Search results for: optical gain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3409

Search results for: optical gain

2809 Mobile and Hot Spot Measurement with Optical Particle Counting Based Dust Monitor EDM264

Authors: V. Ziegler, F. Schneider, M. Pesch

Abstract:

With the EDM264, GRIMM offers a solution for mobile short- and long-term measurements in outdoor areas and at production sites. For research as well as permanent areal observations on a near reference quality base. The model EDM264 features a powerful and robust measuring cell based on optical particle counting (OPC) principle with all the advantages that users of GRIMM's portable aerosol spectrometers are used to. The system is embedded in a compact weather-protection housing with all-weather sampling, heated inlet system, data logger, and meteorological sensor. With TSP, PM10, PM4, PM2.5, PM1, and PMcoarse, the EDM264 provides all fine dust fractions real-time, valid for outdoor applications and calculated with the proven GRIMM enviro-algorithm, as well as six additional dust mass fractions pm10, pm2.5, pm1, inhalable, thoracic and respirable for IAQ and workplace measurements. This highly versatile instrument performs real-time monitoring of particle number, particle size and provides information on particle surface distribution as well as dust mass distribution. GRIMM's EDM264 has 31 equidistant size channels, which are PSL traceable. A high-end data logger enables data acquisition and wireless communication via LTE, WLAN, or wired via Ethernet. Backup copies of the measurement data are stored in the device directly. The rinsing air function, which protects the laser and detector in the optical cell, further increases the reliability and long term stability of the EDM264 under different environmental and climatic conditions. The entire sample volume flow of 1.2 L/min is analyzed by 100% in the optical cell, which assures excellent counting efficiency at low and high concentrations and complies with the ISO 21501-1standard for OPCs. With all these features, the EDM264 is a world-leading dust monitor for precise monitoring of particulate matter and particle number concentration. This highly reliable instrument is an indispensable tool for many users who need to measure aerosol levels and air quality outdoors, on construction sites, or at production facilities.

Keywords: aerosol research, aerial observation, fence line monitoring, wild fire detection

Procedia PDF Downloads 134
2808 Cost Effective Real-Time Image Processing Based Optical Mark Reader

Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar

Abstract:

In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.

Keywords: OMR, image processing, hough circle trans-form, interpolation, detection, binary thresholding

Procedia PDF Downloads 150
2807 Failure Analysis of a Hydrocarbon Carrying/Piping System

Authors: Esteban Morales Murillo, Ephraim Mokgothu

Abstract:

This paper presents the findings of a study conducted to investigate the wall thinning in a piping system carrying a mix of hydrocarbons in a petrochemical plant. A detailed investigation including optical inspection and several characterisation techniques such as optical microscopy, SEM/EDX, and XRF/C-S analyses was conducted. The examinations revealed that the wall thinning in the piping system was a result of high-temperature H2/H2S corrosion caused by a susceptible material for this mechanism and operating parameters and effluent concentrations beyond the prescribed limits. The sulfide layers found to testify to the large amounts of H2S that led to material degradation. Deposit analysis revealed that it consisted primarily of carbon, oxygen, iron, chromium and sulfur. Metallographic examinations revealed that the attack initiated from the internal surface and that spheroidization of carbides did occur. The article discusses in detail the contribution failure factors on the Couper-Gorman H2/H2S curves to draw conclusions. Recommendations based on the above findings are also discussed.

Keywords: corrosion, Couper-Gorman, high-temperature corrosion, sulfidation, wall thinning, piping system

Procedia PDF Downloads 369
2806 Skew Planar Wheel Antenna for First Person View of Unmanned Aerial Vehicle

Authors: Raymond Yudhi Purba, Levy Olivia Nur, Radial Anwar

Abstract:

This research presents the design and measurement of a skew planar wheel antenna that is used to visualize the first person view perspective of unmanned aerial vehicles. The antenna has been designed using CST Studio Suite 2019 to have voltage standing wave ratio (VSWR) ≤ 2, return loss ≤ -10 dB, bandwidth ≥ 100 MHz to covering outdoor access point band from 5.725 to 5.825 GHz, omnidirectional radiation pattern, and elliptical polarization. Dimensions of skew planar wheel antenna have been modified using parameter sweep technique to provide good performances. The simulation results provide VSWR 1.231, return loss -19.693 dB, bandwidth 828.8 MHz, gain 3.292 dB, and axial ratio 9.229 dB. Meanwhile, the measurement results provide VSWR 1.237, return loss -19.476 dB, bandwidth 790.5 MHz, gain 3.2034 dB, and axial ratio 4.12 dB.

Keywords: skew planar wheel, cloverleaf, first-person view, unmanned aerial vehicle, parameter sweep

Procedia PDF Downloads 197
2805 Basics of Gamma Ray Burst and Its Afterglow

Authors: Swapnil Kumar Singh

Abstract:

Gamma-ray bursts (GRB's), short and intense pulses of low-energy γ rays, have fascinated astronomers and astrophysicists since their unexpected discovery in the late sixties. GRB'sare accompanied by long-lasting afterglows, and they are associated with core-collapse supernovae. The detection of delayed emission in X-ray, optical, and radio wavelength, or "afterglow," following a γ-ray burst can be described as the emission of a relativistic shell decelerating upon collision with the interstellar medium. While it is fair to say that there is strong diversity amongst the afterglow population, probably reflecting diversity in the energy, luminosity, shock efficiency, baryon loading, progenitor properties, circumstellar medium, and more, the afterglows of GRBs do appear more similar than the bursts themselves, and it is possible to identify common features within afterglows that lead to some canonical expectations. After an initial flash of gamma rays, a longer-lived "afterglow" is usually emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, microwave, and radio). It is a slowly fading emission at longer wavelengths created by collisions between the burst ejecta and interstellar gas. In X-ray wavelengths, the GRB afterglow fades quickly at first, then transitions to a less-steep drop-off (it does other stuff after that, but we'll ignore that for now). During these early phases, the X-ray afterglow has a spectrum that looks like a power law: flux F∝ E^β, where E is energy and beta is some number called the spectral index. This kind of spectrum is characteristic of synchrotron emission, which is produced when charged particles spiral around magnetic field lines at close to the speed of light. In addition to the outgoing forward shock that ploughs into the interstellar medium, there is also a so-called reverse shock, which propagates backward through the ejecta. In many ways," reverse" shock can be misleading; this shock is still moving outward from the restframe of the star at relativistic velocity but is ploughing backward through the ejecta in their frame and is slowing the expansion. This reverse shock can be dynamically important, as it can carry comparable energy to the forward shock. The early phases of the GRB afterglow still provide a good description even if the GRB is highly collimated since the individual emitting regions of the outflow are not in causal contact at large angles and so behave as though they are expanding isotropically. The majority of afterglows, at times typically observed, fall in the slow cooling regime, and the cooling break lies between the optical and the X-ray. Numerous observations support this broad picture for afterglows in the spectral energy distribution of the afterglow of the very bright GRB. The bluer light (optical and X-ray) appears to follow a typical synchrotron forward shock expectation (note that the apparent features in the X-ray and optical spectrum are due to the presence of dust within the host galaxy). We need more research in GRB and Particle Physics in order to unfold the mysteries of afterglow.

Keywords: GRB, synchrotron, X-ray, isotropic energy

Procedia PDF Downloads 77
2804 Indigenous Patch Clamp Technique: Design of Highly Sensitive Amplifier Circuit for Measuring and Monitoring of Real Time Ultra Low Ionic Current through Cellular Gates

Authors: Moez ul Hassan, Bushra Noman, Sarmad Hameed, Shahab Mehmood, Asma Bashir

Abstract:

The importance of Noble prize winning “Patch Clamp Technique” is well documented. However, Patch Clamp Technique is very expensive and hence hinders research in developing countries. In this paper, detection, processing and recording of ultra low current from induced cells by using transimpedence amplifier is described. The sensitivity of the proposed amplifier is in the range of femto amperes (fA). Capacitive-feedback is used with active load to obtain a 20MΩ transimpedance gain. The challenging task in designing includes achieving adequate performance in gain, noise immunity and stability. The circuit designed by the authors was able to measure current in the rangeof 300fA to 100pA. Adequate performance shown by the amplifier with different input current and outcome result was found to be within the acceptable error range. Results were recorded using LabVIEW 8.5®for further research.

Keywords: drug discovery, ionic current, operational amplifier, patch clamp

Procedia PDF Downloads 502
2803 Nutritive Advantage of Mealworm (Tenebrio molitor) in the Diet of White Shrimp (Litopenaeus vannamei)

Authors: Tae-ho Chung, Chul Park, Gi-wook Shin, Joo-min Kim, Seong-hyun Kim, Namjung Kim

Abstract:

Mealworm (Tenebrio molitor) was evaluated to investigate the effect of partial or total replacement of fish meal in diets for white shrimp, Litopenaeus vannamei. Experimental groups of shrimp with average initial body weight (2.43 ± 0.54 g) were fed each with 4 isonitrogeneous (38% crude protein) diets formulated to include 0, 25, 50 and 100% (diets 1 to 4, respectively) of fish meal substituted with mealworm. After eight weeks of feeding trials, shrimp fed with diet 3 and 4 revealed the highest values for live weight gain(8.01 ± 2.51 and 7.93 ± 1.12), specific growth rates (2.70 ± 1.12 and 2.59 ± 0.51) as well as better feed conversion ratio (2.69 ± 0.09 and 2.72 ± 0.19) compared to the control group with statistically significant manner (p<0.05). Survival range was 98% in all the treatments. An increase in weight gain and other growth associated parameters was observed with higher replacement. These results clearly indicate that 50% and 100% of fish meal protein in shrimp diet can be replaced by mealworm not only without any adverse effect but also the effect of promoting growth performance.

Keywords: mealworm, Litopenaeus vannamei, Tenebrio molitor, white shrimp

Procedia PDF Downloads 450
2802 Existence of Nano-Organic Carbon Particles below the Size Range of 10 nm in the Indoor Air Environment

Authors: Bireswar Paul, Amitava Datta

Abstract:

Indoor air environment is a big concern in the last few decades in the developing countries, with increased focus on monitoring the air quality. In this work, an experimental study has been conducted to establish the existence of carbon nanoparticles below the size range of 10 nm in the non-sooting zone of a LPG/air partially premixed flame. Mainly, four optical techniques, UV absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering and TEM have been used to characterize and measure the size of carbon nanoparticles in the sampled materials collected from the inner surface of the flame front. The existence of the carbon nanoparticles in the sampled material has been confirmed with the typical nature of the absorption and fluorescence spectra already reported in the literature. The band gap energy shows that the particles are made up of three to six aromatic rings. The size measurement by DLS technique also shows that the particles below the size range of 10 nm. The results of DLS are also corroborated by the TEM image of the same material. 

Keywords: indoor air, carbon nanoparticle, lpg, partially premixed flame, optical techniques

Procedia PDF Downloads 264
2801 Database Playlists: Croatia's Popular Music in the Mirror of Collective Memory

Authors: Diana Grguric, Robert Svetlacic, Vladimir Simovic

Abstract:

Scientific research analytically explores database playlists by studying the memory culture through Croatian popular radio music. The research is based on the scientific analysis of databases developed on the basis of the playlist of ten Croatian radio stations. The most recent Croatian song on Statehood Day 2008-2013 is analyzed in order to gain insight into their (memory) potential in terms of storing, interpreting and presenting a national identity. The research starts with the general assumption that popular music is an efficient identifier, transmitter, and promoter of national identity. The aim of the scientific research of the database was to analytically reveal specific titles of Croatian popular songs that participate in marking memories and analyzing their symbolic capital to gain insight into the popular music experience of the past and to develop a new method of scientifically based analysis of specific databases.

Keywords: specific databases, popular radio music, collective memory, national identity

Procedia PDF Downloads 341
2800 A Dual-Polarized Wideband Probe for Near-Field Antenna Measurement

Authors: K. S. Sruthi

Abstract:

Antennas are one of the most important parts of a communication chain. They are used for both communication and calibration purposes. New developments in probe technologies have enabled near-field probes with much larger bandwidth. The objective of this paper is to design, simulate and fabricate a dual polarized wide band inverted quad ridged shape horn antenna which can be used as measurement probe for near field measurements. The inverted quad-ridged horn antenna probe not only provides measurement in the much wider range but also provides dual-polarization measurement thus enabling antenna developers to measure UWB, UHF, VHF antennas more precisely and at lower cost. The antenna is designed to meet the characteristics such as high gain, light weight, linearly polarized with suppressed side lobes for near-field measurement applications. The proposed antenna is simulated with commercially available packages such as Ansoft HFSS. The antenna gives a moderate gain over operating range while delivering a wide bandwidth.

Keywords: near-field antenna measurement, inverted quad-ridge horn antenna, wideband Antennas, dual polarized antennas, ansoft HFSS

Procedia PDF Downloads 403
2799 Compositional Influence in the Photovoltaic Properties of Dual Ion Beam Sputtered Cu₂ZnSn(S,Se)₄ Thin Films

Authors: Brajendra S. Sengar, Vivek Garg, Gaurav Siddharth, Nisheka Anadkat, Amitesh Kumar, Shaibal Mukherjee

Abstract:

The optimal band gap (~ 1 to 1.5 eV) and high absorption coefficient ~104 cm⁻¹ has made Cu₂ZnSn(S,Se)₄ (CZTSSe) films as one of the most promising absorber materials in thin-film photovoltaics. Additionally, CZTSSe consists of elements that are abundant and non-toxic, makes it even more favourable. The CZTSSe thin films are grown at 100 to 500ᵒC substrate temperature (Tsub) on Soda lime glass (SLG) substrate by Elettrorava dual ion beam sputtering (DIBS) system by utilizing a target at 2.43x10⁻⁴ mbar working pressure with RF power of 45 W in argon ambient. The chemical composition, depth profiling, structural properties and optical properties of these CZTSSe thin films prepared on SLG were examined by energy dispersive X-ray spectroscopy (EDX, Oxford Instruments), Hiden secondary ion mass spectroscopy (SIMS) workstation with oxygen ion gun of energy up to 5 keV, X-ray diffraction (XRD) (Rigaku Cu Kα radiation, λ=.154nm) and Spectroscopic Ellipsometry (SE, M-2000D from J. A. Woollam Co., Inc). It is observed that from that, the thin films deposited at Tsub=200 and 300°C show Cu-poor and Zn-rich states (i.e., Cu/(Zn + Sn) < 1 and Zn/Sn > 1), which is not the case for films grown at other Tsub. It has been reported that the CZTSSe thin films with the highest efficiency are typically at Cu-poor and Zn-rich states. The values of band gap in the fundamental absorption region of CZTSSe are found to be in the range of 1.23-1.70 eV depending upon the Cu/(Zn+Sn) ratio. It is also observed that there is a decline in optical band gap with the increase in Cu/(Zn+Sn) ratio (evaluated from EDX measurement). Cu-poor films are found to have higher optical band gap than Cu-rich films. The decrease in the band gap with the increase in Cu content in case of CZTSSe films may be attributed to changes in the extent of p-d hybridization between Cu d-levels and (S, Se) p-levels. CZTSSe thin films with Cu/(Zn+Sn) ratio in the range 0.86–1.5 have been successfully deposited using DIBS. Optical band gap of the films is found to vary from 1.23 to 1.70 eV based on Cu/(Zn+Sn) ratio. CZTSe films with Cu/ (Zn+Sn) ratio of .86 are found to have optical band gap close to the ideal band gap (1.49 eV) for highest theoretical conversion efficiency. Thus by tailoring the value of Cu/(Zn+Sn), CZTSSe thin films with the desired band gap could be obtained. Acknowledgment: We are thankful to DIBS, EDX, and XRD facility equipped at Sophisticated Instrument Centre (SIC) at IIT Indore. The authors B. S. S and A. K. acknowledge CSIR, and V. G. acknowledges UGC, India for their fellowships. B. S. S is thankful to DST and IUSSTF for BASE Internship Award. Prof. Shaibal Mukherjee is thankful to DST and IUSSTF for BASE Fellowship and MEITY YFRF award. This work is partially supported by DAE BRNS, DST CERI, and DST-RFBR Project under India-Russia Programme of Cooperation in Science and Technology. We are thankful to Mukul Gupta for SIMS facility equipped at UGC-DAE Indore.

Keywords: CZTSSe, DIBS, EDX, solar cell

Procedia PDF Downloads 233
2798 Different Contexts Activate Different Frames: Deepening and Broadening Goal-Framing Theory for Sustainable Food Behaviour

Authors: Marleen Onwezen

Abstract:

It is often assumed that specific consumer groups do or do not have a sustainable lifestyle or that a specific context does or does not trigger sustainable choices. Based on goal-framing theory, this article aims to understand variation in sustainable choices across contexts. We add to the literature by showing the added value of including a moral goal frame (Study 1; N = 1,100) beyond the hedonic, gain, and normative goal frames. Moreover, we add to the literature by revealing how these goal frames are recalled in real-life consumption contexts (Study 2; N = 1,100) and how they can be activated (Study 3; N = 1,651). The results reveal that different goal frames result in different preferences and consumption choices, and that the normative frames showed the most consistent association with sustainable intentions. A contrast exists between frames currently activated in food choice contexts, mainly the gain and hedonic frames, and those associated with sustainable behaviours, the moral and social frames. This indicates the relevance of further understanding and adapting the environment to activate moral and social frames to further enforce sustainable food transitions.

Keywords: goal frames, sustainable behaviour, food choice, moral

Procedia PDF Downloads 116
2797 Investigation of Doping of CdSe QDs in Organic Semiconductor for Solar Cell Applications

Authors: Ganesh R. Bhand, N. B. Chaure

Abstract:

Cadmium selenide (CdSe) quantum dots (QDs) were prepared by solvothermal route. Subsequently a inorganic QDs-organic semiconductor (copper phthalocyanine) nanocomposite (i.e CuPc:CdSe nanocomposites) were produced by different concentration of QDs varied in CuPc. The nanocomposite thin films have been prepared by means of spin coating technique. The optical, structural and morphological properties of nanocomposite films have been investigated. The transmission electron microscopy (TEM) confirmed the formation of QDs having average size of  4 nm. The X-ray diffraction pattern exhibits cubic crystal structure of CdSe with reflection to (111), (220) and (311) at 25.4ᵒ, 42.2ᵒ and 49.6ᵒ respectively. The additional peak observed at lower angle at 6.9ᵒ in nanocomposite thin films are associated to CuPc. The field emission scanning electron microscopy (FESEM) observed that surface morphology varied in increasing concentration of CdSe QDs. The obtained nanocomposite show significant improvement in the thermal stability as compared to the pure CuPc indicated by thermo-gravimetric analysis (TGA) in thermograph. The effect in the Raman spectra of composites samples gives a confirm evidence of homogenous dispersion of CdSe in the CuPc matrix and their strong interaction between them to promotes charge transfer property. The success of reaction between composite was confirmed by Fourier transform infrared spectroscopy (FTIR). The photo physical properties were studied using UV - visible spectroscopy. The enhancement of the optical absorption in visible region for nanocomposite layer was observed with increasing the concentration of CdSe in CuPc. This composite may obtain the maximized interface between QDs and polymer for efficient charge separation and enhance the charge transport. Such nanocomposite films for potential application in fabrication of hybrid solar cell with improved power conversion efficiency.

Keywords: CdSe QDs, cupper phthalocyanine, FTIR, optical absorption

Procedia PDF Downloads 182
2796 Optimal Concentration of Fluorescent Nanodiamonds in Aqueous Media for Bioimaging and Thermometry Applications

Authors: Francisco Pedroza-Montero, Jesús Naín Pedroza-Montero, Diego Soto-Puebla, Osiris Alvarez-Bajo, Beatriz Castaneda, Sofía Navarro-Espinoza, Martín Pedroza-Montero

Abstract:

Nanodiamonds have been widely studied for their physical properties, including chemical inertness, biocompatibility, optical transparency from the ultraviolet to the infrared region, high thermal conductivity, and mechanical strength. In this work, we studied how the fluorescence spectrum of nanodiamonds quenches concerning the concentration in aqueous solutions systematically ranging from 0.1 to 10 mg/mL. Our results demonstrated a non-linear fluorescence quenching as the concentration increases for both of the NV zero-phonon lines; the 5 mg/mL concentration shows the maximum fluorescence emission. Furthermore, this behaviour is theoretically explained as an electronic recombination process that modulates the intensity in the NV centres. Finally, to gain more insight, the FRET methodology is used to determine the fluorescence efficiency in terms of the fluorophores' separation distance. Thus, the concentration level is simulated as follows, a small distance between nanodiamonds would be considered a highly concentrated system, whereas a large distance would mean a low concentrated one. Although the 5 mg/mL concentration shows the maximum intensity, our main interest is focused on the concentration of 0.5 mg/mL, which our studies demonstrate the optimal human cell viability (99%). In this respect, this concentration has the feature of being as biocompatible as water giving the possibility to internalize it in cells without harming the living media. To this end, not only can we track nanodiamonds on the surface or inside the cell with excellent precision due to their fluorescent intensity, but also, we can perform thermometry tests transforming a fluorescence contrast image into a temperature contrast image.

Keywords: nanodiamonds, fluorescence spectroscopy, concentration, bioimaging, thermometry

Procedia PDF Downloads 386
2795 A Comparison between TM: TM Co Doped and TM: RE Co Doped ZnO Based Advanced Materials for Spintronics Applications; Structural, Optical and Magnetic Property Analysis

Authors: V. V. Srinivasu, Jayashree Das

Abstract:

Owing to the industrial and technological importance, transition metal (TM) doped ZnO has been widely chosen for many practical applications in electronics and optoelectronics. Besides, though still a controversial issue, the reported room temperature ferromagnetism in transition metal doped ZnO has added a feather to its excellence and importance in current semiconductor research for prospective application in Spintronics. Anticipating non controversial and improved optical and magnetic properties, we adopted co doping method to synthesise polycrystalline Mn:TM (Fe,Ni) and Mn:RE(Gd,Sm) co doped ZnO samples by solid state sintering route with compositions Zn1-x (Mn:Fe/Ni)xO and Zn1-x(Mn:Gd/Sm)xO and sintered at two different temperatures. The structure, composition and optical changes induced in ZnO due to co doping and sintering were investigated by XRD, FTIR, UV, PL and ESR studies. X-ray peak profile analysis (XPPA) and Williamson-Hall analysis carried out shows changes in the values of stress, strain, FWHM and the crystallite size in both the co doped systems. FTIR spectra also show the effect of both type of co doping on the stretching and bending bonds of ZnO compound. UV-Vis study demonstrates changes in the absorption band edge as well as the significant change in the optical band gap due to exchange interactions inside the system after co doping. PL studies reveal effect of co doping on UV and visible emission bands in the co doped systems at two different sintering temperatures, indicating the existence of defects in the form of oxygen vacancies. While the TM: TM co doped samples of ZnO exhibit ferromagnetism at room temperature, the TM: RE co doped samples show paramagnetic behaviour. The magnetic behaviours observed are supported by results from Electron Spin resonance (ESR) study; which shows sharp resonance peaks with considerable line width (∆H) and g values more than 2. Such values are usually found due to the presence of an internal field inside the system giving rise to the shift of resonance field towards the lower field. The g values in this range are assigned to the unpaired electrons trapped in oxygen vacancies. TM: TM co doped ZnO samples exhibit low field absorption peaks in their ESR spectra, which is a new interesting observation. We emphasize that the interesting observations reported in this paper may be considered for the improved futuristic applications of ZnO based materials.

Keywords: co-doping, electro spin resonance, microwave absorption, spintronics

Procedia PDF Downloads 318
2794 Quantitative Phase Imaging System Based on a Three-Lens Common-Path Interferometer

Authors: Alexander Machikhin, Olga Polschikova, Vitold Pozhar, Alina Ramazanova

Abstract:

White-light quantitative phase imaging is an effective technique for achieving sub-nanometer phase sensitivity. Highly stable interferometers based on common-path geometry have been developed in recent years to solve this task. Some of these methods also apply multispectral approach. The purpose of this research is to suggest a simple and effective interferometer for such systems. We developed a three-lens common-path interferometer, which can be used for quantitative phase imaging with or without multispectral modality. The lens system consists of two components, the first one of which is a compound lens, consisting of two lenses. A pinhole is placed between the components. The lens-in-lens approach enables effective light transmission and high stability of the interferometer. The multispectrality is easily implemented by placing a tunable filter in front of the interferometer. In our work, we used an acousto-optical tunable filter. Some design considerations are discussed and multispectral quantitative phase retrieval is demonstrated.

Keywords: acousto-optical tunable filter, common-path interferometry, digital holography, multispectral quantitative phase imaging

Procedia PDF Downloads 294
2793 The Development of Solar Cells to Maximize the Utilization of Solar Energy in Al-Baha Area

Authors: Mohammed Ahmed Alghamdi, Hazem Mahmoud Ali Darwish, Mostafa Mohamed Abdelraheem

Abstract:

Transparent conducting oxides (TCOs) possess low resistivity, exhibit good adherence to many substrates, and have good transmission characteristics from the visible to near-infrared wavelengths, which make it useful for various applications. Thin films of transparent conducting oxide (TCO’s) have received much attention because of their wide applications in the field of optoelectronic devices. Advancement of transparent conducting oxides TCO’s may not only lie within the improvement of existing materials in use, but also the development of novel materials. Solar cells are devices, which convert solar energy into electricity, either directly via the photovoltaic effect, or indirectly by first converting the solar energy to heat or chemical energy. Solar power has attracted attention of late as the most advanced of the alternative energy resources. The project aims to access the solar energy in Al-Baha region by search for materials (transparent-conductive oxides (TCO's)) to use in solar cells with highly transparent to the solar spectrum, have low electrical resistivity, be stable under H-plasma, and have a suitable structure in particular for a-Si solar cells. As the PV surface is exposed to the sunlight, the module temperature increases. High ambient temperatures along with long sunlight exposure time increases the temperature impact on PV cells efficiency. Since Al-Baha area is characterized by an atmosphere and pressure different from their counterparts in Saudi Arabia due to the height above sea level, hence it is appropriate to do studies to improve the efficiency of solar cells under these conditions. In this work, some ion change materials will be deposited using either sputtering/ or electron beam evaporation techniques. The optical properties of the synthesized materials will be studied in details for solar cell application. As we will study the effect of some dyes on the optical properties of the prepared films. The efficiency and other parameters of solar cell will be determined.

Keywords: thin films, solar cell, optical properties, electrical properties

Procedia PDF Downloads 449
2792 A 1.8 GHz to 43 GHz Low Noise Amplifier with 4 dB Noise Figure in 0.1 µm Galium Arsenide Technology

Authors: Mantas Sakalas, Paulius Sakalas

Abstract:

This paper presents an analysis and design of a ultrawideband 1.8GHz to 43GHz Low Noise Amplifier (LNA) in 0.1 μm Galium Arsenide (GaAs) pseudomorphic High Electron Mobility Transistor (pHEMT) technology. The feedback based bandwidth extension techniques is analyzed and based on the outcome, a two stage LNA is designed. The impedance fine tuning is implemented by using Transmission Line (TL) structures. The measured performance shows a good agreement with simulation results and an outstanding wideband noise matching. The measured small signal gain was 12 dB, whereas a 3 dB gain flatness in range from 1.8 - 43 GHz was reached. The noise figure was below 4 dB almost all over the entire frequency band of 1.8GHz to 43GHz, the output power at 1 dB compression point was 6 dBm and the DC power consumption was 95 mW. To the best knowledge of the authors the designed LNA outperforms the State of the Art (SotA) reported LNA designs in terms of combined parameters of noise figure within the addressed ultra-wide 3 dB bandwidth, linearity and DC power consumption.

Keywords: feedback amplifiers, GaAs pHEMT, monolithic microwave integrated circuit, LNA, noise matching

Procedia PDF Downloads 202
2791 Polarization of Glass with Positive and Negative Charge Carriers

Authors: Valentina V. Zhurikhina, Mihail I. Petrov, Alexandra A. Rtischeva, Mark Dussauze, Thierry Cardinal, Andrey A. Lipovskii

Abstract:

Polarization of glass, often referred to as thermal poling, is a well-known method to modify the glass physical and chemical properties, that manifest themselves in loosing central symmetry of the medium, glass structure and refractive index modification. The usage of the poling for second optical harmonic generation, fabrication of optical waveguides and electrooptic modulators was also reported. Nevertheless, the detailed description of the poling of glasses, containing multiple charge carriers is still under discussion. In particular, the role of possible migration of electrons in the space charge formation usually remains out of the question. In this work, we performed the numerical simulation of thermal poling of a silicate glass, containing Na, K, Mg, and Ca. We took into consideration the contribution of electrons in the polarization process. The possible explanation of migration of electrons can be the break of non-bridging oxygen bonds. It was found, that the modeled depth of the space charge region is about 10 times higher if the migration of the negative charges is taken under consideration. The simulated profiles of cations, participating in the polarization process, are in a good agreement with the experimental data, obtained by glow discharge spectroscopy.

Keywords: glass poling, charge transport, modeling, concentration profiles

Procedia PDF Downloads 343
2790 Effect of Preparation Temperature on Producing Graphene Oxide by Chemical Oxidation Approach

Authors: Rashad Al-Gaashani, Muataz A. Atieh

Abstract:

In this study, the effect of preparation temperature, namely room temperature (RT), 40, 60, and 85°C, on producing of high-quality graphene oxide (GO) has been investigated. GO samples have been prepared by chemical oxidation of graphite via a safe improved chemical technique using a blend of two deferent acids: sulphuric acid (H₂SO₄) and phosphoric acid (H₃PO₄) with volume ratio 4:1, respectively. potassium permanganate (KMnO₄) and hydrogen peroxide (H₂O₂) were applied as oxidizing agents. In this work, sodium nitrate (NaNO₃) was excluded, so the emission of hazardous explosive gases such as NO₂ and N₂O₂ was shunned. Ice and oil baths were used to carefully control the temperature. Several characterization instruments including X-Ray diffraction, transmission electron microscopy, scanning electron microscopy, electron dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-vis spectroscopy were used to study and compare the synthesized samples. The results indicated that GO can be prepared at RT with graphite oxide, and the purity of GO increased with rising of the solvent temperature. Optical properties of GO samples were studied using UV-vis absorption spectra.

Keywords: chemical method, graphite, graphene oxide, optical properties

Procedia PDF Downloads 145
2789 Response of Grower Turkeys to Diets Containing Moringa oleifera Leaf Meal in a Tropical Environment

Authors: Augustine O. Ani, Ifeyinwa E. Ezemagu, Eunice A. Akuru

Abstract:

A seven-week study was conducted to evaluate the response of grower turkeys to varying dietary levels of Moringa oleifera leaf meal (MOLM) in a humid tropical environment. A total of 90 twelve weeks old male and female grower turkeys were randomly divided into five groups of 18 birds each in a completely randomized design (CRD) and assigned to five caloric (2.57-2.60 Mcal/kg ME) and isonitrogenous (19.95% crude protein) diets containing five levels (0, 15, 20, 25 and 30%) of MOLM, respectively. Each treatment was replicated three times with 6 birds per replicate housed in a deep litter pen of fresh wood shavings measuring 1.50m x 1.50m. Feed and water were provided to the birds' ad libitum. Parameters measured were: final live weight (FLW) daily weight gain (DWG), daily feed intake (DFI), feed conversion ratio (FCR), protein efficiency ratio (PER), packed cell volume (PCV), haemoglobin concentration (Hb), red blood cell (RBC) count, white blood cell (WBC) count, mean cell volume (MCV), mean cell haemoglobin (MCH) and mean cell haemoglobin concentration (MCHC), feed cost / kg weight gain and apparent nutrient retention. Results showed that grower turkeys fed 20% MOLM diet had significantly (p < 0.05) higher FLW and DWG values (4410.30 g and 34.49 g, respectively) and higher DM and NFE retention values (67.28 and 58.12%, respectively) than turkeys fed other MOLM diets. Feed cost per kg gain decreased significantly (p < 0.05) with increasing levels of MOLM in the diets. The PCV, Hb, WBC, MCV, MCH and MCHC values of grower turkeys fed 20% MOLM diet were significantly (p < 0.05) higher than those of grower turkeys fed other diets. It was concluded that a diet containing 20% MOLM is adequate for the normal growth of grower turkeys in the tropics.

Keywords: Diets, grower turkeys, Moringa oleifera leaf meal, response, tropical environment

Procedia PDF Downloads 128
2788 Isothermal Crystallization Kinetics of Lauric Acid Methyl Ester from DSC Measurements

Authors: Charine Faith H. Lagrimas, Rommel N. Galvan, Rizalinda L. de Leon

Abstract:

An ongoing study, methyl laurate to be used as a refrigerant in an HVAC system, requires the crystallization kinetics of the said substance. Step-wise and normal forms of Avrami model parameters were used to describe the isothermal crystallization kinetics of methyl laurate at different temperatures from Differential Scanning Calorimetry (DSC) measurements. At 3 °C, parameters showed that methyl laurate exhibits a secondary crystallization. The primary crystallization occurred with instantaneous nuclei and spherulitic growth; followed by a secondary instantaneous nucleation with a lower growth of dimensionality, rod-like. At 4 °C to 6 °C, the exotherms from DSC implied that the system was under the isokinetic range. The kinetics behavior is the same which is instantaneous nucleation with one-dimensional growth. The differences for the isokinetic range temperatures are the activation energies (directly proportional to T) and nucleation rates (inversely proportional to T). From the images obtained during the crystallization of methyl laurate using an optical microscope, it is confirmed that the nucleation and crystal growth modes obtained from the optical microscope are consistent with the parameters from Avrami model.

Keywords: Avrami model, isothermal crystallization, lipids kinetics, methyl laurate

Procedia PDF Downloads 318
2787 Contrast Enhancement in Digital Images Using an Adaptive Unsharp Masking Method

Authors: Z. Mortezaie, H. Hassanpour, S. Asadi Amiri

Abstract:

Captured images may suffer from Gaussian blur due to poor lens focus or camera motion. Unsharp masking is a simple and effective technique to boost the image contrast and to improve digital images suffering from Gaussian blur. The technique is based on sharpening object edges by appending the scaled high-frequency components of the image to the original. The quality of the enhanced image is highly dependent on the characteristics of both the high-frequency components and the scaling/gain factor. Since the quality of an image may not be the same throughout, we propose an adaptive unsharp masking method in this paper. In this method, the gain factor is computed, considering the gradient variations, for individual pixels of the image. Subjective and objective image quality assessments are used to compare the performance of the proposed method both with the classic and the recently developed unsharp masking methods. The experimental results show that the proposed method has a better performance in comparison to the other existing methods.

Keywords: unsharp masking, blur image, sub-region gradient, image enhancement

Procedia PDF Downloads 197
2786 Proximate and Mineral Composition of Chicken Giblets from Vojvodina, Northern Serbia

Authors: M. R. Jokanović, V. M. Tomović, M. T. Jović, S. B. Škaljac, B. V. Šojić, P. M. Ikonić, T. A. Tasić

Abstract:

Proximate (moisture, protein, total fat, total ash) and mineral (K, P, Na, Mg, Ca, Zn, Fe, Cu and Mn) composition of chicken giblets (heart, liver and gizzard) were investigated. Phosphorous content, as well as proximate composition, were determined according to recommended ISO methods. The content of all elements, except phosphorus, of the giblets tissues were determined using inductively coupled plasma-optical emission spectrometry (ICP-OES), after dry ashing mineralization. Regarding proximate composition heart was the highest in total fat content, and the lowest in protein content. Liver was the highest in protein and total ash content, while gizzard was the highest in moisture and the lowest in total fat content. Regarding mineral composition liver was the highest for K, P, Ca, Mg, Fe, Zn, Cu, and Mn, while heart was the highest for Na content. The contents of almost all investigated minerals in analysed giblets tissues of chickens from Vojvodina were similar to values reported in the literature, i.e. in national food composition databases of other countries.

Keywords: chicken giblets, proximate composition, mineral composition, inductively coupled plasma-optical emission spectrometry (ICP-OES)

Procedia PDF Downloads 428
2785 The Effect of Surface Conditions on Wear of a Railway Wheel and Rail

Authors: A. Shebani, S. Iwnicki

Abstract:

Understanding the nature of wheel and rail wear in the railway field is of fundamental importance to the safe and cost effective operation of the railways. Twin disc wear testing is used extensively for studying wear of wheel and rail materials. The University of Huddersfield twin disc rig was used in this paper to examine the effect of surface conditions on wheel and rail wear measurement under a range of wheel/rail contact conditions, with and without contaminants. This work focuses on an investigation of the effect of dry, wet, and lubricated conditions and the effect of contaminants such as sand on wheel and rail wear. The wheel and rail wear measurements were carried out by using a replica material and an optical profilometer that allows measurement of wear in difficult location with high accuracy. The results have demonstrated the rate at which both water and oil reduce wheel and rail wear. Scratches and other damage were seen on the wheel and rail surfaces after the addition of sand and consequently both wheel and rail wear damage rates increased under these conditions. This work introduced the replica material and an optical instrument as effective tools to study the effect of surface conditions on wheel and rail wear.

Keywords: railway wheel/rail wear, surface conditions, twin disc test rig, replica material, Alicona profilometer

Procedia PDF Downloads 330
2784 Effect of Al on Glancing Angle Deposition Synthesized In₂O₃ Nanocolumn for Photodetector Application

Authors: Chitralekha Ngangbam, Aniruddha Mondal, Naorem Khelchand Singh

Abstract:

Aluminium (Al) doped In2O3 (Indium Oxide) nanocolumn array was synthesized by glancing angle deposition (GLAD) technique on Si (n-type) substrate for photodetector application. The sample was characterized by scanning electron microscopy (SEM). The average diameter of the nanocolumn was calculated from the top view of the SEM image and found to be ∼80 nm. The length of the nanocolumn (~500 nm) was calculated from cross sectional SEM image and it shows that the nanocolumns are perpendicular to the substrate. The EDX analysis confirmed the presence of Al (Aluminium), In (Indium), O (Oxygen) elements in the samples. The XRD patterns of the Al-doped In2O3 nanocolumn show the presence of different phases of the Al doped In2O3 nanocolumn i.e. (222) and (622). Three different peaks were observed from the PL analysis of Al doped In2O3 nanocolumn at 365 nm, 415 nm and 435 nm respectively. The peak at PL emission at 365 nm can be attributed to the near band gap transition of In2O3 whereas the peaks at 415 nm and 435 nm can be attributed to the trap state emissions due to oxygen vacancies and oxygen–indium vacancy centre in Al doped In2O3 nanocolumn. The current-voltage (I–V) characteristics of the Al doped In2O3 nanocolumn based detector was measured through the Au Schottky contact. The devices were then examined under the halogen light (20 W) illumination for photocurrent measurement. The Al-doped In2O3 nanocolumn based optical detector showed high conductivity and low turn on voltage at 0.69 V under white light illumination. A maximum photoresponsivity of 82 A/W at 380 nm was observed for the device. The device shows a high internal gain of ~267 at UV region (380 nm) and ∼127 at visible region (760 nm). Also the rise time and fall time for the device at 650 nm is 0.15 and 0.16 sec respectively which makes it suitable for fast response detector.

Keywords: glancing angle deposition, nanocolumn, semiconductor, photodetector, indium oxide

Procedia PDF Downloads 163
2783 The Use of Remote Sensing in the Study of Vegetation Jebel Boutaleb, Setif, Algeria

Authors: Khaled Missaoui, Amina Beldjazia, Rachid Gharzouli, Yamna Djellouli

Abstract:

Optical remote sensing makes use of visible, near infrared and short-wave infrared sensors to form images of the earth's surface by detecting the solar radiation reflected from targets on the ground. Different materials reflect and absorb differently at different wavelengths. Thus, the targets can be differentiated by their spectral reflectance signatures in the remotely sensed images. In this work, we are interested to study the distribution of vegetation in the massif forest of Boutaleb (North East of Algeria) which suffered between 1998 and 1999 very large fires. In this case, we use remote sensing with Landsat images from two dates (1984 and 2000) to see the results of these fires. Vegetation has a unique spectral signature which enables it to be distinguished readily from other types of land cover in an optical/near-infrared image. Normalized Difference Vegetation Index (NDVI) is calculated with ENVI 4.7 from Band 3 and 4. The results showed a very important floristic diversity in this forest. The comparison of NDVI from the two dates confirms that there is a decrease of the density of vegetation in this area due to repeated fires.

Keywords: remote sensing, boutaleb, diversity, forest

Procedia PDF Downloads 542
2782 Circular Polarized and Surface Compatible Microstrip Array Antenna Design for Image and Telemetric Data Transfer in UAV and Armed UAV Systems

Authors: Kübra Taşkıran, Bahattin Türetken

Abstract:

In this paper, a microstrip array antenna with circular polarization at 2.4 GHz frequency has been designed using the in order to provide image and telemetric data transmission in Unmanned Aerial Vehicle and Armed Unmanned Aerial Vehicle Systems. In addition to the antenna design, the power divider design was made and the antennas were fed in phase. As a result of the analysis, it was observed that the antenna operates at a frequency of 2.4016 GHz with 12.2 dBi directing gain. In addition, this designed array antenna was transformed into a form compatible with the rocket surface used in A-UAV Systems, and analyzes were made. As a result of these analyzes, it has been observed that the antenna operates on the surface of the missile at a frequency of 2.372 GHz with a directivity gain of 10.2 dBi.

Keywords: cicrostrip array antenna, circular polarization, 2.4 GHz, image and telemetric data, transmission, surface compatible, UAV and armed UAV

Procedia PDF Downloads 77
2781 Impact of Maternal Nutrition on Newborn Anthropometry and Hemoglobin

Authors: Vinay Mishra, Meena Malkani

Abstract:

Objectives: To study the effect of physical maternal nutritional markers (viz. weight, height, gestational weight gain, BMI) and third-trimester haemoglobin concentration on anthropometry and cord blood haemoglobin of their newborn. Methods: Study area: Post-natal ward of a tertiary care hospital in an urban area. Study population: All post-partum women and their newborns. Sample size: 100. Maternal and neonatal data and anthropometric measurements were recorded in semi-structured case proforma. Data analysis: The data obtained was analysed using SPSS 20 software.The comparison between the groups was done using One-Way Analysis of Variance for two groups. For more than two groups comparisons further posthoc analysis was done using Tukey test. Pearson correlation coefficient was used for correlating the variables. A P value less than 0.05 was considered significant. Results: 1. Out of the 100 studied mothers, 52% were anaemic. 2. Cord blood haemoglobin values decreased significantly with the order of birth. 3. Cord blood haemoglobin of normal-weight newborns is significantly higher as compared to that of LBW newborns. 4. Cord blood haemoglobin has strong statistical significance with maternal anaemia. 5. Pre-pregnancy weight and gestational weight gain significantly influence the neonates anthropometry. Conclusions: 1. Birth order has a prominent inverse effect on the cord blood haemoglobin. 2. Majority of the expectant mothers are anaemic and give birth to LBW babies with reduced anthropometric markers. 3. Pre-pregnancy weight, height and gestational weight gain has a very significant impact on the neonatal anthropometry. 4. Thus, maternal nutrition during gestation and during the crucial periods of growth in the pre-child bearing age group has a very significant impact on foetal development.

Keywords: maternal nutrition, anthropometry, cord blood hemoglobin, newborn

Procedia PDF Downloads 376
2780 Coupled Exciton - Surface Plasmon Polariton Enhanced Photoresponse of Two-Dimensional Hydrogenated Honeycomb Silicon Boride

Authors: Farzaneh Shayeganfar, Ali Ramazani

Abstract:

Exciton (strong electronic interaction of electron-hole) and hot carriers created by surface plasmon polaritons has been demonstrated in nanoscale optoelectronic devices, enhancing the photoresponse of the system. Herein, we employ a quantum framework to consider coupled exciton- hot carriers effects on photovoltaiv energy distribution, scattering process, polarizability and light emission of 2D-semicnductor. We use density functional theory (DFT) to design computationally a semi-functionalized 2D honeycomb silicon boride (SiB) monolayer with H atoms, suitable for photovoltaics. The dynamical stability, electronic and optical properties of SiB and semi-hydrogenated SiB structures were investigated utilizing the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The calculated phonon dispersion shows that while an unhydrogenated SiB monolayer is dynamically unstable, surface semi-hydrogenation improves the stability of the structure and leads to a transition from metallic to semiconducting conductivity with a direct band gap of about 1.57 eV, appropriate for photovoltaic applications. The optical conductivity of this H-SiB structure, determined using the random phase approximation (RPA), shows that light adsorption should begin at the boundary of the visible range of light. Additionally, due to hydrogenation, the reflectivity spectrum declines sharply with respect to the unhydrogenated reflectivity spectrum in the IR and visible ranges of light. The energy band gap remains direct, increasing from 0.9 to 1.8 eV, upon increasing the strain from -6% (compressive) to +6% (tensile). Additionally, compressive and tensile strains lead, respectively, to red and blue shifts of optical the conductivity threshold around the visible range of light. Overall, this study suggests that H-SiB monolayers are suitable as two-dimensional solar cell materials.

Keywords: surface plasmon, hot carrier, strain engineering, valley polariton

Procedia PDF Downloads 96