be applied to change the syngas H₂/CO ratio. The reactor network model (RN model) was established according to the flow partition of industrial reformer and GRI-Mech 3.0. The RN model results agree well with the industrial data. The effects of steam, CO₂ on the syngas compositions were studied with the RN model.Keywords: non-catalyst partial oxidation, natural gas, H₂/CO, CO₂ and H₂O addition, multi-reforming method
Procedia PDF Downloads 2122111 Synthesis and Characterization of Graphene Composites with Application for Sustainable Energy
Authors: Daniel F. Sava, Anton Ficai, Bogdan S. Vasile, Georgeta Voicu, Ecaterina Andronescu
Abstract:
The energy crisis and environmental contamination are very serious problems, therefore searching for better and sustainable renewable energy is a must. It is predicted that the global energy demand will double until 2050. Solar water splitting and photocatalysis are considered as one of the solutions to these issues. The use of oxide semiconductors for solar water splitting and photocatalysis started in 1972 with the experiments of Fujishima and Honda on TiO2 electrodes. Since then, the evolution of nanoscience and characterization methods leads to a better control of size, shape and properties of materials. Although the past decade advancements are astonishing, for these applications the properties have to be controlled at a much finer level, allowing the control of charge-carrier lives, energy level positions, charge trapping centers, etc. Graphene has attracted a lot of attention, since its discovery in 2004, due to the excellent electrical, optical, mechanical and thermal properties that it possesses. These properties make it an ideal support for photocatalysts, thus graphene composites with oxide semiconductors are of great interest. We present in this work the synthesis and characterization of graphene-related materials and oxide semiconductors and their different composites. These materials can be used in constructing devices for different applications (batteries, water splitting devices, solar cells, etc), thus showing their application flexibility. The synthesized materials are different morphologies and sizes of TiO2, ZnO and Fe2O3 that are obtained through hydrothermal, sol-gel methods and graphene oxide which is synthesized through a modified Hummer method and reduced with different agents. Graphene oxide and the reduced form could also be used as a single material for transparent conductive films. The obtained single materials and composites were characterized through several methods: XRD, SEM, TEM, IR spectroscopy, RAMAN, XPS and BET adsorption/desorption isotherms. From the results, we see the variation of the properties with the variation of synthesis parameters, size and morphology of the particles.Keywords: composites, graphene, hydrothermal, renewable energy
Procedia PDF Downloads 4982110 Clinical Profile of Oral Sensory Abilities in Developmental Dysarthria
Authors: Swapna N., Deepthy Ann Joy
Abstract:
One of the major causes of communication disorders in pediatric population is Motor speech disorders. These disorders which affect the motor aspects of speech articulators can have an adverse effect on the communication abilities of children in their developmental period. The motor aspects are dependent on the sensory abilities of children with motor speech disorders. Hence, oral sensorimotor evaluation is an important component in the assessment of children with motor speech disorders. To our knowledge, the importance of oral motor examination has been well established, yet the sensory assessment of the oral structures has received less focus. One of the most common motor speech disorders seen in children is developmental dysarthria. The present study aimed to assess the orosensory aspects in children with developmental dysarthria (CDD). The control group consisted of 240 children in the age range of four and eight years which was divided into four subgroups (4-4.11, 5-5.11, 6-6.11 and 7-7.11 years). The experimental group consisted of 15 children who were diagnosed with developmental dysarthria secondary to cerebral palsy who belonged in the age range of four and eight years. The oro-sensory aspects such as response to touch, temperature, taste, texture, and orofacial sensitivity were evaluated and profiled. For this purpose, the authors used the ‘Oral Sensorimotor Evaluation Protocol- Children’ which was developed by the authors. The oro-sensory section of the protocol was administered and the clinical profile of oro-sensory abilities of typically developing children and CDD was obtained for each of the sensory abilities. The oro-sensory abilities of speech articulators such as lips, tongue, palate, jaw, and cheeks were assessed in detail and scored. The results indicated that experimental group had poorer scores on oro-sensory aspects such as light static touch, kinetic touch, deep pressure, vibration and double simultaneous touch. However, it was also found that the experimental group performed similar to control group on few aspects like temperature, taste, texture and orofacial sensitivity. Apart from the oro-motor abilities which has received utmost interest, the variation in the oro-sensory abilities of experimental and control group is highlighted and discussed in the present study. This emphasizes the need for assessing the oro-sensory abilities in children with developmental dysarthria in addition to oro-motor abilities.Keywords: cerebral palsy, developmental dysarthria, orosensory assessment, touch
Procedia PDF Downloads 1632109 Hard Carbon Derived From Dextrose as High-Performance Anode Material for Sodium-Ion Batteries
Authors: Rupan Das Chakraborty, Surendra K. Martha
Abstract:
Hard carbons (HCs) are extensively used as anode materials for sodium-ion batteries due to their availability, low cost, and ease of synthesis. It possesses the ability to store Na ion between stacked sp2 carbon layers and micropores. In this work, hard carbons are synthesized from different concentrations (0.5M to 5M) of dextrose solutions by hydrothermal synthesis followed by high-temperature calcination at 1100 ⁰C in an inert atmosphere. Dextrose has been chosen as a precursor material as it is a eco-friendly and renewable source. Among all hard carbon derived from different concentrations of dextrose solutions, hard carbon derived from 3M dextrose solution delivers superior electrochemical performance compared to other hard carbons. Hard carbon derived from 3M dextrose solution (Dextrose derived Hard Carbon-3M) provides an initial reversible capacity of 257 mAh g-1 with a capacity retention of 83 % at the end of 100 cycles at 30 mA g-1). The carbons obtained from different dextrose concentration show very similar Cyclic Voltammetry and chargedischarging behavior at a scan rate of 0.05 mV s-1 the Cyclic Voltammetry curve indicate that solvent reduction and the solid electrolyte interface (SEI) formation start at E < 1.2 V (vs Na/Na+). Among all 3M dextrose derived electrode indicate as a promising anode material for Sodium-ion batteries (SIBs).Keywords: dextrose derived hard carbon, anode, sodium-ion battery, electrochemical performance
Procedia PDF Downloads 1162108 N Doped Multiwall Carbon Nanotubes Growth over a Ni Catalyst Substrate
Authors: Angie Quevedo, Juan Bussi, Nestor Tancredi, Juan Fajardo-Díaz, Florentino López-Urías, Emilio Muñóz-Sandoval
Abstract:
In this work, we study the carbon nanotubes (CNTs) formation by catalytic chemical vapor deposition (CCVD) over a catalyst with 20 % of Ni supported over La₂Zr₂O₇ (Ni20LZO). The high C solubility of Ni made it one of the most used in CNTs synthesis. Nevertheless, Ni presents also sintering and coalescence at high temperature. These troubles can be reduced by choosing a suitable support. We propose La₂Zr₂O₇ as for this matter since the incorporation of Ni by co-precipitation and calcination at 900 °C allows a good dispersion and interaction of the active metal (in the oxidized form, NiO) with this support. The CCVD was performed using 1 g of Ni20LZO at 950 °C during 30 min in Ar:H₂ atmosphere (2.5 L/min). The precursor, benzylamine, was added by a nebulizer-sprayer. X ray diffraction study shows the phase separation of NiO and La₂Zr₂O₇ after the calcination and the reduction to Ni after the synthesis. Raman spectra show D and G bands with a ID/IG ratio of 0.75. Elemental study verifies the incorporation of 1% of N. Thermogravimetric analysis shows the oxidation process start at around 450 °C. Future studies will determine the application potential of the samples.Keywords: N doped carbon nanotubes, catalytic chemical vapor deposition, nickel catalyst, bimetallic oxide
Procedia PDF Downloads 1622107 Synthesis of Iron-Modified Montmorillonite as Filler for Electrospun Nanocomposite Fibers
Authors: Khryslyn Araño, Dela Cruz, Michael Leo, Dela Pena, Eden May, Leslie Joy Diaz
Abstract:
Montmorillonite (MMT) is a very abundant clay mineral and is versatile such that it can be chemically or physically altered by changing the ions between the sheets of its layered structure. This clay mineral can be prepared into functional nanoparticles that can be used as fillers in other nanomaterials such as nanofibers to achieve special properties. In this study, two types of iron-modified MMT, Iron-MMT (FeMMT) and Zero Valent Iron-MMT (ZVIMMT) were synthesized via ion exchange technique. The modified clay was incorporated in polymer nanofibers which were produced using a process called electrospinning. ICP analysis confirmed that clay modification was successful where there is an observed decrease in the concentration of Na and an increase in the concentration of Fe after ion exchange. XRD analysis also confirmed that modification took place because of the changes in the d-spacing of Na-MMT from 11.5 Å to 13.6 Å and 12.6 Å after synthesis of FeMMT and ZVIMMT, respectively. SEM images of the electrospun nanofibers revealed that the ZVIMMT-filled fibers have a smaller average diameter than the FeMMT-filled fibers because of the lower resistance of the suspensions of the former to the elongation force from the applied electric field. The resistance to the electric field was measured by getting the bulk voltage of the suspensions.Keywords: electrospinning, nanofibers, montmorillonite, materials science
Procedia PDF Downloads 3452106 Designed Purine Molecules and in-silico Evaluation of Aurora Kinase Inhibition in Breast Cancer
Authors: Pooja Kumari, Anandkumar Tengli
Abstract:
Aurora kinase enzyme, a protein on overexpression, leads to metastasis and is extremely important for women’s health in terms of prevention or treatment. While creating a targeted technique, the aim of the work is to design purine molecules that inhibit in aurora kinase enzyme and helps to suppress breast cancer. Purine molecules attached to an amino acid in DNA block protein synthesis or halt the replication and metastasis caused by the aurora kinase enzyme. Various protein related to the overexpression of aurora protein was docked with purine molecule using Biovia Drug Discovery, the perpetual software. Various parameters like X-ray crystallographic structure, presence of ligand, Ramachandran plot, resolution, etc., were taken into consideration for selecting the target protein. A higher negative binding scored molecule has been taken for simulation studies. According to the available research and computational analyses, purine compounds may be powerful enough to demonstrate a greater affinity for the aurora target. Despite being clinically effective now, purines were originally meant to fight breast cancer by inhibiting the aurora kinase enzyme. In in-silico studies, it is observed that purine compounds have a moderate to high potency compared to other molecules, and our research into the literature revealed that purine molecules have a lower risk of side effects. The research involves the design, synthesis, and identification of active purine molecules against breast cancer. Purines are structurally similar to the normal metabolites of adenine and guanine; hence interfere/compete with protein synthesis and suppress the abnormal proliferation of cells/tissues. As a result, purine target metastasis cells and stop the growth of kinase; purine derivatives bind with DNA and aurora protein which may stop the growth of protein or inhibits replication and stop metastasis of overexpressed aurora kinase enzyme.Keywords: aurora kinases, in silico studies, medicinal chemistry, combination therapies, chronic cancer, clinical translation
Procedia PDF Downloads 862105 Quinazolino-Thiazoles: Fused Pharmacophores as Antimicrobial Agents
Authors: Sanjay Bari, Vinod Ugale, Kamalkishor Patil
Abstract:
Over the past several years the emergence of micro-organisms resistant to nearly all the class of antimicrobial agents has become a serious public health concern. In the present research, we report the synthesis and in-vitro antimicrobial activity of a new series of novel quinazolino-thiadiazoles 3 (a-j). The synthesized compounds were confirmed by melting point, IR, 1H-NMR, 13C NMR and Mass spectroscopy. In general, the results of the in-vitro antibacterial activity are encouraging, as out of 10 compounds tested, Compound 3f and 3i with a 4-chloro phenyl and 4-nitro phenyl at C-2 of thiadiazolyl of quinazolino-thiadiazoles, displayed the excellent antibacterial and antifungal activities against all the tested microorganisms (Bacterial and Fungal strain) with MIC values of 62.5 μg/mL. It is worth to mention that the combination of two biologically active moieties quinazoline and thiadiazole profoundly influences the biological activity. While evaluating the antimicrobial activity, it was observed that compounds having electron withdrawing groups on thiazole has shown profound activity in comparison to compounds having electron releasing groups. As a result of this study, it can be concluded that halogen substituent on thiazole ring increases antimicrobial activity. Possible improvements in the antimicrobial activity can be further achieved by slight modifications in the substituent’s and/or additional structural activity investigations to have good antimicrobial activity.Keywords: antifungal, antimicrobial, quinazolino-thiazoles, synthesis
Procedia PDF Downloads 4152104 Study of Rehydration Process of Dried Squash (Cucurbita pepo) at Different Temperatures and Dry Matter-Water Ratios
Authors: Sima Cheraghi Dehdezi, Nasser Hamdami
Abstract:
Air-drying is the most widely employed method for preserving fruits and vegetables. Most of the dried products must be rehydrated by immersion in water prior to their use, so the study of rehydration kinetics in order to optimize rehydration phenomenon has great importance. Rehydration typically composes of three simultaneous processes: the imbibition of water into dried material, the swelling of the rehydrated products and the leaching of soluble solids to rehydration medium. In this research, squash (Cucurbita pepo) fruits were cut into 0.4 cm thick and 4 cm diameter slices. Then, squash slices were blanched in a steam chamber for 4 min. After cooling to room temperature, squash slices were dehydrated in a hot air dryer, under air flow 1.5 m/s and air temperature of 60°C up to moisture content of 0.1065 kg H2O per kg d.m. Dehydrated samples were kept in polyethylene bags and stored at 4°C. Squash slices with specified weight were rehydrated by immersion in distilled water at different temperatures (25, 50, and 75°C), various dry matter-water ratios (1:25, 1:50, and 1:100), which was agitated at 100 rpm. At specified time intervals, up to 300 min, the squash samples were removed from the water, and the weight, moisture content and rehydration indices of the sample were determined.The texture characteristics were examined over a 180 min period. The results showed that rehydration time and temperature had significant effects on moisture content, water absorption capacity (WAC), dry matter holding capacity (DHC), rehydration ability (RA), maximum force and stress in dried squash slices. Dry matter-water ratio had significant effect (p˂0.01) on all squash slice properties except DHC. Moisture content, WAC and RA of squash slices increased, whereas DHC and texture firmness (maximum force and stress) decreased with rehydration time. The maximum moisture content, WAC and RA and the minimum DHC, force and stress, were observed in squash slices rehydrated into 75°C water. The lowest moisture content, WAC and RA and the highest DHC, force and stress, were observed in squash slices immersed in water at 1:100 dry matter-water ratio. In general, for all rehydration conditions of squash slices, the highest water absorption rate occurred during the first minutes of process. Then, this rate decreased. The highest rehydration rate and amount of water absorption occurred in 75°C.Keywords: dry matter-water ratio, squash, maximum force, rehydration ability
Procedia PDF Downloads 3132103 Fast-Modulated Surface-Confined Plasma for Catalytic Nitrogen Fixation and Energy Intensification
Authors: Pradeep Lamichhane, Nima Pourali, E. V. Rebrov, Volker Hessel
Abstract:
Nitrogen fixation is critical for plants for the biosynthesis of protein and nucleic acid. Most of our atmosphere is nitrogen, yet plants cannot directly absorb it from the air, and natural nitrogen fixation is insufficient to meet the demands. This experiment used a fast-modulated surface-confined atmospheric pressure plasma created by a 6 kV (peak-peak) sinusoidal power source with a repetition frequency of 68 kHz to fix nitrogen. Plasmas have been proposed for excitation of nitrogen gas, which quickly oxidised to NOX. With different N2/O2 input ratios, the rate of NOX generation was investigated. The rate of NOX production was shown to be optimal for mixtures of 60–70% O2 with N2. To boost NOX production in plasma, metal oxide catalysts based on TiO2 were coated over the dielectric layer of a reactor. These results demonstrate that nitrogen activation was more advantageous in surface-confined plasma sources because micro-discharges formed on the sharp edges of the electrodes, which is a primary function attributed to NOX synthesis and is further enhanced by metal oxide catalysts. The energy-efficient and sustainable NOX synthesis described in this study will offer a fresh perspective for ongoing research on green nitrogen fixation techniques.Keywords: nitrogen fixation, fast-modulated, surface-confined, sustainable
Procedia PDF Downloads 1072102 Synthesis of Telechelic Polymers for Asphalt Pavements
Authors: Paula C Arroyo, Norma A Sánchez, Mikhail Tlenkopatchev
Abstract:
The continuous growth in population has resulted in an increment in road construction. The road construction requires more lasting and resistant pavements. Among the different applications of polymers, the reinforcement of pavements throw the modification of asphalt has demonstrated to be an area of special interest for new polymers. The modified asphalt should exhibit a considerable good performance, good elastic properties and an increment in the performance grade (PG). Some of the current polymers used in asphalt are styrene butadiene styrene (SBS), poly(n-butyl methacrylate)-(glycidyl methacrylate) and ethylene-vinyl acetate EVA. The goal of this study was to synthesize low molecular weight (2,000 – 150,000 D) telechelic polymers to be applied at low concentrations in asphalt in order to modify its rheological properties and make it more resistant and durable. The telechelic polymers were obtained from different molar relationships between tensioned and functionalized olefins by ring opening metathesis polymerization (ROMP) and cross metathesis (CR). The synthesis was carried out under inert conditions with Grubbs second generation catalyst. The reaction efficiency was superior to 96% and telechelic polymers were characterized. The telechelic polymers were used to modify asphalt and the rheological properties of the modified asphalt were evaluated finding that at low concentrations (1%) the PG increased in one or two degrees.Keywords: asphalt polymers, metathesis polymers, telechelic polymers, modified asphalt
Procedia PDF Downloads 2742101 Synthesis, Electrochemical and Fluorimetric Analysis of Caffeic Cinnamic and Acid-Conjugated Hemorphine Derivatives Designed as Potential Anticonvulsant Agents
Authors: Jana Tchekalarova, Stela Georgieva, Petia Peneva, Petar Todorov
Abstract:
In the present study, a series of bioconjugates of N-modified hemorphine analogs containing second pharmacophore cinnamic acids (CA) or caffeic acid (KA) were synthesized by a traditional solid-phase Fmoc chemistry method for peptide synthesis. Electrochemical and fluorometric analysis and in vivo anticonvulsant activity in mice were conducted on the compounds. The three CA (H4-CA, H5-CA, and H7-CA) and three KA (H4-KA, H5-KA, and H7-KA)-conjugated hemorphine derivatives showed dose-dependent anticonvulsant activity in the maximal electroshock test (MES) in mice. The KA-conjugated H5-KA derivate was the only compound that suppressed clonic seizures at the lowest dose of 0.5 µg/mouse in the scPTZ test. The activity against the psychomotor seizures in the 6-Hz test was detected only for the H4-CA (0.5 µg) and H4-KA (0.5 µg and 1 µg), respectively. The peptide derivates did not exhibit neurotoxicity in the rotarod test. Our findings suggest that conjugated CA and KA hemorphine peptides can be used as a background for developing hemorphin-related analogs with anticonvulsant activity. Acknowledgments: This study is funded by the European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, project № BG-RRP-2.004-0002, "BiOrgaMCT".Keywords: hemorphins, SPSS, caffeic/cinnamic acid, anticonvulsant activity, electrochemistry, fluorimetry
Procedia PDF Downloads 1522100 Synthesis and Characterization of Mass Catalysts Based on Cobalt and Molybdenum
Authors: Nassira Ouslimani
Abstract:
The electronic structure of transition metals gives them many catalytic possibilities in many types of reactions, particularly cobalt and molybdenum. It is in this context that this study is part of the synthesis and characterization of mass catalysts based on cobalt and molybdenum Co1₋xMoO4 (X=0 and X=0.5 and X=1). The two catalysts were prepared by Co-precipitation using ammonia as a precipitating agent and one by precipitation. The samples obtained were analyzed by numerous physic-chemical analysis techniques: ATG-ATD-DSC, DRX-HT, SEM-EDX, and the elemental composition of the catalysts was verified by SAA as well as the FTIR. The ATG-DSC shows a mass loss for all the catalysts of approximately 8%, corresponding to the loss of water and the decomposition of nitrates. The DRX-HT analysis allows the detection of the two CoMoO4 phases with diffraction peaks which increase with the increase in temperature. The results of the FTIR analysis made it possible to highlight the vibration modes of the bonds of the structure of the prepared catalysts. The SEM images of the solids show very different textures with almost homogeneous surfaces with a more regular particle size distribution and a more defined grain shape. The EDX analysis showed the presence of the elements Co, Mo, and O in proportions very close to the nominal proportions. Finally, the actual composition, evaluated by SAA, is close to the theoretical composition fixed during the preparation. This testifies to the good conditions for the preparation of the catalysts by the co-precipitation method.Keywords: catalytic, molybdenum, coprecipitation, cobalt, ammonia
Procedia PDF Downloads 902099 Biogenic Synthesis of ZnO Nanoparticles Using Annona muricata Plant Leaf Extract and Its Anti-Cancer Efficacy
Authors: Siva Chander Chabattula, Piyush Kumar Gupta, Debashis Chakraborty, Rama Shanker Verma
Abstract:
Green nanoparticles have gotten a lot of attention because of their potential applications in tissue regeneration, bioimaging, wound healing, and cancer therapy. The physical and chemical methods to synthesize metal oxide nanoparticles have an environmental impact, necessitating the development of an environmentally friendly green strategy for nanoparticle synthesis. In this study, we used Annona muricata plant leaf extract to synthesize Zinc Oxide nanoparticles (Am-ZnO NPs), which were evaluated using UV/Visible spectroscopy, FTIR spectroscopy, X-Ray Diffraction, DLS, and Zeta potential. Nanoparticles had an optical absorbance of 355 nm and a net negative surface charge of ~ - 2.59 mV. Transmission Electron Microscope characterizes the Shape and size of the nanoparticles. The obtained Am-ZnO NPs are biocompatible and hemocompatible in nature. These nanoparticles caused an anti-cancer therapeutic effect in MIA PaCa2 and MOLT4 cancer cells by inducing oxidative stress, and a change in mitochondrial membrane potential leads to programmed cell death. Further, we observed a reduction in the size of lung cancer spheroids (act as tumor micro-environment) with doxorubicin as a positive control.Keywords: Biomaterials, nanoparticle, anticancer activity, ZnO nanoparticles
Procedia PDF Downloads 2042098 Synthesis and Characterization of Partially Oxidized Graphite Oxide for Solar Energy Storage Applications
Authors: Ghada Ben Hamad, Zohir Younsi, Fabien Salaun, Hassane Naji, Noureddine Lebaz
Abstract:
The graphene oxide (GO) material has attracted much attention for solar energy applications. This paper reports the synthesis and characterization of partially oxidized graphite oxide (GTO). GTO was obtained by modified Hummers method, which is based on the chemical oxidation of natural graphite. Several samples were prepared with different oxidation degree by an adjustment of the oxidizing agent’s amount. The effect of the oxidation degree on the chemical structure and on the morphology of GTO was determined by using Fourier transform infrared (FT-IR) spectroscopy, Energy Dispersive X-ray Spectroscopy (EDS), and scanning electronic microscope (SEM). The thermal stability of GTO was evaluated by using thermogravimetric analyzer (TGA) in Nitrogen atmosphere. The results indicate high degree oxidation of graphite oxide for each sample, proving that the process is efficient. The GTO synthesized by modified Hummers method shows promising characteristics. Graphene oxide (GO) obtained by exfoliation of GTO are recognized as a good candidate for thermal energy storage, and it will be used as solid shell material in the encapsulation of phase change materials (PCM).Keywords: modified hummers method, graphite oxide, oxidation degree, solar energy storage
Procedia PDF Downloads 1182097 Characterisation, Extraction of Secondary Metabolite from Perilla frutescens for Therapeutic Additives: A Phytogenic Approach
Authors: B. M. Vishal, Monamie Basu, Gopinath M., Rose Havilah Pulla
Abstract:
Though there are several methods of synthesizing silver nano particles, Green synthesis always has its own dignity. Ranging from the cost-effectiveness to the ease of synthesis, the process is simplified in the best possible way and is one of the most explored topics. This study of extracting secondary metabolites from Perilla frutescens and using them for therapeutic additives has its own significance. Unlike the other researches that have been done so far, this study aims to synthesize Silver nano particles from Perilla frutescens using three available forms of the plant: leaves, seed, and commercial leaf extract powder. Perilla frutescens, commonly known as 'Beefsteak Plant', is a perennial plant and belongs to the mint family. The plant has two varieties classed within itself. They are frutescens crispa and frutescens frutescens. The species, frutescens crispa (commonly known as 'Shisho' in Japanese), is generally used for edible purposes. Its leaves occur in two forms, varying on the colors. It is found in two different colors of red with purple streaks and green with crinkly pattern on it. This species is aromatic due to the presence of two major compounds: polyphenols and perillaldehyde. The red (purple streak) variety of this plant is due to the presence of a pigment, Perilla anthocyanin. The species, frutescens frutescens (commonly known as 'Egoma' in Japanese), is the main source for perilla oil. This species is also aromatic, but in this case, the major compound which gives the aroma is Perilla ketone or egoma ketone. Shisho grows short as compared with Wild Sesame and both produce seeds. The seeds of Wild Sesame are large and soft whereas that of Shisho is small and hard. The seeds have a large proportion of lipids, ranging about 38-45 percent. Excluding those, the seeds have a large quantity of Omega-3 fatty acids, linoleic acid, and an Omega-6 fatty acid. Other than these, Perilla leaf extract has gold and silver nano particles in it. The yield comparison in all the cases have been done, and the process’ optimal conditions were modified, keeping in mind the efficiencies. The characterization of secondary metabolites includes GC-MS and FTIR which can be used to identify the components of purpose that actually helps in synthesizing silver nano particles. The analysis of silver was done through a series of characterization tests that include XRD, UV-Vis, EDAX, and SEM. After the synthesis, for being used as therapeutic additives, the toxin analysis was done, and the results were tabulated. The synthesis of silver nano particles was done in a series of multiple cycles of extraction from leaves, seeds and commercially purchased leaf extract. The yield and efficiency comparison were done to bring out the best and the cheapest possible way of synthesizing silver nano particles using Perilla frutescens. The synthesized nano particles can be used in therapeutic drugs, which has a wide range of application from burn treatment to cancer treatment. This will, in turn, replace the traditional processes of synthesizing nano particles, as this method will prove effective in terms of cost and the environmental implications.Keywords: nanoparticles, green synthesis, Perilla frutescens, characterisation, toxin analysis
Procedia PDF Downloads 2332096 Selective Guest Accommodation in Zn(II) Bimetallic: Organic Coordination Frameworks
Authors: Bukunola K. Oguntade, Gareth M. Watkins
Abstract:
The synthesis and characterization of metal-organic frameworks (MOFs) is an area of coordination chemistry which has grown rapidly in recent years. Worldwide there has been growing concerns about future energy supplies, and its environmental impacts. A good number of MOFs have been tested for the adsorption of small molecules in the vapour phase. An important issue for potential applications of MOFs for gas adsorption and storage materials is the stability of their structure upon sorption. Therefore, study on the thermal stability of MOFs upon adsorption is important. The incorporation of two or more transition metals in a coordination polymer is a current challenge for designed synthesis. This work focused on the synthesis, characterization and small molecule adsorption properties of three microporous (one zinc monometal and two bimetallics) complexes involving Cu(II), Zn(II) and 1,2,4,5-benzenetetracarboxylic acid using the ambient precipitation and solvothermal method. The complexes were characterized by elemental analysis, Infrared spectroscopy, Scanning Electron microscopy, Thermogravimetry analysis and X-ray Powder diffraction. The N2-adsorption Isotherm showed the complexes to be of TYPE III in reference to IUPAC classification, with very small pores only capable for small molecule sorption. All the synthesized compounds were observed to contain water as guest. Investigations of their inclusion properties for small molecules in the vapour phase showed water and methanol as the only possible inclusion candidates with 10.25H2O in the monometal complex [Zn4(H2B4C)2.5(OH)3(H2O)]·10H2O but not reusable after a complete structural collapse. The ambient precipitation bimetallic; [(CuZnB4C(H2O)2]·5H2O, was found to be reusable and recoverable from structure collapse after adsorption of 5.75H2O. In addition, Solvo-[CuZnB4C(H2O)2.5]·2H2O obtained from solvothermal method show two cycles of rehydration with 1.75H2O and 0.75MeOH inclusion while structure remains unaltered upon dehydration and adsorption.Keywords: adsorption, characterization, copper, metal -organic frameworks, zinc
Procedia PDF Downloads 1332095 Effect of Graphene on the Structural and Optical Properties of Ceria:Graphene Nanocomposites
Authors: R. Udayabhaskar, R. V. Mangalaraja, V. T. Perarasu, Saeed Farhang Sahlevani, B. Karthikeyan, David Contreras
Abstract:
Bandgap engineering of CeO₂ nanocrystals is of high interest for many research groups to meet the requirement of desired applications. The band gap of CeO₂ nanostructures can be modified by varying the particle size, morphology and dopants. Anchoring the metal oxide nanostructures on graphene sheets will result in composites with improved properties than the parent materials. The presence of graphene sheets will acts a support for the growth, influences the morphology and provides external paths for electronic transitions. Thus, the controllable synthesis of ceria:graphene composites with various morphologies and the understanding of the optical properties is highly important for the usage of these materials in various applications. The development of ceria and ceria:graphene composites with low cost, rapid synthesis with tunable optical properties is still desirable. By this work, we discuss the synthesis of pure ceria (nanospheres) and ceria:graphene composites (nano-rice like morphology) by using commercial microwave oven as a cost effective and environmentally friendly approach. The influence of the graphene on the crystallinity, morphology, band gap and luminescence of the synthesized samples were analyzed. The average crystallite size obtained by using Scherrer formula of the CeO₂ nanostructures showed a decreasing trend with increasing the graphene loading. The higher graphene loaded ceria composite clearly depicted morphology of nano-rice like in shape with the diameter below 10 nm and the length over 50 nm. The presence of graphene and ceria related vibrational modes (100-4000 cm⁻¹) confirmed the successful formation of composites. We observed an increase in band gap (blue shift) with increasing loading amount of graphene. Further, the luminescence related to various F-centers was quenched in the composites. The authors gratefully acknowledge the FONDECYT Project No.: 3160142 and BECA Conicyt National Doctorado2017 No. 21170851 Government of Chile, Santiago, for the financial assistance.Keywords: ceria, graphene, luminescence, blue shift, band gap widening
Procedia PDF Downloads 1922094 Designing Metal Organic Frameworks for Sustainable CO₂ Utilization
Authors: Matthew E. Potter, Daniel J. Stewart, Lindsay M. Armstrong, Pier J. A. Sazio, Robert R. Raja
Abstract:
Rising CO₂ levels in the atmosphere means that CO₂ is a highly desirable feedstock. This requires specific catalysts to be designed to activate this inert molecule, combining a catalytic site tailored for CO₂ transformations with a support that can readily adsorb CO₂. Metal organic frameworks (MOFs) are regularly used as CO₂ sorbents. The organic nature of the linker molecules, connecting the metal nodes, offers many post-synthesis modifications to introduce catalytic active sites into the frameworks. However, the metal nodes may be coordinatively unsaturated, allowing them to bind to organic moieties. Imidazoles have shown promise catalyzing the formation of cyclic carbonates from epoxides with CO₂. Typically, this synthesis route employs toxic reagents such as phosgene, liberating HCl. Therefore an alternative route with CO₂ is highly appealing. In this work we design active sites for CO₂ activation, by tethering substituted-imidazole organocatalytic species to the available Cr3+ metal nodes of a Cr-MIL-101 MOF, for the first time, to create a tailored species for carbon capture utilization applications. Our tailored design strategy combining a CO₂ sorbent, Cr-MIL-101, with an anchored imidazole results in a highly active and selective multifunctional catalyst, achieving turnover frequencies of over 750 hr-1. These findings demonstrate the synergy between the MOF framework and imidazoles for CO₂ utilization applications. Further, the effect of substrate variation has been explored yielding mechanistic insights into this process. Through characterization, we show that the structural and compositional integrity of the Cr-MIL-101 has been preserved on functionalizing the imidazoles. Further, we show the binding of the imidazoles to the Cr3+ metal nodes. This can be seen through our EPR study, where the distortion of the Cr3+ on binding to the imidazole shows the CO₂ binding site is close to the active imidazole. This has a synergistic effect, improving catalytic performance. We believe the combination of MOF support and organocatalyst allows many possibilities to generate new multifunctional catalysts for CO₂ utilisation. In conclusion, we have validated our design procedure, combining a known CO₂ sorbent, with an active imidazole species to create a unique tailored multifunctional catalyst for CO₂ utilization. This species achieves high activity and selectivity for the formation of cyclic carbonates and offers a sustainable alternative to traditional synthesis methods. This work represents a unique design strategy for CO₂ utilization while offering exciting possibilities for further work in characterization, computational modelling, and post-synthesis modification.Keywords: carbonate, catalysis, MOF, utilisation
Procedia PDF Downloads 1802093 Enzyme Involvement in the Biosynthesis of Selenium Nanoparticles by Geobacillus wiegelii Strain GWE1 Isolated from a Drying Oven
Authors: Daniela N. Correa-Llantén, Sebastián A. Muñoz-Ibacache, Mathilde Maire, Jenny M. Blamey
Abstract:
The biosynthesis of nanoparticles by microorganisms, on the contrary to chemical synthesis, is an environmentally-friendly process which has low energy requirements. In this investigation, we used the microorganism Geobacillus wiegelii, strain GWE1, an aerobic thermophile belonging to genus Geobacillus, isolated from a drying oven. This microorganism has the ability to reduce selenite evidenced by the change of color from colorless to red in the culture. Elemental analysis and composition of the particles were verified using transmission electron microscopy and energy-dispersive X-ray analysis. The nanoparticles have a defined spherical shape and a selenium elemental state. Previous experiments showed that the presence of the whole microorganism for the reduction of selenite was not necessary. The results strongly suggested that an intracellular NADPH/NADH-dependent reductase mediates selenium nanoparticles synthesis under aerobic conditions. The enzyme was purified and identified by mass spectroscopy MALDI-TOF TOF technique. The enzyme is a 1-pyrroline-5-carboxylate dehydrogenase. Histograms of nanoparticles sizes were obtained. Size distribution ranged from 40-160 nm, where 70% of nanoparticles have less than 100 nm in size. Spectroscopic analysis showed that the nanoparticles are composed of elemental selenium. To analyse the effect of pH in size and morphology of nanoparticles, the synthesis of them was carried out at different pHs (4.0, 5.0, 6.0, 7.0, 8.0). For thermostability studies samples were incubated at different temperatures (60, 80 and 100 ºC) for 1 h and 3 h. The size of all nanoparticles was less than 100 nm at pH 4.0; over 50% of nanoparticles have less than 100 nm at pH 5.0; at pH 6.0 and 8.0 over 90% of nanoparticles have less than 100 nm in size. At neutral pH (7.0) nanoparticles reach a size around 120 nm and only 20% of them were less than 100 nm. When looking at temperature effect, nanoparticles did not show a significant difference in size when they were incubated between 0 and 3 h at 60 ºC. Meanwhile at 80 °C the nanoparticles suspension lost its homogeneity. A change in size was observed from 0 h of incubation at 80ºC, observing a size range between 40-160 nm, with 20% of them over 100 nm. Meanwhile after 3 h of incubation at size range changed to 60-180 nm with 50% of them over 100 nm. At 100 °C the nanoparticles aggregate forming nanorod structures. In conclusion, these results indicate that is possible to modulate size and shape of biologically synthesized nanoparticles by modulating pH and temperature.Keywords: genus Geobacillus, NADPH/NADH-dependent reductase, selenium nanoparticles, biosynthesis
Procedia PDF Downloads 3152092 Selective Extraction of Couple Nickel(II) / Cobalt(II) by a Series of Schiff Bases in Sulfate Medium, in the Chloroforme-Water
Authors: N. Belhadj, M. Hadj Youcef, T. Benabdallah, Belbachir Ibtissem, N. Boceiri
Abstract:
This work deals with the synthesis, the structural elucidation and the exploration the extracting properties of a series of ortho-hydroxy Schiff base in sulfate medium. After the synthesis and characterization of their structures, the study of their behavior in solution was carried out by pH-metric titration in different media homogeneous and heterogeneous solution. This allowed to explore and to quantify in each of these media, some of their properties in solution such as, their acid-base behavior (determination and comparison of pKa), their distribution powers (determination and comparison of logKd), and their thermodynamic constants (determining ∆H°, ΔS° and ∆G°moy) by optimizing both the temperature and ionic strength. Study of the extraction of nickel (II) and cobalt(II) separately was undertaken in the aqueous-organic system, chloroform-water. Different extraction parameters have been thus optimized such, the pH, the concentration of extractant and the ionic strength, and the extraction constants established in each case. The extracted metal complexes have been isolated and their spatial configurations elucidated. The selective extraction of the couple cobalt (II)/nickel (II) was finally performed by our series of Schiff base in the chloroforme/water.Keywords: selective extraction, Schiff base, distribution, cobalt(II), nickel(II)
Procedia PDF Downloads 4592091 Research Regarding Resistance Characteristics of Biscuits Assortment Using Cone Penetrometer
Authors: G.–A. Constantin, G. Voicu, E.–M. Stefan, P. Tudor, G. Paraschiv, M.–G. Munteanu
Abstract:
In the activity of handling and transport of food products, the products may be subjected to mechanical stresses that may lead to their deterioration by deformation, breaking, or crushing. This is the case for biscuits, regardless of their type (gluten-free or sugary), the addition of ingredients or flour from which they are made. However, gluten-free biscuits have a higher mechanical resistance to breakage or crushing compared to easily shattered sugar biscuits (especially those for children). The paper presents the results of the experimental evaluation of the texture for four varieties of commercial biscuits, using the penetrometer equipped with needle cone at five different additional weights on the cone-rod. The assortments of biscuits tested in the laboratory were Petit Beurre, Picnic, and Maia (all three manufactured by RoStar, Romania) and Sultani diet biscuits, manufactured by Eti Burcak Sultani (Turkey, in packs of 138 g). For the four varieties of biscuits and the five additional weights (50, 77, 100, 150 and 177 g), the experimental data obtained were subjected to regression analysis in the MS Office Excel program, using Velon's relationship (h = a∙ln(t) + b). The regression curves were analysed comparatively in order to identify possible differences and to highlight the variation of the penetration depth h, in relation to the time t. Based on the penetration depth between two-time intervals (every 5 seconds), the curves of variation of the penetration speed in relation to time were then drawn. It was found that Velon's law verifies the experimental data for all assortments of biscuits and for all five additional weights. The correlation coefficient R2 had in most of the analysed cases values over 0.850. The values recorded for the penetration depth were framed, in general, within 45-55 p.u. (penetrometric units) at an additional mass of 50 g, respectively between 155-168 p.u., at an additional mass of 177 g, at Petit Beurre biscuits. For Sultani diet biscuits, the values of the penetration depth were within the limits of 32-35 p.u., at an additional weight of 50 g and between 80-114 p.u., at an additional weight of 177g. The data presented in the paper can be used by both operators on the manufacturing technology flow, as well as by the traders of these food products, in order to establish the most efficient parametric of the working regimes (when packaging and handling).Keywords: biscuits resistance/texture, penetration depth, penetration velocity, sharp pin penetrometer
Procedia PDF Downloads 1302090 Synthesis of Silver Nanoparticles Adsorbent from Phytolacca Dodecandra ‘Endod’ Leaf to Water Treatment, at Almeda Textile Factory, Tigray Ethiopia
Authors: Letemariam Gebreslassie Gebrekidan
Abstract:
Water pollution is one of the most feared problems in modern societies, especially in developing countries like Ethiopia. Nanoparticles with controlled size and composition are of fundamental and technological interest as they provide solutions to technological and environmental challenges in the areas of solar energy conversion, catalysis, medicine, and water treatment. The synthesis of metallic nanoparticles is an active area of academic and, more importantly, application research in nanotechnology. Adsorption is a process in which pollutants are absorbed on a solid surface. A molecule (pollutant) adhered to the solid surface is called an adsorbate, and the solid surface is an adsorbent. Adsorption is controlled by various parameters such as temperature, the nature of the adsorbate and adsorbent, and the presence of other pollutants along with the experimental conditions (pH, concentration of pollutants, contact time, particle size, and temperature). Depending on the main problem of water pollution, this research is available on the adsorption of wastewater using silver nanoparticles extracted from phytolacca Dodecandra leaf. AgNP was synthesized from a 1mM aqueous solution of silver nitrate (AgNO3) and Phytolacca Dodecandra leaf extract at room temperature. The synthesized nanoparticles were characterized using UV/visible Spectrometer, FTIR and XRD. In the UV-Vis spectrum, The Surface Plasmon resonance (SPR) peak was observed at 414 nm, which confirmed the synthesis of AgNPs. FTIR spectroscopy, recorded from 4000 cm-1 to 400 cm-1, indicated the presence of a capping agent with the nanoparticles. From the XRD results, the average crystalline size was estimated to be 20 nm Confirming the nanoparticle nature of the obtained sample. Thus, the present method leads to the formation of silver nanoparticles with well-defined dimensions. The effects of different parameters like solution pH, adsorbent dose, contact time and initial concentration of dye were studied. The concentration of MB is 0.01 mg/L and 0.002 mg/L before and after adsorption, respectively. The wastewater containing MB was well purified using AgNP adsorbent.Keywords: wastewater, silver nanoparticle, Characterization, adsorption, parameter
Procedia PDF Downloads 162089 Impact of Zn/Cr Ratio on ZnCrOx-SAPO-34 Bifunctional Catalyst for Direct Conversion of Syngas to Light Olefins
Authors: Yuxuan Huang, Weixin Qian, Hongfang Ma, Haitao Zhang, Weiyong Ying
Abstract:
Light olefins are important building blocks for chemical industry. Direct conversion of syngas to light olefins has been investigated for decades. Meanwhile, the limit for light olefins selectivity described by Anderson-Schulz-Flory (ASF) distribution model is still a great challenge to conventional Fischer-Tropsch synthesis. The emerging strategy called oxide-zeolite concept (OX-ZEO) is a promising way to get rid of this limit. ZnCrOx was prepared by co-precipitation method and (NH4)2CO3 was used as precipitant. SAPO-34 was prepared by hydrothermal synthesis, and Tetraethylammonium hydroxide (TEAOH) was used as template, while silica sol, pseudo-boehmite, and phosphoric acid were Al, Si and P source, respectively. The bifunctional catalyst was prepared by mechanical mixing of ZnCrOx and SAPO-34. Catalytic reactions were carried out under H2/CO=2, 380 ℃, 1 MPa and 6000 mL·gcat-1·h-1 in a fixed-bed reactor with a quartz lining. Catalysts were characterized by XRD, N2 adsorption-desorption, NH3-TPD, H2-TPR, and CO-TPD. The addition of Al as structure promoter enhances CO conversion and selectivity to light olefins. Zn/Cr ratio, which decides the active component content and chemisorption property of the catalyst, influences CO conversion and selectivity to light olefins at the same time. C2-4= distribution of 86% among hydrocarbons at CO conversion of 14% was reached when Zn/Cr=1.5.Keywords: light olefins, OX-ZEO, Syngas, ZnCrOₓ
Procedia PDF Downloads 1802088 Synthesis, Electrochemical and Fluorimetric Analysis of Caffeic Cinnamic and Acid-Conjugated Hemorphin Derivatives Designed as Potential Anticonvulsant Agents
Authors: Jana Tchekalarova, Stela Georgieva, Petia Peneva, Petar Todorov
Abstract:
In the present study, a series of bioconjugates of N-modified hemorphine analogs containing second pharmacophore cinnamic acids (CA) or caffeic (KA) were synthesized by a traditional solid-phase Fmoc chemistry method for peptide synthesis. Electrochemical and fluorimetrical analysis and in vivo anticonvulsant activity in mice were conducted on the compounds. The three CA acids (H4-CA, H5-CA, and H7-CA) and three KA acids (H4-KA, H5-KA, and H7-KA)-conjugated hemorphine derivatives showed dose-dependent anticonvulsant activity in the maximal electroshock test (MES) in mice. The KA-conjugated H5-KA derivate was the only compound that suppressed clonic seizures at the lowest dose of 0.5 µg/mouse in the scPTZ test. The activity against the psychomotor seizures in the 6-Hz test was detected only for the H4-CA (0.5 µg) and H4-KA (0.5 µg and 1 µg), respectively. The peptide derivates did not exhibit neurotoxicity in the rotarod test. Our findings suggest that conjugated CA and KA hemorphine peptides can be used as a background for developing hemorphin-related analogs with anticonvulsant activity. Acknowledgements: This study is funded by the European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, project № BG-RRP-2.004-0002, "BiOrgaMCT".Keywords: hemorphins, caffeic/cinnamic acid, anticonvulsant activity, electrochemistry, fluorimetry
Procedia PDF Downloads 1052087 Surfactant Free Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatment
Authors: M. Sneha, N. Meenakshi Sundaram
Abstract:
In recent times, magnetic hyperthermia is used for cancer treatment as a tool for active targeting of delivering drugs to the targeted site. It has a potential advantage over other heat treatment because there is no systemic buildup in organs and large doses are possible. The aim of this study is to develop a suitable magnetic biomaterial that can destroy the cancer cells as well as induce bone regeneration. In this work, the composite material was synthesized in two-steps. First, porous iron oxide nano needles were synthesized by hydrothermal process. Second, the hydroxyapatite, were synthesized from natural calcium (i.e., egg shell) and inorganic phosphorous source using wet chemical method. The crystalline nature is confirmed by powder X-ray diffraction analysis (XRD). Thermal analysis and the surface area of the material is studied by Thermo Gravimetric Analysis (TGA), Brunauer-Emmett and Teller (BET) technique. Scanning electron microscope (SEM) images show that the particles have nanoneedle-like morphology. The magnetic property is studied by vibrating sample magnetometer (VSM) technique which confirms the superparamagnetic behavior. This paper presents a simple and easy method for synthesis of magnetite/hydroxyapatite composites materials.Keywords: iron oxide nano needles, hydroxyapatite, superparamagnetic, hyperthermia
Procedia PDF Downloads 6412086 Transformation of Glycals to Chiral Fused Aromatic Cores via Annulative π-Extension Reaction with Arynes
Authors: Nazar Hussain, Debaraj Mukherjee
Abstract:
Carbohydrate-derived chiral intermediates which contain arrays of defined stereocenters have found enormous applications in organic synthesis due to their inherent functional group, stereochemical and structural diversities as well as their ready availability. Stereodiversity of these classes of molecules has motivated synthetic organic chemistry over the years. One major challenge is control of relative configuration during construction of acyclic fragments. Here, we show that The Diels Alder addition of arynes to appropriately substituted vinyl/aryl glycals followed by π-extension via pyran ring opening smoothly furnished meta-disubstituted fused aromatic cores containing a stereo-defined orthogonally protected chiral side chain. The method is broad in terms of aryl homologation affording benzene, naphthalene, and phenanthrene derivatives. Base-induced deprotonation followed by cleavage of the allylic C-O bond appears to be the crucial steps leading to the development of aromaticity, which is the driving force behind the annulative π-extension process. The present protocol can be used for the synthesis of meta-disubstituted naphthalene aldehydes and substrates for aldolases.Keywords: vinyl/C-2 aryl glycal, arynes, cyclization, ring opening
Procedia PDF Downloads 2552085 Zinc Sorption by Six Agricultural Soils Amended with Municipal Biosolids
Authors: Antoine Karam, Lotfi Khiari, Bruno Breton, Alfred Jaouich
Abstract:
Anthropogenic sources of zinc (Zn), including industrial emissions and effluents, Zn–rich fertilizer materials and pesticides containing Zn, can contribute to increasing the concentration of soluble Zn at levels toxic to plants in acid sandy soils. The application of municipal sewage sludge or biosolids (MBS) which contain metal immobilizing agents on coarse-textured soils could improve the metal sorption capacity of the low-CEC soils. The purpose of this experiment was to evaluate the sorption of Zn in surface samples (0-15 cm) of six Quebec (Canada) soils amended with MBS (pH 6.9) from Val d’Or (Quebec, Canada). Soil samples amended with increasing amounts (0 to 20%) of MBS were equilibrated with various amounts of Zn as ZnCl2 in 0.01 M CaCl2 for 48 hours at room temperature. Sorbed Zn was calculated from the difference between the initial and final Zn concentration in solution. Zn sorption data conformed to the linear form of Freundlich equation. The amount of sorbed Zn increased considerably with increasing MBS rate. Analysis of variance revealed a highly significant effect (p ≤ 0.001) of soil texture and MBS rate on the amount of sorbed Zn. The average values of the Zn-sorption capacity of MBS-amended coarse-textured soils were lower than those of MBS-amended fine textured soils. The two sandy soils (86-99% sand) amended with MBS retained 2- to 5-fold Zn than those without MBS (control). Significant Pearson correlation coefficients between the Zn sorption isotherm parameter, i.e. the Freundlich sorption isotherm (KF), and commonly measured physical and chemical entities were obtained. Among all the soil properties measured, soil pH gave the best significant correlation coefficients (p ≤ 0.001) for soils receiving 0, 5 and 10% MBS. Furthermore, KF values were positively correlated with soil clay content, exchangeable basic cations (Ca, Mg or K), CEC and clay content to CEC ratio. From these results, it can be concluded that (i) municipal biosolids provide sorption sites that have a strong affinity for Zn, (ii) both soil texture, especially clay content, and soil pH are the main factors controlling anthropogenic Zn sorption in the municipal biosolids-amended soils, and (iii) the effect of municipal biosolids on Zn sorption will be more pronounced for a sandy soil than for a clay soil.Keywords: metal, recycling, sewage sludge, trace element
Procedia PDF Downloads 2842084 Improving the Efficiency of Pelton Wheel and Cross-Flow Micro Hydro Power Plants
Authors: Loice K. Gudukeya, Charles Mbohwa
Abstract:
The research investigates hydropower plant efficiency with a view to improving the power output while keeping the overall project cost per kilowatt produced within an acceptable range. It reviews the commonly used Pelton and Cross-flow turbines which are employed in the region for micro-hydro power plants. Turbine parameters such as surface texture, material used and fabrication processes are dealt with the intention of increasing the efficiency by 20 to 25 percent for the micro hydro-power plants.Keywords: hydro, power plant, efficiency, manufacture
Procedia PDF Downloads 4302083 Developing a Comprehensive Framework for Sustainable Urban Planning and Design: Insights From Iranian Cities
Authors: Mohammad Javad Seddighi, Avar Almukhtar
Abstract:
Sustainable urban planning and design (SUPD) play a critical role in achieving the United Nations Sustainable Development Goals (UN SDGs). While there are many rating systems and standards available to assess the sustainability of the built environment, there is still a lack of a comprehensive framework that can assess the quality of SUPD in a specific context. In this paper, we present a framework for assessing the quality of SUPD in Iranian cities, considering their unique cultural, social, and environmental contexts. The aim of this study is to develop a framework for assessing the quality of SUPD in Iranian cities. To achieve this aim, the following objectives are pursued review and synthesis of relevant literature on SUPD, identification of key indicators and criteria for assessing the quality of SUPD in Iranian cities application of the framework to case studies of Iranian cities and evaluation and refinement of the framework based on the results of the case studies. The framework is developed based on a review and synthesis of relevant literature on SUPD, and the identification of key indicators and criteria for assessing the quality of SUPD in Iranian cities. The framework is then applied to case studies of Iranian cities and the results are evaluated and refined. The data for this study are collected through a review of relevant literature on SUPD, including academic journals, conference proceedings, and books. The case studies of Iranian cities are selected based on their relevance and availability of data. The data are collected through interviews, site visits, and document analysis. This paper presents a framework for assessing the quality of SUPD in Iranian cities. The framework is developed based on a review and synthesis of relevant literature, identification of key indicators and criteria, application to case studies, and evaluation and refinement. The framework provides a comprehensive and context-specific approach to assessing the quality of SUPD in Iranian cities. It can be used by urban planners, designers, and policymakers to improve the sustainability and liveability of Iranian cities, and it can be adapted for use in other contexts.Keywords: sustainable urban planning and design, framework, quality assessment, Iranian cities, case studies
Procedia PDF Downloads 118