Search results for: short-time Fourier transform
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1636

Search results for: short-time Fourier transform

1036 Using Morlet Wavelet Filter to Denoising Geoelectric ‘Disturbances’ Map of Moroccan Phosphate Deposit ‘Disturbances’

Authors: Saad Bakkali

Abstract:

Morocco is a major producer of phosphate, with an annual output of 19 million tons and reserves in excess of 35 billion cubic meters. This represents more than 75% of world reserves. Resistivity surveys have been successfully used in the Oulad Abdoun phosphate basin. A Schlumberger resistivity survey over an area of 50 hectares was carried out. A new field procedure based on analytic signal response of resistivity data was tested to deal with the presence of phosphate deposit disturbances. A resistivity map was expected to allow the electrical resistivity signal to be imaged in 2D. 2D wavelet is standard tool in the interpretation of geophysical potential field data. Wavelet transform is particularly suitable in denoising, filtering and analyzing geophysical data singularities. Wavelet transform tools are applied to analysis of a moroccan phosphate deposit ‘disturbances’. Wavelet approach applied to modeling surface phosphate “disturbances” was found to be consistently useful.

Keywords: resistivity, Schlumberger, phosphate, wavelet, Morocco

Procedia PDF Downloads 401
1035 Stator Short-Circuits Fault Diagnosis in Induction Motors

Authors: K. Yahia, M. Sahraoui, A. Guettaf

Abstract:

This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental results, show the effectiveness of the used method.

Keywords: induction motors (IMs), inter-turn short-circuits diagnosis, discrete wavelet transform (DWT), Current Park’s Vector Modulus (CPVM)

Procedia PDF Downloads 439
1034 Quartz Crystal Microbalance Based Hydrophobic Nanosensor for Lysozyme Detection

Authors: F. Yılmaz, Y. Saylan, A. Derazshamshir, S. Atay, A. Denizli

Abstract:

Quartz crystal microbalance (QCM), high-resolution mass-sensing technique, measures changes in mass on oscillating quartz crystal surface by measuring changes in oscillation frequency of crystal in real time. Protein adsorption techniques via hydrophobic interaction between protein and solid support, called hydrophobic interaction chromatography (HIC), can be favorable in many cases. Some nanoparticles can be effectively applied for HIC. HIC takes advantage of the hydrophobicity of proteins by promoting its separation on the basis of hydrophobic interactions between immobilized hydrophobic ligands and nonpolar regions on the surface of the proteins. Lysozyme is found in a variety of vertebrate cells and secretions, such as spleen, milk, tears, and egg white. Its common applications are as a cell-disrupting agent for extraction of bacterial intracellular products, as an antibacterial agent in ophthalmologic preparations, as a food additive in milk products and as a drug for treatment of ulcers and infections. Lysozyme has also been used in cancer chemotherapy. The aim of this study is the synthesis of hydrophobic nanoparticles for Lysozyme detection. For this purpose, methacryoyl-L-phenylalanine was chosen as a hydrophobic matrix. The hydrophobic nanoparticles were synthesized by micro-emulsion polymerization method. Then, hydrophobic QCM nanosensor was characterized by Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM) and zeta size analysis. Hydrophobic QCM nanosensor was tested for real-time detection of Lysozyme from aqueous solution. The kinetic and affinity studies were determined by using Lysozyme solutions with different concentrations. The responses related to a mass (Δm) and frequency (Δf) shifts were used to evaluate adsorption properties.

Keywords: nanosensor, HIC, lysozyme, QCM

Procedia PDF Downloads 334
1033 Characterization of Biogenic Silver Nanoparticles by Salvadora persica Leaves Extract and its Application Against Some MDR Pathogens E. Coli and S. Aureus

Authors: Mudawi M. Nour

Abstract:

Background: Now a days, the multidisciplinary scientific research conception in the field of nanotechnology has witnessed development with regard to the numerous applications and synthesis of nanomaterials. Objective: The current investigation has been conducted with the main focus on the green synthesis of silver nanoparticles from the leaves of Salvadora persica and its antibacterial activity against MDR pathogens E. coli and S. aureus. Methodology: Silver nanoparticles (AgNPs) were prepared after addition of aqueous extract of Salvadora persica leaves. The UV-Vis spectrophotometer, Transmission Electron Microscopy (TEM), zeta potential and Scanning Electron Microscopy (SEM) were employed to detect the particle size and morphology, besides Fourier transform infra-red spectrometer (FTIR) analysis was performed to determine the capping and stabilizing agents in the extract. Antibacterial assay for the biogenic AgNPs was conducted against E. coli and S. aureus. Results: Color change of the mixture from yellow to dark brown is the first indication to AgNPs formation. Furthermore, 420 nm was the peak value for UV-Vis spectroscopy absorption of the mixture. Besides, TEM and SEM micrographs showed wide variability in the diameter of smaller NPs aggregated together with spherical shapes, and zeta sizer showed about 153.3 nm as an average size of nanoparticles. Microbial suppression was noticed for the tested microorganisms. Furthermore, with the help of FTIR analysis, the biomolecules that act as capping and stabilizing agents of AgNPs are proteins and phenols present in the plant extract. Conclusion: Salvadora persica leaves extract act as a reducing and stabilizing agent for the synthesis of AgNPs, keeping its ability to suppress the MDR pathogen.

Keywords: green synthesis, FTIR, MDR pathogen, salvadora persica

Procedia PDF Downloads 53
1032 Sorption of Cesium Ions from Aqueous Solutions by Magnetic Multi-Walled Carbon Nanotubes Functionalized with Zinc Hexacyanoferrate

Authors: H. H. Lee, D. Y. Kim, S. W. Lee, J. H. Kim, J. H. Kim, W. Z. Oh, S. J. Choi

Abstract:

In recent years, carbon nanotubes (CNTs) have been widely employed as a sorbent for the removal of various metal ions from water due to their unique properties such as large surface area, light mass density, high porous and hollow structure, and strong interaction between the pollutant molecules and CNTs. To apply CNTs to the sorption of Cs+ from aqueous solutions, they must first be functionalized to increase their hydrophilicity and therefore, enhance their applicability to the sorption of polar and relatively low-molecular-weight species. The objective of this study is to investigate the preparation of magnetically separable multi-walled carbon nanotubes (MWCNTs-m) as a sorbents for the removal of Cs+ from aqueous solutions. The MWCNTs-m was prepared using pristine MWCNTs and iron precursor Fe(acac)3. For the selective removal of Cs+ from aqueous solutions, the MWCNTs-m was functionalized with zinc hexacyanoferrate (MWCNTs-m-ZnFC). The physicochemical properties of the synthesized sorbents were characterized with various techniques, including transmission electron microscopy (TEM), specific surface area analysis, Fourier transform-infrared (FT-IR) spectroscopy, and vibrating-sample magnetometer. The MWCNTs-m-ZnFC was found to be easily separated from aqueous solutions by using magnetic field. The MWCNTs-m-ZnFC exhibited a high capacity for sorbing Cs+ from aqueous solutions because of their strong affinity for Cs+ and specific surface area. The sorption ability of the MWCNTs-m-ZnFC for Cs+ was maintained even in the presence of co-existing ions (Na+). Considering these results, the CNT-m-ZnFCs have great potential for use as an effective sorbent for the selective removal of radioactive Cs+ ions from aqueous solutions.

Keywords: multi-walled carbon nanotubes, magnetic materials, cesium, zinc hexacyanoferrate, sorption

Procedia PDF Downloads 311
1031 Frequency Transformation with Pascal Matrix Equations

Authors: Phuoc Si Nguyen

Abstract:

Frequency transformation with Pascal matrix equations is a method for transforming an electronic filter (analogue or digital) into another filter. The technique is based on frequency transformation in the s-domain, bilinear z-transform with pre-warping frequency, inverse bilinear transformation and a very useful application of the Pascal’s triangle that simplifies computing and enables calculation by hand when transforming from one filter to another. This paper will introduce two methods to transform a filter into a digital filter: frequency transformation from the s-domain into the z-domain; and frequency transformation in the z-domain. Further, two Pascal matrix equations are derived: an analogue to digital filter Pascal matrix equation and a digital to digital filter Pascal matrix equation. These are used to design a desired digital filter from a given filter.

Keywords: frequency transformation, bilinear z-transformation, pre-warping frequency, digital filters, analog filters, pascal’s triangle

Procedia PDF Downloads 530
1030 Promotional Effects of Zn in Cu-Zn/Core-Shell Al-MCM-41 for Selective Catalytic Reduction of NO with NH3: Acidic Properties, NOx Adsorption Properties, and Nature of Copper

Authors: Thidarat Imyen, Paisan Kongkachuichay

Abstract:

Cu-Zn/core-shell Al-MCM-41 catalyst with various copper species, prepared by a combination of three methods—substitution, ion-exchange, and impregnation, was studied for the selective catalytic reduction (SCR) of NO with NH3 at 300 °C for 150 min. In order to investigate the effects of Zn introduction on the nature of the catalyst, Cu/core-shell Al-MCM-41 and Zn/core-shell Al-MCM-41 catalysts were also studied. The roles of Zn promoter in the acidity and the NOx adsorption properties of the catalysts were investigated by in situ Fourier transform infrared spectroscopy (FTIR) of NH3 and NOx adsorption, and temperature-programmed desorption (TPD) of NH3 and NOx. The results demonstrated that the acidity of the catalyst was enhanced by the Zn introduction, as exchanged Zn(II) cations loosely bonded with Al-O-Si framework could create Brønsted acid sites by interacting with OH groups. Moreover, Zn species also provided the additional sites for NO adsorption in the form of nitrite (NO2–) and nitrate (NO3–) species, which are the key intermediates for SCR reaction. In addition, the effect of Zn on the nature of copper was studied by in situ FTIR of CO adsorption and in situ X-ray adsorption near edge structure (XANES). It was found that Zn species hindered the reduction of Cu(II) to Cu(0), resulting in higher Cu(I) species in the Zn promoted catalyst. The Cu-Zn/core-shell Al-MCM-41 exhibited higher catalytic activity compared with that of the Cu/core-shell Al-MCM-41 for the whole reaction time, as it possesses the highest amount of Cu(I) sites, which are responsible for SCR catalytic activity. The Cu-Zn/core-shell Al-MCM-41 catalyst also reached the maximum NO conversion of 100% with the average NO conversion of 76 %. The catalytic performance of the catalyst was further improved by using Zn promoter in the form of ZnO instead of reduced Zn species. The Cu-ZnO/core-shell Al-MCM-41 catalyst showed better catalytic performance with longer working reaction time, and achieved the average NO conversion of 81%.

Keywords: Al-MCM-41, copper, nitrogen oxide, selective catalytic reduction, zinc

Procedia PDF Downloads 279
1029 Facile Fabrication of TiO₂NT/Fe₂O₃@Ag₂CO₃ Nanocomposite and Its Highly Efficient Visible Light Photocatalytic and Antibacterial Activity

Authors: Amal A. Al-Kahlawy, Heba H. El-Maghrabi

Abstract:

Due to the increasing need to environment protection in real time need to energize new materials are under extensive investigations. Between others, TiO2 nanotubes (TNTs) nanocomposite with iron oxide and silver carbonate, are promising alternatives as high-efficiency visible light photocatalyst due to their unique properties and their superior charge transport properties. Our efforts in this domain aim the construction of novel nanocomposite of TiO2NT/Fe2O3@Ag2CO3. The structure, surface morphology, chemical composition and optical properties were characterized by X-ray diffraction (XRD), Raman, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and UV–vis diffuse reflectance spectroscopy (DRS). XRD results confirm the interaction of TiO2-NT with iron oxide. This novel nanocomposite shows remarkably enhanced performance for phenol compounds photodegradation. The experimental data shows a promising photocatalytic activity. In particular, a maximum value of 450 mg/g was removed within 60 min at solar light irradiation with degradation efficiency of 99.5%. The high photocatalytic activity of the nanocomposite is found to be related to the increased adsorption toward chemical species, enhanced light absorption and efficient charge separation and transfer. Finally, the designed TiO2NT/Fe2O3@Ag2CO3 nanocomposite has a great degree of sustainability and could has a potential application for the industrial treatment of wastewater containing toxic organic materials.

Keywords: nanocomposite, photocatalyst, solar energy, titanium dioxide nanotubes

Procedia PDF Downloads 224
1028 The Effect of Simultaneous Doping of Silicate Bioglass with Alkaline and Alkaline-Earth Elements on Biological Behavior

Authors: Tannaz Alimardani, Amirhossein Moghanian, Morteza Elsa

Abstract:

Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO₂-CaO-P₂O₅ glass with a nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant Staphylococcus aureus (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of the opposite effect of Sr and Li of the dissolution of BG in the SBF, but also stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on the dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with the live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S bioactive glass exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering.

Keywords: alkaline, alkaline earth, bioglass, co-doping, ion release

Procedia PDF Downloads 193
1027 Difference Expansion Based Reversible Data Hiding Scheme Using Edge Directions

Authors: Toshanlal Meenpal, Ankita Meenpal

Abstract:

A very important technique in reversible data hiding field is Difference expansion. Secret message as well as the cover image may be completely recovered without any distortion after data extraction process due to reversibility feature. In general, in any difference expansion scheme embedding is performed by integer transform in the difference image acquired by grouping two neighboring pixel values. This paper proposes an improved reversible difference expansion embedding scheme. We mainly consider edge direction for embedding by modifying the difference of two neighboring pixels values. In general, the larger difference tends to bring a degraded stego image quality than the smaller difference. Image quality in the range of 0.5 to 3.7 dB in average is achieved by the proposed scheme, which is shown through the experimental results. However payload wise it achieves almost similar capacity in comparisons with previous method.

Keywords: information hiding, wedge direction, difference expansion, integer transform

Procedia PDF Downloads 467
1026 Role of Cellulose Fibers in Tuning the Microstructure and Crystallographic Phase of α-Fe₂O₃ and α-FeOOH Nanoparticles

Authors: Indu Chauhan, Bhupendra S. Butola, Paritosh Mohanty

Abstract:

It is very well known that properties of material changes as their size approach to nanoscale level due to the high surface area to volume ratio. However, in last few decades, a tenet ‘structure dictates function’ is quickly being adopted by researchers working with nanomaterials. The design and exploitation of nanoparticles with tailored shape and size has become one of the primary goals of materials science researchers to expose the properties of nanostructures. To date, various methods, including soft/hard template/surfactant assisted route hydrothermal reaction, seed mediated growth method, capping molecule-assisted synthesis, polyol process, etc. have been adopted to synthesize the nanostructures with controlled size and shape and monodispersity. However controlling the shape and size of nanoparticles is an ultimate challenge of modern material research. In particular, many efforts have been devoted to rational and skillful control of hierarchical and complex nanostructures. Thus in our research work, role of cellulose in manipulating the nanostructures has been discussed. Nanoparticles of α-Fe₂O₃ (diameter ca. 15 to 130 nm) were immobilized on the cellulose fiber surface by a single step in situ hydrothermal method. However, nanoflakes of α-FeOOH having thickness ca. ~25 nm and length ca. ~250 nm were obtained by the same method in absence of cellulose fibers. A possible nucleation and growth mechanism of the formation of nanostructures on cellulose fibers have been proposed. The covalent bond formation between the cellulose fibers and nanostructures has been discussed with supporting evidence from the spectroscopic and other analytical studies such as Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The role of cellulose in manipulating the nanostructures has been discussed.

Keywords: cellulose fibers, α-Fe₂O₃, α-FeOOH, hydrothermal, nanoflakes, nanoparticles

Procedia PDF Downloads 132
1025 Effect of Ultrasound-Assisted Pretreatment on Saccharification of Spent Coffee Grounds

Authors: Shady S. Hassan, Brijesh K. Tiwari, Gwilym A. Williams, Amit K. Jaiswal

Abstract:

EU is known as the destination with the highest rate of the coffee consumption per capita in the world. Spent coffee grounds (SCG) are the main by-product of coffee brewing. SCG is either disposed as a solid waste or employed as compost, although the polysaccharides from such lignocellulosic biomass might be used as feedstock for fermentation processes. However, SCG as a lignocellulose have a complex structure and pretreatment process is required to facilitate an efficient enzymatic hydrolysis of carbohydrates. However, commonly used pretreatment methods, such as chemical, physico-chemical and biological techniques are still insufficient to meet optimal industrial production requirements in a sustainable way. Ultrasound is a promising candidate as a sustainable green pretreatment solution for lignocellulosic biomass utilization in a large scale biorefinery. Thus, ultrasound pretreatment of SCG without adding harsh chemicals investigated as a green technology to enhance enzyme hydrolysis. In the present work, ultrasound pretreatment experiments were conducted on SCG using different ultrasound frequencies (25, 35, 45, 130, and 950 kHz) for 60 min. Regardless of ultrasound power, low ultrasound frequency is more effective than high ultrasound frequency in pretreatment of biomass. Ultrasound pretreatment of SCG (at ultrasound frequency of 25 kHz for 60 min) followed by enzymatic hydrolysis resulted in total reducing sugars of 56.1 ± 2.8 mg/g of biomass. Fourier transform Infrared Spectroscopy (FTIR) was employed to investigate changes in functional groups of biomass after pretreatment, while high-performance liquid chromatography (HPLC) was employed for determination of glucose. Pretreatment of lignocellulose by low frequency ultrasound in water only was found to be an effective green approach for SCG to improve saccharification and glucose yield compared to native biomass. Pretreatment conditions will be optimized, and the enzyme hydrolysate will be used as media component substitute for the production of ethanol.

Keywords: lignocellulose, ultrasound, pretreatment, spent coffee grounds

Procedia PDF Downloads 302
1024 Hybridization of Mathematical Transforms for Robust Video Watermarking Technique

Authors: Harpal Singh, Sakshi Batra

Abstract:

The widespread and easy accesses to multimedia contents and possibility to make numerous copies without loss of significant fidelity have roused the requirement of digital rights management. Thus this problem can be effectively solved by Digital watermarking technology. This is a concept of embedding some sort of data or special pattern (watermark) in the multimedia content; this information will later prove ownership in case of a dispute, trace the marked document’s dissemination, identify a misappropriating person or simply inform user about the rights-holder. The primary motive of digital watermarking is to embed the data imperceptibly and robustly in the host information. Extensive counts of watermarking techniques have been developed to embed copyright marks or data in digital images, video, audio and other multimedia objects. With the development of digital video-based innovations, copyright dilemma for the multimedia industry increases. Video watermarking had been proposed in recent years to serve the issue of illicit copying and allocation of videos. It is the process of embedding copyright information in video bit streams. Practically video watermarking schemes have to address some serious challenges as compared to image watermarking schemes like real-time requirements in the video broadcasting, large volume of inherently redundant data between frames, the unbalance between the motion and motionless regions etc. and they are particularly vulnerable to attacks, for example, frame swapping, statistical analysis, rotation, noise, median and crop attacks. In this paper, an effective, robust and imperceptible video watermarking algorithm is proposed based on hybridization of powerful mathematical transforms; Fractional Fourier Transform (FrFT), Discrete Wavelet transforms (DWT) and Singular Value Decomposition (SVD) using redundant wavelet. This scheme utilizes various transforms for embedding watermarks on different layers by using Hybrid systems. For this purpose, the video frames are portioned into layers (RGB) and the watermark is being embedded in two forms in the video frames using SVD portioning of the watermark, and DWT sub-band decomposition of host video, to facilitate copyright safeguard as well as reliability. The FrFT orders are used as the encryption key that allows the watermarking method to be more robust against various attacks. The fidelity of the scheme is enhanced by introducing key generation and wavelet based key embedding watermarking scheme. Thus, for watermark embedding and extraction, same key is required. Therefore the key must be shared between the owner and the verifier via some safe network. This paper demonstrates the performance by considering different qualitative metrics namely Peak Signal to Noise ratio, Structure similarity index and correlation values and also apply some attacks to prove the robustness. The Experimental results are presented to demonstrate that the proposed scheme can withstand a variety of video processing attacks as well as imperceptibility.

Keywords: discrete wavelet transform, robustness, video watermarking, watermark

Procedia PDF Downloads 212
1023 Comparative Study of Calcium Content on in vitro Biological and Antibacterial Properties of Silicon-Based Bioglass

Authors: Morteza Elsa, Amirhossein Moghanian

Abstract:

The major aim of this study was to evaluate the effect of CaO content on in vitro hydroxyapatite formation, MC3T3 cells cytotoxicity and proliferation as well as antibacterial efficiency of sol-gel derived SiO2–CaO–P2O5 ternary system. For this purpose, first two grades of bioactive glass (BG); BG-58s (mol%: 60%SiO2–36%CaO–4%P2O5) and BG-68s (mol%: 70%SiO2–26%CaO–4%P2O5)) were synthesized by sol-gel method. Second, the effect of CaO content in their composition on in vitro bioactivity was investigated by soaking the BG-58s and BG-68s powders in simulated body fluid (SBF) for time periods up to 14 days and followed by characterization inductively coupled plasma atomic emission spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Additionally, live/dead staining, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and alkaline phosphatase (ALP) activity assays were conducted respectively, as qualitatively and quantitatively assess for cell viability, proliferation and differentiations of MC3T3 cells in presence of 58s and 68s BGs. Results showed that BG-58s with higher CaO content showed higher in vitro bioactivity with respect to BG-68s. Moreover, the dissolution rate was inversely proportional to oxygen density of the BG. Live/dead assay revealed that both 58s and 68s increased the mean number live cells which were in good accordance with MTT assay. Furthermore, BG-58s showed more potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) bacteria. Taken together, BG-58s with enhanced MC3T3 cells proliferation and ALP activity, acceptable bioactivity and significant high antibacterial effect against MRSA bacteria is suggested as a suitable candidate in order to further functionalizing for delivery of therapeutic ions and growth factors in bone tissue engineering.

Keywords: antibacterial, bioactive glass, hydroxyapatite, proliferation, sol-gel processes

Procedia PDF Downloads 131
1022 Investigation of Electrospun Composites Nanofiber of Poly (Lactic Acid)/Hazelnut Shell Powder/Zinc Oxide

Authors: Ibrahim Sengor, Sumeyye Cesur, Ilyas Kartal, Faik Nuzhet Oktar, Nazmi Ekren, Ahmet Talat Inan, Oguzhan Gunduz

Abstract:

In recent years, many researchers focused on nano-size fiber production. Nanofibers have been studied due to their different and superior physical, chemical and mechanical properties. Poly (lactic acid) (PLA), is a type of biodegradable thermoplastic polyester derived from renewable sources used in biomedical owing to its biocompatibility and biodegradability. In addition, zinc oxide is an antibacterial material and hazelnut shell powder is a filling material. In this study, nanofibers were obtained by adding of different ratio Zinc oxide, (ZnO) and hazelnut shell powder at different concentration into Poly (lactic acid) (PLA) by using electrospinning method which is the most common method to obtain nanofibers. After dissolving the granulated polylactic acids in % 1,% 2,% 3 and% 4 with chloroform solvent, they are homogenized by adding tween and hazelnut shell powder at different ratios and then by electrospinning, nanofibers are obtained. Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), Differential scanning calorimeter (DSC) and physical analysis such as density, electrical conductivity, surface tension, viscosity measurement and antimicrobial test were carried out after production process. The resulting structures of the nanofiber possess antimicrobial and antiseptic properties, which are attractive for biomedical applications. The resulting structures of the nanofiber possess antimicrobial, non toxic, self-cleaning and rigid properties, which are attractive for biomedical applications.

Keywords: electrospinning, hazelnut shell powder, nanofibers, poly (lactic acid), zinc oxide

Procedia PDF Downloads 146
1021 FT-NIR Method to Determine Moisture in Gluten Free Rice-Based Pasta during Drying

Authors: Navneet Singh Deora, Aastha Deswal, H. N. Mishra

Abstract:

Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000 cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.

Keywords: FT-NIR, pasta, moisture determination, food engineering

Procedia PDF Downloads 241
1020 Magnetized Cellulose Nanofiber Extracted from Natural Resources for the Application of Hexavalent Chromium Removal Using the Adsorption Method

Authors: Kebede Gamo Sebehanie, Olu Emmanuel Femi, Alberto Velázquez Del Rosario, Abubeker Yimam Ali, Gudeta Jafo Muleta

Abstract:

Water pollution is one of the most serious worldwide issues today. Among water pollution, heavy metals are becoming a concern to the environment and human health due to their non-biodegradability and bioaccumulation. In this study, a magnetite-cellulose nanocomposite derived from renewable resources is employed for hexavalent chromium elimination by adsorption. Magnetite nanoparticles were synthesized directly from iron ore using solvent extraction and co-precipitation technique. Cellulose nanofiber was extracted from sugarcane bagasse using the alkaline treatment and acid hydrolysis method. Before and after the adsorption process, the MNPs-CNF composites were evaluated using X-ray diffraction (XRD), Scanning electron microscope (SEM), Fourier transform infrared (FTIR), and Vibrator sample magnetometer (VSM), and Thermogravimetric analysis (TGA). The impacts of several parameters such as pH, contact time, initial pollutant concentration, and adsorbent dose on adsorption efficiency and capacity were examined. The kinetic and isotherm adsorption of Cr (VI) was also studied. The highest removal was obtained at pH 3, and it took 80 minutes to establish adsorption equilibrium. The Langmuir and Freundlich isotherm models were used, and the experimental data fit well with the Langmuir model, which has a maximum adsorption capacity of 8.27 mg/g. The kinetic study of the adsorption process using pseudo-first-order and pseudo-second-order equations revealed that the pseudo-second-order equation was more suited for representing the adsorption kinetic data. Based on the findings, pure MNPs and MNPs-CNF nanocomposites could be used as effective adsorbents for the removal of Cr (VI) from wastewater.

Keywords: magnetite-cellulose nanocomposite, hexavalent chromium, adsorption, sugarcane bagasse

Procedia PDF Downloads 102
1019 Dynamic Analysis of Viscoelastic Plates with Variable Thickness

Authors: Gülçin Tekin, Fethi Kadıoğlu

Abstract:

In this study, the dynamic analysis of viscoelastic plates with variable thickness is examined. The solutions of dynamic response of viscoelastic thin plates with variable thickness have been obtained by using the functional analysis method in the conjunction with the Gâteaux differential. The four-node serendipity element with four degrees of freedom such as deflection, bending, and twisting moments at each node is used. Additionally, boundary condition terms are included in the functional by using a systematic way. In viscoelastic modeling, Three-parameter Kelvin solid model is employed. The solutions obtained in the Laplace-Carson domain are transformed to the real time domain by using MDOP, Dubner & Abate, and Durbin inverse transform techniques. To test the performance of the proposed mixed finite element formulation, numerical examples are treated.

Keywords: dynamic analysis, inverse laplace transform techniques, mixed finite element formulation, viscoelastic plate with variable thickness

Procedia PDF Downloads 314
1018 A Multi-Dimensional Neural Network Using the Fisher Transform to Predict the Price Evolution for Algorithmic Trading in Financial Markets

Authors: Cristian Pauna

Abstract:

Trading the financial markets is a widespread activity today. A large number of investors, companies, public of private funds are buying and selling every day in order to make profit. Algorithmic trading is the prevalent method to make the trade decisions after the electronic trading release. The orders are sent almost instantly by computers using mathematical models. This paper will present a price prediction methodology based on a multi-dimensional neural network. Using the Fisher transform, the neural network will be instructed for a low-latency auto-adaptive process in order to predict the price evolution for the next period of time. The model is designed especially for algorithmic trading and uses the real-time price series. It was found that the characteristics of the Fisher function applied at the nodes scale level can generate reliable trading signals using the neural network methodology. After real time tests it was found that this method can be applied in any timeframe to trade the financial markets. The paper will also include the steps to implement the presented methodology into an automated trading system. Real trading results will be displayed and analyzed in order to qualify the model. As conclusion, the compared results will reveal that the neural network methodology applied together with the Fisher transform at the nodes level can generate a good price prediction and can build reliable trading signals for algorithmic trading.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, neural network

Procedia PDF Downloads 141
1017 A Multi-Templated Fe-Ni-Cu Ion Imprinted Polymer for the Selective and Simultaneous Removal of Toxic Metallic Ions from Wastewater

Authors: Morlu Stevens, Bareki Batlokwa

Abstract:

The use of treated wastewater is widely employed to compensate for the scarcity of safe and uncontaminated freshwater. However, the existence of toxic heavy metal ions in the wastewater pose a health hazard to animals and the environment, hence, the importance for an effective technique to tackle the challenge. A multi-templated ion imprinted sorbent (Fe,Ni,Cu-IIP) for the simultaneous removal of heavy metal ions from waste water was synthesised employing molecular imprinting technology (MIT) via thermal free radical bulk polymerization technique. Methacrylic acid (MAA) was employed as the functional monomer, and ethylene glycol dimethylacrylate (EGDMA) as cross-linking agent, azobisisobutyronitrile (AIBN) as the initiator, Fe, Ni, Cu ions as template ions, and 1,10-phenanthroline as the complexing agent. The template ions were exhaustively washed off the synthesized polymer by solvent extraction in several washing steps, while periodically increasing solvent (HCl) concentration from 1.0 M to 10.0 M. The physical and chemical properties of the sorbents were investigated using Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD) and Atomic Force Microscopy (AFM) were employed. Optimization of operational parameters such as time, pH and sorbent dosage to evaluate the effectiveness of sorbents were investigated and found to be 15 min, 7.5 and 666.7 mg/L respectively. Selectivity of ion-imprinted polymers and competitive sorption studies between the template and similar ions were carried out and showed good selectivity towards the targeted metal ion by removing 90% - 98% of the templated ions as compared to 58% - 62% of similar ions. The sorbents were further applied for the selective removal of Fe, Ni and Cu from real wastewater samples and recoveries of 92.14 ± 0.16% - 106.09 ± 0.17% and linearities of R2 = 0.9993 - R2 = 0.9997 were achieved.

Keywords: ion imprinting, ion imprinted polymers, heavy metals, wastewater

Procedia PDF Downloads 302
1016 Chrysin-Loaded PLGA-PEG Nanoparticles Designed for Enhanced Inhibitory Effect on the Breast Cancer Cell Line

Authors: Faraz Zarghami, Elham Anari, Nosratollah Zarghami, Yones Pilehvar-Soltanahmadi, Abolfazl Akbarzadeh, Sepideh Jalilzadeh-Tabrizi

Abstract:

The development of nanotherapy has presented a new method of drug delivery targeted directly to the neoplasmic tissues, to maximize the action with fewer dose requirements. In the past two decades, poly(lactic-co-glycolic acid) (PLGA) has frequently been investigated by many researchers and is a popular polymeric candidate, due to its biocompatibility and biodegradability, exhibition of a wide range of erosion times, tunable mechanical properties, and most notably, because it is a FDA-approved polymer. Chrysin is a natural flavonoid which has been reported to have some significant biological effects on the processes of chemical defense, nitrogen fixation, inflammation, and oxidation. However, the low solubility in water decreases its bioavailability and consequently disrupts the biomedical benefits. Being loaded with PLGA-PEG increases chrysin solubility and drug tolerance, and decreases the discordant effects of the drug. The well-structured chrysin efficiently accumulates in the breast cancer cell line (T47D). In the present study, the structure and chrysin loading were delineated using proton nuclear magnetic resonance (HNMR), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM), and the in vitro cytotoxicity of pure and nanochrysin was studied by the MTT assay. Next, the RNA was exploited and the cytotoxic effects of chrysin were studied by real-time PCR. In conclusion, the nanochrysin therapy developed is a novel method that could increase cytotoxicity to cancer cells without damaging the normal cells, and would be promising in breast cancer therapy.

Keywords: MTT assay, chrysin, flavonoids, nanotherapy

Procedia PDF Downloads 235
1015 Phytochemical Analysis and Antioxidant Activity of Colocasia esculenta (L.) Leaves

Authors: Amit Keshav, Alok Sharma, Bidyut Mazumdar

Abstract:

Colocasia esculenta leaves and roots are widely used in Asian countries, such as, India, Srilanka and Pakistan, as food and feed material. The root is high in carbohydrates and rich in zinc. The leaves and stalks are often traditionally preserved to be eaten in dry season. Leaf juice is stimulant, expectorant, astringent, appetizer, and otalgia. Looking at the medicinal uses of the plant leaves; phytochemicals were extracted from the plant leaves and were characterized using Fourier-transform infrared spectroscopy (FTIR) to find the functional groups. Phytochemical analysis of Colocasia esculenta (L.) leaf was studied using three solvents (methanol, chloroform, and ethanol) with soxhlet apparatus. Powder of the leaves was employed to obtain the extracts, which was qualitatively and quantitatively analyzed for phytochemical content using standard methods. Phytochemical constituents were abundant in the leave extract. Leaf was found to have various phytochemicals such as alkaloids, glycosides, flavonoids, terpenoids, saponins, oxalates and phenols etc., which could have lot of medicinal benefits such as reducing headache, treatment of congestive heart failure, prevent oxidative cell damage etc. These phytochemicals were identified using UV spectrophotometer and results were presented. In order to find the antioxidant activity of the extract, DPPH (2,2-diphenyl-1-picrylhydrazyl) method was employed using ascorbic acid as standard. DPPH scavenging activity of ascorbic acid was found to be 84%, whereas for ethanol it was observed to be 78.92%, for methanol: 76.46% and for chloroform: 72.46%. Looking at the high antioxidant activity, Colocasia esculenta may be recommended for medicinal applications. The characterizations of functional groups were analyzed using FTIR spectroscopy.

Keywords: antioxidant activity, Colocasia esculenta, leaves, characterization, FTIR

Procedia PDF Downloads 216
1014 Comparative Study on the Effect of Substitution of Li and Mg Instead of Ca on Structural and Biological Behaviors of Silicate Bioactive Glass

Authors: Alireza Arab, Morteza Elsa, Amirhossein Moghanian

Abstract:

In this study, experiments were carried out to achieve a promising multifunctional and modified silicate based bioactive glass (BG). The main aim of the study was investigating the effect of lithium (Li) and magnesium (Mg) substitution, on in vitro bioactivity of substituted-58S BG. Moreover, it is noteworthy to state that modified BGs were synthesized in 60SiO2–(36-x)CaO–4P2O5–(x)Li2O and 60SiO2–(36-x)CaO–4P2O5–(x)MgO (where x = 0, 5, 10 mol.%) quaternary systems, by sol-gel method. Their performance was investigated through different aspects such as biocompatibility, antibacterial activity as well as their effect on alkaline phosphatase (ALP) activity, and proliferation of MC3T3 cells. The antibacterial efficiency was evaluated against methicillin-resistant Staphylococcus aureus bacteria. To do so, CaO was substituted with Li2O and MgO up to 10 mol % in 58S-BGs and then samples were immersed in simulated body fluid up to 14 days and then, characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry, and scanning electron microscopy. Results indicated that this modification led to a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium revealed further pronounced effect. The 3-(4,5 dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) and ALP analysis illustrated that substitutions of both Li2O and MgO, up to 5 mol %, had increasing effect on biocompatibility and stimulating proliferation of the pre-osteoblast MC3T3 cells in comparison to the control specimen. Regarding to bactericidal efficiency, the substitution of either Li or Mg for Ca in the 58s BG composition led to statistically significant difference in antibacterial behaviors of substituted-BGs. Meanwhile, the sample containing 5 mol % CaO/Li2O substitution (BG-5L) was selected as a multifunctional biomaterial in bone repair/regeneration due to the improved biocompatibility, enhanced ALP activity and antibacterial efficiency among all of the synthesized L-BGs and M-BGs.

Keywords: alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes

Procedia PDF Downloads 92
1013 Chitosan Doped Curcumin Gold Clusters Flexible Nanofiber for Wound Dressing and Anticancer Activities

Authors: Saravanan Govindaraju, Kyusik Yun

Abstract:

The purpose of this study is to develop the chitosan doped curcumin gold cluster nanofiber for wound healing and skin cancer drug delivery applications. Chitosan is a typical marine polysaccharide composed of glucosamine and n-acetyl glucosamine biodegradable and biocompatible polymer. Curcumin is a natural bioactive molecule obtained from Curcuma longo, it mostly occurs in some Asian countries like India and China. It has naturally antioxidant, antimicrobial, wound healing and anticancer property. Due to this advantage, we prepared a combination of natural polymer chitosan with Curcumin and gold nanocluster nanofiber (CH-CUR-AuNCs nanofibers). The prepared nanofiber was characterized by using Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Antibacterial studies were performed with E.coli and S.aureus. Antioxidant assay, drug release test, and cytotoxicity will be evaluated. Prepared nanofiber emits low intensity of red fluorescent. The FTIR confirm the presence of chitosan and Curcumin in the nanofiber. In vitro study clearly shows the antibacterial activity against the gram negative and gram positive bacteria. Particularly, synthesised nanofibers provide better antibacterial activity against gram negative than gram positive. Cytotoxicity study also provides better killing rate in cancer cell, biocompatible with normal cell. Prepared CH-CUR-AuNCs nanofibers provide the better killing rate to bacterial strains and cancer cells. Finally, prepared nanofiber can be possible to use for wound healing dressing, patch for skin cancer and other biomedical applications.

Keywords: curcumin, chitosan, gold clusters, nanofibers

Procedia PDF Downloads 251
1012 Pain Management in Burn Wounds with Dual Drug Loaded Double Layered Nano-Fiber Based Dressing

Authors: Sharjeel Abid, Tanveer Hussain, Ahsan Nazir, Abdul Zahir, Nabyl Khenoussi

Abstract:

Localized application of drug has various advantages and fewer side effects as compared with other methods. Burn patients suffer from swear pain and the major aspects that are considered for burn victims include pain and infection management. Nano-fibers (NFs) loaded with drug, applied on local wound area, can solve these problems. Therefore, this study dealt with the fabrication of drug loaded NFs for better pain management. Two layers of NFs were fabricated with different drugs. Contact layer was loaded with Gabapentin (a nerve painkiller) and the second layer with acetaminophen. The fabricated dressing was characterized using scanning electron microscope, Fourier Transform Infrared Spectroscopy, X-Ray Diffraction and UV-Vis Spectroscopy. The double layered based NFs dressing was designed to have both initial burst release followed by slow release to cope with pain for two days. The fabricated nanofibers showed diameter < 300 nm. The liquid absorption capacity of the NFs was also checked to deal with the exudate. The fabricated double layered dressing with dual drug loading and release showed promising results that could be used for dealing pain in burn victims. It was observed that by the addition of drug, the size of nanofibers was reduced, on the other hand, the crystallinity %age was increased, and liquid absorption decreased. The combination of fast nerve pain killer release followed by slow release of non-steroidal anti-inflammatory drug could be a good tool to reduce pain in a more secure manner with fewer side effects.

Keywords: pain management, burn wounds, nano-fibers, controlled drug release

Procedia PDF Downloads 234
1011 A Hybrid Watermarking Model Based on Frequency of Occurrence

Authors: Hamza A. A. Al-Sewadi, Adnan H. M. Al-Helali, Samaa A. K. Khamis

Abstract:

Ownership proofs of multimedia such as text, image, audio or video files can be achieved by the burial of watermark is them. It is achieved by introducing modifications into these files that are imperceptible to the human senses but easily recoverable by a computer program. These modifications would be in the time domain or frequency domain or both. This paper presents a procedure for watermarking by mixing amplitude modulation with frequency transformation histogram; namely a specific value is used to modulate the intensity component Y of the YIQ components of the carrier image. This scheme is referred to as histogram embedding technique (HET). Results comparison with those of other techniques such as discrete wavelet transform (DWT), discrete cosine transform (DCT) and singular value decomposition (SVD) have shown an enhance efficiency in terms of ease and performance. It has manifested a good degree of robustness against various environment effects such as resizing, rotation and different kinds of noise. This method would prove very useful technique for copyright protection and ownership judgment.

Keywords: authentication, copyright protection, information hiding, ownership, watermarking

Procedia PDF Downloads 546
1010 An Experimental Investigation on the Fuel Characteristics of Nano-Aluminium Oxide and Nano-Cobalt Oxide Particles Blended in Diesel Fuel

Authors: S. Singh, P. Patel, D. Kachhadiya, Swapnil Dharaskar

Abstract:

The research objective is to integrate nanoparticles into fuels- i.e. diesel, biodiesel, biodiesel blended with diesel, plastic derived fuels, etc. to increase the fuel efficiency. The metal oxide nanoparticles will reduce the carbon monoxide emissions by donating oxygen atoms from their lattices to catalyze the combustion reactions and to aid complete combustion; due to this, there will be an increase in the calorific value of the blend (fuel + metal nanoparticles). Aluminium oxide and cobalt oxide nanoparticles have been synthesized by sol-gel method. The characterization was done by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The size of the particles was determined by XRD to be 28.6 nm and 28.06 nm for aluminium oxide and cobalt oxide nanoparticles respectively. Different concentration blends- 50, 100, 150 ppm were prepared by adding the required weight of metal oxides in 1 liter of diesel and sonicating for 30 minutes at 500W. The blend properties- calorific value, viscosity, and flash point were determined by bomb calorimeter, Brookfield viscometer and pensky-martin apparatus. For the aluminum oxide blended diesel, there was a maximum increase of 5.544% in the calorific value, but at the same time, there was an increase in the flash point from 43°C to 58.5°C and an increase in the viscosity from 2.45 cP to 3.25 cP. On the other hand, for the cobalt oxide blended diesel there was a maximum increase of 2.012% in the calorific value while the flash point increased from 43°C to 51.5°C and the viscosity increased from 2.45 cP to 2.94 cP. There was a linear increase in the calorific value, viscosity and flash point when the concentration of the metal oxide nanoparticles in the blend was increased. For the 50 ppm Al₂O₃ and 50 ppm Co₃O₄ blend the increasing the calorific value was 1.228 %, and the viscosity changed from 2.45 cP to 2.64 cP and the flash point increased from 43°C to 50.5°C. Clearly the aluminium oxide nanoparticles increase the calorific value but at the cost of flash point and viscosity, thus it is better to use the 50 ppm aluminium oxide, and 50 ppm cobalt oxide blended diesel.

Keywords: aluminium oxide nanoparticles, cobalt oxide nanoparticles, fuel additives, fuel characteristics

Procedia PDF Downloads 301
1009 Treatment of Carribean Colonial Historical Experience in Walcott and Brathwaite's Poems: Finding the Long Lost 'Root' in the Route

Authors: Gopashis Biswas G. Son

Abstract:

This paper will attempt to explore the notions that the two Caribbean poets- Derek Walcott and Edward Kamau Brathwaite endorse on Caribbean history in their poems. Though both of these poets hold almost the same notion regarding history but their approach is totally different from one another. Coming from a 'hybrid' race, Walcott is aware of the history and acknowledges it and writes in 'mulatto of style'; whereas Brathwaite is enraged by it and attempts to sublimate it to erect a history of the new world. It is Walcott’s view to rise above the delusion and hatred and engulf the world of literature with creativity. On the other hand, Brathwaite holds the grudge which helps him not to forget and forgive the past experience but to transform that very experience into something positive which may help the Caribbean to transform their frustration into something creative and to help the Caribbean to overcome the present struggle against the legacy of colonization. Following discourse analysis, this paper seeks to identify if it is possible to rewrite and re-‘right’ the Caribbean history which has been lost in the route and analyze Walcott and Brathwaite’s attitude towards that very history which has been implemented through their poetry.

Keywords: Caribbean history, colonialism, mulatto of style, Walcott vis-à-vis Brathwaite

Procedia PDF Downloads 145
1008 Frequency of Occurrence Hybrid Watermarking Scheme

Authors: Hamza A. Ali, Adnan H. M. Al-Helali

Abstract:

Generally, a watermark is information that identifies the ownership of multimedia (text, image, audio or video files). It is achieved by introducing modifications into these files that are imperceptible to the human senses but easily recoverable by a computer program. These modifications are done according to a secret key in a descriptive model that would be either in the time domain or frequency domain or both. This paper presents a procedure for watermarking by mixing amplitude modulation with frequency transformation histogram; namely a specific value is used to modulate the intensity component Y of the YIQ components of the carrier image. This scheme is referred to as histogram embedding technique (HET). Results comparison with those of other techniques such as discrete wavelet transform (DWT), discrete cosine transform (DCT) and singular value decomposition (SVD) have shown an enhance efficiency in terms of ease and performance. It has manifested a good degree of robustness against various environment effects such as resizing, rotation and different kinds of noise. This method would prove very useful technique for copyright protection and ownership judgment.

Keywords: watermarking, ownership, copyright protection, steganography, information hiding, authentication

Procedia PDF Downloads 355
1007 Effects of Variable Viscosity on Radiative MHD Flow in a Porous Medium Between Twovertical Wavy Walls

Authors: A. B. Disu, M. S. Dada

Abstract:

This study was conducted to investigate two dimensional heat transfer of a free convective-radiative MHD (Magneto-hydrodynamics) flow with temperature dependent viscosity and heat source of a viscous incompressible fluid in a porous medium between two vertical wavy walls. The fluid viscosity is assumed to vary as an exponential function of temperature. The flow is assumed to consist of a mean part and a perturbed part. The perturbed quantities were expressed in terms of complex exponential series of plane wave equation. The resultant differential equations were solved by Differential Transform Method (DTM). The numerical computations were presented graphically to show the salient features of the fluid flow and heat transfer characteristics. The skin friction and Nusselt number were also analyzed for various governing parameters.

Keywords: differential transform method, MHD free convection, porous medium, two dimensional radiation, two wavy walls

Procedia PDF Downloads 429