Search results for: mercury ions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 992

Search results for: mercury ions

392 Nutritional Characteristics, Phytochemical and Antimicrobial Properties Vaccinium Pavifolium (Ericacea) Leaf Protein Concentrates

Authors: Sodamade A., Bolaji K. A.

Abstract:

Problems associated with protein malnutrition are still prevalent in third-world countries, leading to the constant search for plants that could serve as nutrients and medicinal purposes. Huckleberry is one of the plants that has been proven useful locally in the treatment of numerous ailments and diseases. A fresh sample of the plant (Vaccinium pavifolium) was collected from a vegetable garden situated near the Erelu dam of the Emmanuel Alayande College of Education Campus, Oyo. The sample was authenticated at the Forestry Research Institute of Nigeria (FRIN) Ibadan. The leaves of the plant were plucked and processed for leaf protein concentrates before proximate composition, mineral analysis phytochemical and antimicrobial properties were determined using a standard method of analysis. The results of proximate constituents showed; moisture content; 9.89±0.051g/100g, Ash; 3.23±0.12g/100g, crude fat; 3.96±0.11g/100g and 61.27±0.56g/100g of Nitrogen free extractive. The mineral analysis of the sample showed; Mg; 0.081±0.00mg/100g, Ca; 42.30±0.05mg/100g, Na; 27.57±0.09mg/100g, K; 6.81±0.01mg/100g, P; 8.90±0.03mg/100g, Fe; 0.51±0.00mg/100g, Zn; 0.021±0.00mg/100g, Cd; 0.04±0.04mg/100g, Pb; 0.002±0.00mg/100g, Cr; 0.041±0.00mg/100g Cadmium and Mercury were not detected in the sample. The result of phytochemical analysis of leaf protein concentrates of the Huckleberry showed the presence of Alkaloid, Saponin, Flavonoid, Tanin, Coumarin, Steroids, Terpenoids, Cardiac glycosides, Glycosides, Quinones, Anthocyanin, phytosterols, and phenols. Ethanolic extracts of the Vaccinium parvifolium L. leaf protein concentrates showed that it contains bioactive compounds that are capable of combating the following microorganisms; Staphylococcus aureus, Streptococcus pyogenes, Streptococcus faecalis, Pseudomonas aeruginosa, Klebisialae pneumonia and Proteus mirabilis. The results of the analysis of Vaccinium parvifolium L. leaf protein concentrates showed that the sample contains valuable nutrient and mineral constituents, and phytochemical compounds that could make the sample useful for medicinal activities.

Keywords: leaf protein concentrates, vaccinium parvifolium, nutritional characteristics, mineral composition, antimicrobial activity

Procedia PDF Downloads 51
391 Evaluation of a Reconditioning Procedure for Batteries: Case Study on Li-Ion Batteries

Authors: I.-A. Ciobotaru, I.-E. Ciobotaru, D.-I. Vaireanu

Abstract:

Currently, an ascending trend of battery use may be observed, together with an increase of the generated amount of waste. Efforts have been focused on the recycling of batteries; however, extending their lifetime may be a more adequate alternative, and the development of such methods may prove to be more cost efficient as compared to recycling. In this context, this paper presents the analysis of a proposed process for the reconditioning of some lithium-ions batteries. The analysis is performed based on two criteria, the first one referring to the technical aspect of the reconditioning process and the second to the economic aspects. The main technical parameters taken into consideration are the values of capacitance and internal resistance of the lithium-ion batteries. The economic criterion refers to the evaluation of the efficiency of the reconditioning procedure reported to its total cost for the investigated lithium-ion batteries. Based on the cost analysis, one introduced a novel coefficient that correlates the efficiency of the aforementioned process and its corresponding costs. The reconditioning procedure for the lithium-ion batteries proposed in this paper proved to be valid, efficient, and with reasonable costs.

Keywords: cost assessment, lithium-ion battery, reconditioning coefficient, reconditioning procedure

Procedia PDF Downloads 102
390 Physicochemical and Functional significance of Two Lychee (Litchi chinensis Sonn.) Cultivars Gola and Surakhi from Pakistan

Authors: Naila Safdar, Faria Riasat, Azra Yasmin

Abstract:

Lychee is an emerging fruit crop in Pakistan. Two famous cultivars of lychee, Gola and Surakhi, were collected from Khanpur Orchard, Pakistan and their whole fruit (including peel, pulp and seed) was investigated for pomological features and therapeutic activities. Both cultivars differ in shape and size with Gola having large size (3.27cm length, 2.36cm width) and more flesh to seed ratio (8.65g). FTIR spectroscopy and phytochemical tests confirmed presence of different bioactive compounds like phenol, flavonoids, quinones, anthraquinones, tannins, glycosides, and alkaloids, in both lychee fruits. Atomic absorption spectroscopy indicated an increased amount of potassium, magnesium, sodium, iron, and calcium in Gola and Surakhi fruits. Small amount of trace metals, zinc and copper, were also detected in lychee fruit, while heavy metals lead, mercury, and nickel were absent. These two lychee cultivars were also screened for antitumor activity by Potato disc assay with maximum antitumor activity shown by aqueous extract of Surakhi seed (77%) followed by aqueous extract of Gola pulp (74%). Antimicrobial activity of fruit parts was checked by agar well diffusion method against six bacterial strains Enterococcus faecium, Enterococcus faecalis, Staphylococcus aureus, Bacillus subtilis, Bacillus sp. MB083, and Bacillus sp. MB141. Highest antimicrobial activity was shown by methanolic extract of Gola pulp (27mm ± 0.70) and seed (19.5mm ± 0.712) against Enterococcus faecalis. DPPH scavenging assay revealed highest antioxidant activity by aqueous extract of Gola peel (98.10%) followed by n-hexane extract of Surakhi peel (97.73%). Results obtained by reducing power assay also corroborated with the results of DPPH scavenging activity.

Keywords: antimicrobial evaluation, antitumor assay, gola, phytoconstituents, reactive oxygen species, Surakhi

Procedia PDF Downloads 384
389 Effect of Viscosity on Void Structure in Dusty Plasma

Authors: El Amine Nebbat

Abstract:

A void is a dust-free region in dusty plasma, a medium formed of electrons, ions, and charged dust (grain). This structure appears in multiple experimental works. Several researchers have developed models to understand it. Recently, Nebbat and Annou proposed a nonlinear model that describes the void in non-viscos plasma, where the particles of the dusty plasma are treated as a fluid. In fact, the void appears even in dense dusty plasma where viscosity exists through the strong interaction between grains, so in this work, we augment the nonlinear model of Nebbat and Annou by introducing viscosity into the fluid equations. The analysis of the data of the numerical resolution confirms the important effect of this parameter (viscosity). The study revealed that the viscosity increases the dimension of the void for certain dimensions of the grains, and its effect on the value of the density of the grains at the boundary of the void is inversely proportional to their radii, i.e., this density increase for submicron grains and decrease for others. Finally, this parameter reduces the rings of dust density which surround the void.

Keywords: voids, dusty plasmas, variable charge, density, viscosity

Procedia PDF Downloads 30
388 Preparation and Visible Light Photoactivity of N-Doped ZnO/ZnS Photocatalysts

Authors: Nuray Güy, Mahmut Özacar

Abstract:

Semiconductor nanoparticles such as TiO₂ and ZnO as photocatalysts are very efficient catalysts for wastewater treatment by the chemical utilization of light energy, which is capable of converting the toxic and nonbiodegradable organic compounds into carbon dioxide and mineral acids. ZnO semiconductor has a wide bandgap energy of 3.37 eV and a relatively large exciton binding Energy (60 meV), thus can absorb only UV light with the wavelength equal to or less than 385 nm. It exhibits low efficiency under visible light illumination due to its wide band gap energy. In order to improve photocatalytic activity of ZnO under visible light, band gap of ZnO may be narrowed by doping such as N, C, S nonmetal ions and coupled two separate semiconductors possessing different energy levels for their corresponding conduction and valence bands. ZnS has a wider band gap (Eg=3.7 eV) than ZnO and generates electron–hole pairs by photoexcitation rapidly. In the present work, N doped ZnO/ZnS nano photocatalysts with visible-light response were synthesized by microwave-hydrothermal method using thiourea as N source. The prepared photocatalysts were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV–visible (UV–vis). The photocatalytic activities samples and undoped ZnO have been studied for the degradation of dye, and have also been compared with together.

Keywords: photocatalyst, synthesis, visible light, ZnO/ZnS

Procedia PDF Downloads 263
387 Tenofovir-Amino Acid Conjugates Act as Polymerase Substrates: Implications for Avoiding Cellular Phosphorylation in the Discovery of Nucleotide Analogs

Authors: Weijie Gu, Sergio Martinez, Hoai Nguyen, Hongtao Xu, Piet Herdewijn, Steven De Jonghe, Kalyan Das

Abstract:

Nucleotide analogs are used for treating viral infections such as HIV, hepatitis B, hepatitis C, influenza, and SARS-CoV-2. To become polymerase substrates, a nucleotide analog must be phosphorylated by cellular kinases, which are rate-limiting. The goal of this study is to develop dNTP/NTP analogs directly from nucleotides. Tenofovir (TFV) analogs were synthesized by conjugating with natural or unnatural amino acids. It demonstrates that some conjugates act as dNTP analogs, and HIV-1 reverse transcriptase (RT) catalytically incorporates the TFV part as the chain terminator. X-ray structures in complex with HIV-1 RT/dsDNA showed binding of the conjugates at the polymerase active site, however, in different modes in the presence of Mg²⁺ vs. Mn²⁺ ions. The adaptability of the compounds is seemingly essential for catalytic incorporation of TFV by RT. 4d with a carboxyl sidechain demonstrated the highest incorporation. 4e showed weak incorporation and rather behaved as a dNTP-competitive inhibitor. This result advocates the feasibility of designing NTP/dNTP analogs by chemical substitutions to nucleotide analogs.

Keywords: dNTP analogs, nucleotide analogs, polymerase, tenofovir, X-ray structure

Procedia PDF Downloads 128
386 Groundwater Quality Assessment Using Water Quality Index and Geographical Information System Techniques: A Case Study of Busan City, South Korea

Authors: S. Venkatramanan, S. Y. Chung, S. Selvam, E. E. Hussam, G. Gnanachandrasamy

Abstract:

The quality of groundwater was evaluated by major ions concentration around Busan city, South Korea. The groundwater samples were collected from 40 wells. The order of abundance of major cations concentration in groundwater is Na > Ca > Mg > K, in case of anions are Cl > HCO₃ > SO₄ > NO₃ > F. Based on Piper’s diagram Ca (HCO₃)₂, CaCl₂, and NaCl are the leading groundwater types. While Gibbs diagram suggested that most of groundwater samples belong to rock-weathering zone. Hydrogeochemical condition of groundwater in this city is influenced by evaporation, ion exchange and dissolution of minerals. Water Quality Index (WQI) revealed that 86 % of the samples belong to excellent, 2 % good, 4 % poor to very poor and 8 % unsuitable categories. The results of sodium absorption ratio (SAR), Permeability Index (PI), Residual Sodium Carbonate (RSC) and Magnesium Hazard (MH) exhibit that most of the groundwater samples are suitable for domestic and irrigation purposes.

Keywords: WQI (Water Quality Index), saturation index, groundwater types, ion exchange

Procedia PDF Downloads 237
385 A Cellular Automaton Model Examining the Effects of Oxygen, Hydrogen Ions, and Lactate on Early Tumour Growth

Authors: Maymona Al-Husari, Craig Murdoch, Steven Webb

Abstract:

Some tumors are known to exhibit an extracellular pH that is more acidic than the intracellular, creating a 'reversed pH gradient' across the cell membrane and this has been shown to affect their invasive and metastatic potential. Tumour hypoxia also plays an important role in tumour development and has been directly linked to both tumour morphology and aggressiveness. In this paper, we present a hybrid mathematical model of intracellular pH regulation that examines the effect of oxygen and pH on tumour growth and morphology. In particular, we investigate the impact of pH regulatory mechanisms on the cellular pH gradient and tumour morphology. Analysis of the model shows that: low activity of the Na+/H+ exchanger or a high rate of anaerobic glycolysis can give rise to a 'fingering' tumour morphology; and a high activity of the lactate/H+ symporter can result in a reversed transmembrane pH gradient across a large portion of the tumour mass. Also, the reversed pH gradient is spatially heterogenous within the tumour, with a normal pH gradient observed within an intermediate growth layer, that is the layer between the proliferative inner and outermost layer of the tumour.

Keywords: acidic pH, cellular automaton, ebola, tumour growth

Procedia PDF Downloads 311
384 Phytoremediation of artisanal gold mine tailings - Potential of Chrysopogon zizanioides and Andropogon gayanus in the Sahelian climate

Authors: Yamma Rose, Kone Martine, Yonli Arsène, Wanko Ngnien Adrien

Abstract:

Soil pollution and, consequently, water resources by micropollutants from gold mine tailings constitute a major threat in developing countries due to the lack of waste treatment. Phytoremediation is an alternative for extracting or trapping micropollutants from contaminated soils by mining residues. The potentialities of Chrysopogon zizanioides (acclimated plant) and Andropogon gayanus (native plant) to accumulate arsenic (As), mercury (Hg), iron (Fe) and zinc (Zn) were studied in artisanal gold mine in Ouagadougou, Burkina Faso. The phytoremediation effectiveness of two plant species was studied in 75 pots of 30 liters each, containing mining residues from the artisanal gold processing site in the rural commune of Nimbrogo. The experiments cover three modalities: Tn - planted unpolluted soils; To – unplanted mine tailings and Tp – planted mine tailings arranged in a randomized manner. The pots were amended quarterly with compost to provide nutrients to the plants. The phytoremediation assessment consists of comparing the growth, biomass and capacity of these two herbaceous plants to extract or to trap Hg, Fe, Zn and As in mining residues in a controlled environment. The analysis of plant species parameters cultivated in mine tailings shows indices of relative growth of A. gayanus very significantly high (34.38%) compared to 20.37% for C.zizanioides. While biomass analysis reveals that C. zizanioides has greater foliage and root system growth than A. gayanus. The results after a culture time of 6 months showed that C. zizanioides and A. gayanus have the potential to accumulate Hg, Fe, Zn and As. Root biomass has a more significant accumulation than aboveground biomass for both herbaceous species. Although the BCF bioaccumulation factor values for both plants together are low (<1), the removal efficiency of Hg, Fe, Zn and As is 45.13%, 42.26%, 21.5% and 2.87% respectively in 24 weeks of culture with C. zizanioides. However, pots grown with A. gayanus gives an effectiveness rate of 43.55%; 41.52%; 2.87% and 1.35% respectively for Fe, Zn, Hg and As. The results indicate that the plant species studied have a strong phytoremediation potential, although that of A. gayanus is relatively less than C. zizanioides.

Keywords: artisanal gold mine tailings, andropogon gayanus, chrysopogon zizanioides, phytoremediation

Procedia PDF Downloads 43
383 The Effect of Olea europea L. Extract on Doxorubicin-Induced Cardiotoxicity

Authors: Jessica Maiuolo, Irene Bava, Micaela Gliozzi, Vincenzo Mollace

Abstract:

Doxorubicin is an anthracycline that is commonly used as a chemotherapy drug due to its cytotoxic effects. The clinical use of doxorubicin is limited due to its known cardiotoxic effects. Polyphenols have a wide range of beneficial properties, and particular importance is given to Oleuropein, one of the main polyphenolic compounds of olive oil. The biological mechanisms involved and the role of the endoplasmic reticulum were examined. Olive oil extract and Oleuropein were able to decrease the damage induced by exposure to doxorubicin. In particular, this natural compound was found to reduce cell mortality and oxidative damage, increase lipid content, and decrease the concentration of calcium ions that escaped from the endoplasmic reticulum. In addition, the direct involvement of this cellular organelle was demonstrated by silencing the ATF6 arm of the Unfolded Protein Response, which was activated after treatment with doxorubicin. The protection afforded by pre-treatment with the natural compound of interest, following the early damage induced by DOXO, provided valuable information regarding the potential use of these substances along with chemotherapy treatment.

Keywords: Olea europea L., oleuropein, doxorubicin, endoplasmic reticulum, nutraceutical support

Procedia PDF Downloads 93
382 Crystal Structure, Vibration Study, and Calculated Frequencies by Density Functional Theory Method of Copper Phosphate Dihydrate

Authors: Soufiane Zerraf, Malika Tridane, Said Belaaouad

Abstract:

CuHPO₃.2H₂O was synthesized by the direct method. CuHPO₃.2H₂O crystallizes in the orthorhombic system, space group P2₁2₁2₁, a = 6.7036 (2) Å, b = 7.3671 (4) Å, c = 8.9749 (4) Å, Z = 4, V = 443.24 (4) ų. The crystal structure was refined to R₁= 0.0154, R₂= 0.0380 for 19018 reflections satisfying criterion I ≥ 2σ (I). The structural resolution shows the existence of chains of ions HPO₃- linked together by hydrogen bonds. The crystalline structure is formed by chains consisting of Cu[O₃(H₂O)₃] deformed octahedral, which are connected to the vertices. The chains extend parallel to b and are mutually linked by PO₃ groups. The structure is closely related to that of CuSeO₃.2H₂O and CuTeO₃.2H₂O. The experimental studies of the infrared and Raman spectra were used to confirm the presence of the phosphate ion and were compared in the (0-4000) cm-1 region with the theoretical results calculated by the density functional theory (DFT) method to provide reliable assignments of all observed bands in the experimental spectra.

Keywords: crystal structure, X-ray diffraction, vibration study, thermal behavior, density functional theory

Procedia PDF Downloads 88
381 Adsorption of Cd2+ from Aqueous Solutions Using Chitosan Obtained from a Mixture of Littorina littorea and Achatinoidea Shells

Authors: E. D. Paul, O. F. Paul, J. E. Toryila, A. J. Salifu, C. E. Gimba

Abstract:

Adsorption of Cd2+ ions from aqueous solution by Chitosan, a natural polymer, obtained from a mixture of the exoskeletons of Littorina littorea (Periwinkle) and Achatinoidea (Snail) was studied at varying adsorbent dose, contact time, metal ion concentrations, temperature and pH using batch adsorption method. The equilibrium adsorption isotherms were determined between 298 K and 345 K. The adsorption data were adjusted to Langmuir, Freundlich and the pseudo second order kinetic models. It was found that the Langmuir isotherm model most fitted the experimental data, with a maximum monolayer adsorption of 35.1 mgkg⁻¹ at 308 K. The entropy and enthalpy of adsorption were -0.1121 kJmol⁻¹K⁻¹ and -11.43 kJmol⁻¹ respectively. The Freundlich adsorption model, gave Kf and n values consistent with good adsorption. The pseudo-second order reaction model gave a straight line plot with rate constant of 1.291x 10⁻³ kgmg⁻¹ min⁻¹. The qe value was 21.98 mgkg⁻¹, indicating that the adsorption of Cadmium ion by the chitosan composite followed the pseudo-second order kinetic model.

Keywords: adsorption, chitosan, littorina littorea, achatinoidea, natural polymer

Procedia PDF Downloads 380
380 Biomarkers for Rectal Adenocarcinoma Identified by Lipidomic and Bioinformatic

Authors: Patricia O. Carvalho, Marcia C. F. Messias, Laura Credidio, Carlos A. R. Martinez

Abstract:

Lipidomic strategy can provide important information regarding cancer pathogenesis mechanisms and could reveal new biomarkers to enable early diagnosis of rectal adenocarcinoma (RAC). This study set out to evaluate lipoperoxidation biomarkers, and lipidomic signature by gas chromatography (GC) and electrospray ionization-qToF-mass spectrometry (ESI-qToF-MS) combined with multivariate data analysis in plasma from 23 RAC patients (early- or advanced-stages cancer) and 18 healthy controls. The most abundant ions identified in the RAC patients were those of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) while those of lisophosphatidylcholine (LPC), identified as LPC (16:1), LPC (18:1) and LPC (18:2), were down-regulated. LPC plasmalogen containing palmitoleic acid (LPC (P-16:1)), with highest VIP score, showed a low tendency in the cancer patients. Malondialdehyde plasma levels were higher in patients with advanced cancer (III/IV stages) than in the early stages groups and the healthy group (p<0.05). No differences in F2-isoprostane levels were observed between these groups. This study shows that the reduction in plasma levels of LPC plasmalogens associated to an increase in MDA levels may indicate increased oxidative stress in these patients and identify the metabolite LPC (P-16:1) as new biomarkers for RAC.

Keywords: biomarkers, lipidomic, plasmalogen, rectal adenocarcinoma

Procedia PDF Downloads 203
379 Prompt Photons Production in Compton Scattering of Quark-Gluon and Annihilation of Quark-Antiquark Pair Processes

Authors: Mohsun Rasim Alizada, Azar Inshalla Ahmdov

Abstract:

Prompt photons are perhaps the most versatile tools for studying the dynamics of relativistic collisions of heavy ions. The study of photon radiation is of interest that in most hadron interactions, photons fly out as a background to other studied signals. The study of the birth of prompt photons in nucleon-nucleon collisions was previously carried out in experiments on Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Due to the large energy of colliding nucleons, in addition to prompt photons, many different elementary particles are born. However, the birth of additional elementary particles makes it difficult to determine the accuracy of the effective section of the birth of prompt photons. From this point of view, the experiments planned on the Nuclotron-based Ion Collider Facility (NICA) complex will have a great advantage, since the energy obtained for colliding heavy ions will reduce the number of additionally born elementary particles. Of particular importance is the study of the processes of birth of prompt photons to determine the gluon leaving hadrons since the photon carries information about a rigid subprocess. At present, paper production of prompt photon in Compton scattering of quark-gluon and annihilation of quark–antiquark processes is investigated. The matrix elements Compton scattering of quark-gluon and annihilation of quark-antiquark pair processes has been written. The Square of matrix elements of processes has been calculated in FeynCalc. The phase volume of subprocesses has been determined. Expression to calculate the differential cross-section of subprocesses has been obtained: Given the resulting expressions for the square of the matrix element in the differential section expression, we see that the differential section depends not only on the energy of colliding protons, but also on the mass of quarks, etc. Differential cross-section of subprocesses is estimated. It is shown that the differential cross-section of subprocesses decreases with the increasing energy of colliding protons. Asymmetry coefficient with polarization of colliding protons is determined. The calculation showed that the squares of the matrix element of the Compton scattering process without and taking into account the polarization of colliding protons are identical. The asymmetry coefficient of this subprocess is zero, which is consistent with the literary data. It is known that in any single polarization processes with a photon, squares of matrix elements without taking into account and taking into account the polarization of the original particle must coincide, that is, the terms in the square of the matrix element with the degree of polarization are equal to zero. The coincidence of the squares of the matrix elements indicates that the parity of the system is preserved. The asymmetry coefficient of annihilation of quark–antiquark pair process linearly decreases from positive unit to negative unit with increasing the production of the polarization degrees of colliding protons. Thus, it was obtained that the differential cross-section of the subprocesses decreases with the increasing energy of colliding protons. The value of the asymmetry coefficient is maximal when the polarization of colliding protons is opposite and minimal when they are directed equally. Taking into account the polarization of only the initial quarks and gluons in Compton scattering does not contribute to the differential section of the subprocess.

Keywords: annihilation of a quark-antiquark pair, coefficient of asymmetry, Compton scattering, effective cross-section

Procedia PDF Downloads 128
378 Multiscale Analysis of Shale Heterogeneity in Silurian Longmaxi Formation from South China

Authors: Xianglu Tang, Zhenxue Jiang, Zhuo Li

Abstract:

Characterization of shale multi scale heterogeneity is an important part to evaluate size and space distribution of shale gas reservoirs in sedimentary basins. The origin of shale heterogeneity has always been a hot research topic for it determines shale micro characteristics description and macro quality reservoir prediction. Shale multi scale heterogeneity was discussed based on thin section observation, FIB-SEM, QEMSCAN, TOC, XRD, mercury intrusion porosimetry (MIP), and nitrogen adsorption analysis from 30 core samples in Silurian Longmaxi formation. Results show that shale heterogeneity can be characterized by pore structure and mineral composition. The heterogeneity of shale pore is showed by different size pores at nm-μm scale. Macropores (pore diameter > 50 nm) have a large percentage of pore volume than mesopores (pore diameter between 2~ 50 nm) and micropores (pore diameter < 2nm). However, they have a low specific surface area than mesopores and micropores. Fractal dimensions of the pores from nitrogen adsorption data are higher than 2.7, what are higher than 2.8 from MIP data, showing extremely complex pore structure. This complexity in pore structure is mainly due to the organic matter and clay minerals with complex pore network structures, and diagenesis makes it more complicated. The heterogeneity of shale minerals is showed by mineral grains, lamina, and different lithology at nm-km scale under the continuous changing horizon. Through analyzing the change of mineral composition at each scale, random arrangement of mineral equal proportion, seasonal climate changes, large changes of sedimentary environment, and provenance supply are considered to be the main reasons that cause shale minerals heterogeneity from microcosmic to macroscopic. Due to scale effect, the change of shale multi scale heterogeneity is a discontinuous process, and there is a transformation boundary between homogeneous and in homogeneous. Therefore, a shale multi scale heterogeneity changing model is established by defining four types of homogeneous unit at different scales, which can be used to guide the prediction of shale gas distribution from micro scale to macro scale.

Keywords: heterogeneity, homogeneous unit, multiscale, shale

Procedia PDF Downloads 425
377 Biosorption of Chromium (VI) Ions Using Polyaniline Coated Maize Tassels

Authors: F. Chigondo, G. Chitabati

Abstract:

Hexavalent chromium is toxic and is widely used in many industries hence efficient and economical methods must be explored to remove the chromium(VI) from the environment. The removal of Cr (VI) from aqueous solutions onto polyaniline coated maize tassel was studied in batch mode at varying initial metal concentrations, adsorbent doses, pH and contact times. The residual Cr (VI) concentrations before and after adsorption were analyzed by Ultraviolet–visible spectroscopy. FTIR analysis of the polyaniline coated maize tassel showed the presence of C=C, C=N, C-H, C-N and N-H groups. Adsorption conditions were deduced to be pH of 2, adsorbent dosage 1g/L, Cr(VI) initial concentration of 40mg/L contact time of 150 minutes and agitation speed of 140rpm. Data obtained fitted best to the Langmuir isotherm (R2 = 0.972) compared to the Freundlich isotherm (R2 0.671. The maximum adsorption capacity was found to be 125mg/L. Correlation coefficients for pseudo first order and pseudo second order were 0.952 and 0.971 respectively. The adsorption process followed the pseudo-second order kinetic model. The studied polyaniline coated maize tassel can therefore be used as a promising adsorbent for the removal of Cr (VI) ion from aqueous solution.

Keywords: polyaniline-coated, maize tassels, adsorption, hexavalent chromium

Procedia PDF Downloads 182
376 Solvent Extraction in Ionic Liquids: Structuration and Aggregation Effects on Extraction Mechanisms

Authors: Sandrine Dourdain, Cesar Lopez, Tamir Sukhbaatar, Guilhem Arrachart, Stephane Pellet-Rostaing

Abstract:

A promising challenge in solvent extraction is to replace the conventional organic solvents, with ionic liquids (IL). Depending on the extraction systems, these new solvents show better efficiency than the conventional ones. Although some assumptions based on ions exchanges have been proposed in the literature, these properties are not predictable because the involved mechanisms are still poorly understood. It is well established that the mechanisms underlying solvent extraction processes are based not only on the molecular chelation of the extractant molecules but also on their ability to form supra-molecular aggregates due to their amphiphilic nature. It is therefore essential to evaluate how IL affects the aggregation properties of the extractant molecules. Our aim is to evaluate the influence of IL structure and polarity on solvent extraction mechanisms, by looking at the aggregation of the extractant molecules in IL. We compare extractant systems that are well characterized in common solvents and show thanks to SAXS and SANS measurements, that in the absence of IL ion exchange mechanisms, extraction properties are related to aggregation.

Keywords: solvent extraction in Ionic liquid, aggregation, Ionic liquids structure, SAXS, SANS

Procedia PDF Downloads 132
375 Optimization of Adsorption Performance of Lignocellulosic Waste Pretreatment and Chemical Modification

Authors: Bendjelloul Meriem, Elandaloussi El Hadj

Abstract:

In this work, we studied the effectiveness of a lignocellulosic waste (wood sawdust) for the removal of cadmium Cd (II) in aqueous solution. The adsorbent material SBO-CH2-CO2Na has been prepared by alkaline pretreatment of wood sawdust followed by a chemical modification with sodium salt of chloroacetic acid. The characterization of the as-prepared material by FTIR has proven that the grafting of acetate spacer took actually place in the lignocellulosic backbone by the appearance of characteristic band of carboxylic groups in the IR spectrum. The removal study of Cd2+ by SBO-CH2-CO2Na material at the solid-liquid interface was carried out by kinetics, sorption isotherms, effect of temperature and thermodynamic parameters were evaluated. The last part of this work was dedicated to assess the regenerability of the adsorbent material after three reuse cycles. The results indicate that SBO-CH2-CO2Na matrix possesses a high effectiveness in removing Cd (II) with an adsorption capacity of 222.22 mg/g, yet a better value that those of many low-cost adsorbents so far reported in the literature. The results found in the course of this study suggest that ionic exchange is the most appropriate mechanism involved in the removal of cadmium ions.

Keywords: adsorption, cadmium, isotherms, lignocellulosic, regenerability

Procedia PDF Downloads 311
374 Exploration of Hydrocarbon Unconventional Accumulations in the Argillaceous Formation of the Autochthonous Miocene Succession in the Carpathian Foredeep

Authors: Wojciech Górecki, Anna Sowiżdżał, Grzegorz Machowski, Tomasz Maćkowski, Bartosz Papiernik, Michał Stefaniuk

Abstract:

The article shows results of the project which aims at evaluating possibilities of effective development and exploitation of natural gas from argillaceous series of the Autochthonous Miocene in the Carpathian Foredeep. To achieve the objective, the research team develop a world-trend based but unique methodology of processing and interpretation, adjusted to data, local variations and petroleum characteristics of the area. In order to determine the zones in which maximum volumes of hydrocarbons might have been generated and preserved as shale gas reservoirs, as well as to identify the most preferable well sites where largest gas accumulations are anticipated a number of task were accomplished. Evaluation of petrophysical properties and hydrocarbon saturation of the Miocene complex is based on laboratory measurements as well as interpretation of well-logs and archival data. The studies apply mercury porosimetry (MICP), micro CT and nuclear magnetic resonance imaging (using the Rock Core Analyzer). For prospective location (e.g. central part of Carpathian Foredeep – Brzesko-Wojnicz area) reprocessing and reinterpretation of detailed seismic survey data with the use of integrated geophysical investigations has been made. Construction of quantitative, structural and parametric models for selected areas of the Carpathian Foredeep is performed on the basis of integrated, detailed 3D computer models. Modeling are carried on with the Schlumberger’s Petrel software. Finally, prospective zones are spatially contoured in a form of regional 3D grid, which will be framework for generation modelling and comprehensive parametric mapping, allowing for spatial identification of the most prospective zones of unconventional gas accumulation in the Carpathian Foredeep. Preliminary results of research works indicate a potentially prospective area for occurrence of unconventional gas accumulations in the Polish part of Carpathian Foredeep.

Keywords: autochthonous Miocene, Carpathian foredeep, Poland, shale gas

Procedia PDF Downloads 207
373 Corrosion Behaviour of Hypereutectic Al-Si Automotive Alloy in Different pH Environment

Authors: M. Al Nur, M. S. Kaiser

Abstract:

Corrosion behaviour of hypereutectic Al-19Si automotive alloy in different pH=1, 3, 5, 7, 9, 11, and 13 environments was carried out using conventional gravimetric measurements and was complemented by resistivity, optical micrograph, scanning electron microscopy (SEM) and X-ray analyzer (EDX) investigations. Gravimetric analysis confirmed that the highest corrosion rate is shown at pH 13 followed by pH 1. Minimum corrosion occurs in the pH range of 3.0 to 11 due to establishment of passive layer on the surface. The highest corrosion rate at pH 13 is due to the presence of sodium hydroxide in the solution which dissolves the surface oxide film at a steady rate. At pH 1, it can be attributed that the presence of aggressive chloride ions serves to pick up the damage of the passive films at localized regions. With varying exposure periods by both, the environment complies with the normal corrosion rate profile that is an initial steep rise followed by a nearly constant value of corrosion rate. Resistivity increases in case of pH 1 solution for the higher pit formation and decreases at pH 13 due to formation of thin film. The SEM image of corroded samples immersed in pH 1 solution clearly shows pores on the surface and in pH 13 solution, and the corrosion layer seems more compact and homogenous and not porous.

Keywords: Al-Si alloy, corrosion, pH, resistivity, scanning electron microscopy (SEM)

Procedia PDF Downloads 145
372 Production of Linamarase from Lactobacillus delbrueckii NRRL B-763

Authors: Ogbonnaya Nwokoro, Florence O. Anya

Abstract:

Nutritional factors relating to the production of linamarase from Lactobacillus delbrueckii NRRL B–763 were investigated. The microorganism was cultivated in a medium containing 1% linamarin. Enzyme was produced using a variety of carbon substrates but the highest enzyme activity was detected in the presence of salicin (522 U/ml) after 48 h while the lowest yield was observed with CM cellulose (38 U/ml) after 72 h. Enzyme was not produced in the presence of cellobiose. Among a variety of nitrogen substrates tested, peptone supported maximum enzyme production (412 U/ml) after 48 h. Lowest enzyme production was observed with urea (40 U/ml). Organic nitrogen substrates generally supported higher enzyme productivity than inorganic nitrogen substrates. Enzyme activity was observed in the presence of Mn2+ (% relative activity = 216) while Hg2+ was inhibitory (% relative activity = 28). Locally-formulated media were comparable to MRS broth in supporting linamarase production by the bacterium. Higher enzyme activity was produced in media with surfactant than in media without surfactant. The enzyme may be useful in enhanced degradation of cassava cyanide.

Keywords: linamarase, locally formulated media, carbon substrates, nitrogen substrates, metal ions

Procedia PDF Downloads 412
371 Inverted Umbrella-type Chiral Non-coplanar Ferrimagnetic Structure in Co(NO₃)₂

Authors: O. Maximova, I. L. Danilovich, E. B. Deeva, K. Y. Bukhteev, A. A. Vorobyova, I. V. Morozov, O. S. Volkova, E. A. Zvereva, I. V. Solovyev, S. A. Nikolaev, D. Phuyal, M. Abdel-Hafiez, Y. C. Wang, J. Y. Lin, J. M. Chen, D. I. Gorbunov, K. Puzniak, B. Lake, A. N. Vasiliev

Abstract:

The low-dimensional magnetic systems tend to reveal exotic spin liquid ground states or form peculiar types of long-range order. Among systems of vivid interest are those characterized by the triangular motif in two dimensions. The realization of either ordered or disordered ground state in a triangular, honeycomb, or kagome lattices is are dictated by the competition of exchange interactions, also being sensitive to anisotropy and the spin value of magnetic ions. While the low-spin Heisenberg systems may arrive at a spin liquid long-range entangled quantum state with emergent gauge structures, the high-spin Ising systems may establish the rigid non-collinear structures. This study presents the case of chiral non-coplanar inverted umbrella-type ferrimagnet formed in cobalt nitrate Co(NO₃)₂ below T

Keywords: chiral magnetic structures, low dimensional magnetic systems, umbrella-type ferrimagnets, chiral non-coplanar magnetic structures

Procedia PDF Downloads 101
370 Heavy Metal Contamination in Ship Breaking Yard, A Case Study in Bangladesh

Authors: Mohammad Mosaddik Rahman

Abstract:

This study embarks on an exploratory journey to assess the pervasive issue of heavy metal contamination in the water bodies along Chittagong Coast, Bangladesh. Situated along the mesmerizing Bay of Bengal, known for its potential as an emerging tourist haven, economic zone, ship breaking yard, confronts significant environmental hurdles. The core of these challenges lies in the contamination from heavy metals such as lead, cadmium, chromium, and mercury, which detrimentally impact both the ecological integrity and public health of the region. This contamination primarily stems from industrial activities, particularly those involving metallurgical and chemical processes, which release these metals into the environment, leading to their accumulation in soil and water bodies. The study's primary aim is to conduct a thorough assessment of heavy metal pollution levels, alongside an analysis of nutrient variations, focusing on nitrates and nitrites. Methodologically, the study leverages systematic sampling and advanced analytical tools like the Hach 3900 spectrophotometer to ensure precise and reliable data collection. The implications of heavy metal presence are multifaceted, affecting microbial and aquatic life, and posing severe health risks to the local population, including respiratory problems, neurological disorders, and an increased risk of cancer. The results of this study highlight the urgent need for effective mitigation strategies and regulatory measures to address this critical issue. By providing a comprehensive understanding of the environmental and public health implications of heavy metal contamination in Chittagong Coast, this research endeavours to serve as a catalyst for change, emphasising the need for pollution control and advancements in water management policies. It is envisioned that the outcomes of this study will guide stakeholders in collaborating to develop and implement sustainable solutions, ultimately safeguarding the region’s environment and public health.

Keywords: heavy metal, environmental health, pollution control policies, shipbreaking yard

Procedia PDF Downloads 35
369 A Physical Treatment Method as a Prevention Method for Barium Sulfate Scaling

Authors: M. A. Salman, G. Al-Nuwaibit, M. Safar, M. Rughaibi, A. Al-Mesri

Abstract:

Barium sulfate (BaSO₄) is a hard scaling usually precipitates on the surface of equipment in many industrial systems, as oil and gas production, desalination and cooling and boiler operation. It is a scale that extremely resistance to both chemical and mechanical cleaning. So, BaSO₄ is a problematic and expensive scaling. Although barium ions are present in most natural waters at a very low concentration as low as 0.008 mg/l, it could result of scaling problems in the presence of high concentration of sulfate ion or when mixing with incompatible waters as in oil produced water. The scaling potential of BaSO₄ using seawater at the intake of seven desalination plants in Kuwait, brine water and Kuwait oil produced water was calculated and compared then the best location in regards of barium sulfate scaling was reported. Finally, a physical treatment method (magnetic treatment method) and chemical treatment method were used to control BaSO₄ scaling using saturated solutions at different operating temperatures, flow velocities, feed pHs and different magnetic strengths. The results of the two methods were discussed, and the more economical one with the reasonable performance was recommended, which is the physical treatment method.

Keywords: magnetic field strength, flow velocity, retention time, barium sulfate

Procedia PDF Downloads 242
368 Wear Resistance in Dry and Lubricated Conditions of Hard-anodized EN AW-4006 Aluminum Alloy

Authors: C. Soffritti, A. Fortini, E. Baroni, M. Merlin, G. L. Garagnani

Abstract:

Aluminum alloys are widely used in many engineering applications due to their advantages such ashigh electrical and thermal conductivities, low density, high strength to weight ratio, and good corrosion resistance. However, their low hardness and poor tribological properties still limit their use in industrial fields requiring sliding contacts. Hard anodizing is one of the most common solution for overcoming issues concerning the insufficient friction resistance of aluminum alloys. In this work, the tribological behavior ofhard-anodized AW-4006 aluminum alloys in dry and lubricated conditions was evaluated. Three different hard-anodizing treatments were selected: a conventional one (HA) and two innovative golden hard-anodizing treatments (named G and GP, respectively), which involve the sealing of the porosity of anodic aluminum oxides (AAO) with silver ions at different temperatures. Before wear tests, all AAO layers were characterized by scanning electron microscopy (VPSEM/EDS), X-ray diffractometry, roughness (Ra and Rz), microhardness (HV0.01), nanoindentation, and scratch tests. Wear tests were carried out according to the ASTM G99-17 standard using a ball-on-disc tribometer. The tests were performed in triplicate under a 2 Hz constant frequency oscillatory motion, a maximum linear speed of 0.1 m/s, normal loads of 5, 10, and 15 N, and a sliding distance of 200 m. A 100Cr6 steel ball10 mm in diameter was used as counterpart material. All tests were conducted at room temperature, in dry and lubricated conditions. Considering the more recent regulations about the environmental hazard, four bio-lubricants were considered after assessing their chemical composition (in terms of Unsaturation Number, UN) and viscosity: olive, peanut, sunflower, and soybean oils. The friction coefficient was provided by the equipment. The wear rate of anodized surfaces was evaluated by measuring the cross-section area of the wear track with a non-contact 3D profilometer. Each area value, obtained as an average of four measurements of cross-section areas along the track, was used to determine the wear volume. The worn surfaces were analyzed by VPSEM/EDS. Finally, in agreement with DoE methodology, a statistical analysis was carried out to identify the most influencing factors on the friction coefficients and wear rates. In all conditions, results show that the friction coefficient increased with raising the normal load. Considering the wear tests in dry sliding conditions, irrespective of the type of anodizing treatments, metal transfer between the mating materials was observed over the anodic aluminum oxides. During sliding at higher loads, the detachment of the metallic film also caused the delamination of some regions of the wear track. For the wear tests in lubricated conditions, the natural oils with high percentages of oleic acid (i.e., olive and peanut oils) maintained high friction coefficients and low wear rates. Irrespective of the type of oil, smallmicrocraks were visible over the AAO layers. Based on the statistical analysis, the type of anodizing treatment and magnitude of applied load were the main factors of influence on the friction coefficient and wear rate values. Nevertheless, an interaction between bio-lubricants and load magnitude could occur during the tests.

Keywords: hard anodizing treatment, silver ions, bio-lubricants, sliding wear, statistical analysis

Procedia PDF Downloads 115
367 Simultaneous Determination of p-Phenylenediamine, N-Acetyl-p-phenylenediamine and N,N-Diacetyl-p-phenylenediamine in Human Urine by LC-MS/MS

Authors: Khaled M. Mohamed

Abstract:

Background: P-Phenylenediamine (PPD) is used in the manufacture of hair dyes and skin decoration. In some developing countries, suicidal, homicidal and accidental cases by PPD were recorded. In this work, a sensitive LC-MS/MS method for determination of PPD and its metabolites N-acetyl-p-phenylenediamine (MAPPD) and N,N-diacetyl-p-phenylenediamine (DAPPD) in human urine has been developed and validated. Methods: PPD, MAPPD and DAPPD were extracted from urine by methylene chloride at alkaline pH. Acetanilide was used as internal standard (IS). The analytes and IS were separated on an Eclipse XDB- C18 column (150 X 4.6 mm, 5 µm) using a mobile phase of acetonitrile-1% formic acid in gradient elution. Detection was performed by LC-MS/MS using electrospray positive ionization under multiple reaction-monitoring mode. The transition ions m/z 109 → 92, m/z 151 → 92, m/z 193 → 92, and m/z 136 → 77 were selected for the quantification of PPD, MAPPD, DAPPD, and IS, respectively. Results: Calibration curves were linear in the range 10–2000 ng/mL for all analytes. The mean recoveries for PPD, MAPPD and DAPPD were 57.62, 74.19 and 50.99%, respectively. Intra-assay and inter-assay imprecisions were within 1.58–9.52% and 5.43–9.45% respectively for PPD, MAPPD and DAPPD. Inter-assay accuracies were within -7.43 and 7.36 for all compounds. PPD, MAPPD and DAPPD were stable in urine at –20 degrees for 24 hours. Conclusions: The method was successfully applied to the analysis of PPD, MAPPD and DAPPD in urine samples collected from suicidal cases.

Keywords: p-Phenylenediamine, metabolites, urine, LC-MS/MS, validation

Procedia PDF Downloads 330
366 Nonlinear Propagation of Acoustic Soliton Waves in Dense Quantum Electron-Positron Magnetoplasma

Authors: A. Abdikian

Abstract:

Propagation of nonlinear acoustic wave in dense electron-positron (e-p) plasmas in the presence of an external magnetic field and stationary ions (to neutralize the plasma background) is studied. By means of the quantum hydrodynamics model and applying the reductive perturbation method, the Zakharov-Kuznetsov equation is derived. Using the bifurcation theory of planar dynamical systems, the compressive structure of electrostatic solitary wave and periodic travelling waves is found. The numerical results show how the ion density ratio, the ion cyclotron frequency, and the direction cosines of the wave vector affect the nonlinear electrostatic travelling waves. The obtained results may be useful to better understand the obliquely nonlinear electrostatic travelling wave of small amplitude localized structures in dense magnetized quantum e-p plasmas and may be applicable to study the particle and energy transport mechanism in compact stars such as the interior of massive white dwarfs etc.

Keywords: bifurcation theory, phase portrait, magnetized electron-positron plasma, the Zakharov-Kuznetsov equation

Procedia PDF Downloads 220
365 Investigation of Different Electrolyte Salts Effect on ZnO/MWCNT Anode Capacity in LIBs

Authors: Şeyma Dombaycıoğlu, Hilal Köse, Ali Osman Aydın, Hatem Akbulut

Abstract:

Rechargeable lithium ion batteries (LIBs) have been considered as one of the most attractive energy storage choices for laptop computers, electric vehicles and cellular phones owing to their high energy and power density. Compared with conventional carbonaceous materials, transition metal oxides (TMOs) have attracted great interests and stand out among versatile novel anode materials due to their high theoretical specific capacity, wide availability and good safety performance. ZnO, as an anode material for LIBs, has a high theoretical capacity of 978 mAh g-1, much higher than that of the conventional graphite anode (∼370 mAhg-1). However, several major problems such as poor cycleability, resulting from the severe volume expansion and contraction during the alloying-dealloying cycles with Li+ ions and the associated charge transfer process, the pulverization and the agglomeration of individual particles, which drastically reduces the total entrance/exit sites available for Li+ ions still hinder the practical use of ZnO powders as an anode material for LIBs. Therefore, a great deal of effort has been devoted to overcome these problems, and many methods have been developed. In most of these methods, it is claimed that carbon nanotubes (CNTs) will radically improve the performance of batteries, because their unique structure may especially enhance the kinetic properties of the electrodes and result in an extremely high specific charge compared with the theoretical limits of graphitic carbon. Due to outstanding properties of CNTs, MWCNT buckypaper substrate is considered a buffer material to prevent mechanical disintegration of anode material during the battery applications. As the bridge connecting the positive and negative electrodes, the electrolyte plays a critical role affecting the overall electrochemical performance of the cell including rate, capacity, durability and safety. Commercial electrolytes for Li-ion batteries normally consist of certain lithium salts and mixed organic linear and cyclic carbonate solvents. Most commonly, LiPF6 is attributed to its remarkable features including high solubility, good ionic conductivity, high dissociation constant and satisfactory electrochemical stability for commercial fabrication. Besides LiPF6, LiBF4 is well known as a conducting salt for LIBs. LiBF4 shows a better temperature stability in organic carbonate based solutions and less moisture sensitivity compared to LiPF6. In this work, free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials were prepared by a sol gel technique giving a high capacity anode material for lithium ion batteries. Electrolyte solutions (including 1 m Li+ ion) were prepared with different Li salts in glove box. For this purpose, LiPF6 and LiBF4 salts and also mixed of these salts were solved in EC:DMC solvents (1:1, w/w). CR2016 cells were assembled by using these prepared electrolyte solutions, the ZnO/MWCNT buckypaper nanocomposites as working electrodes, metallic lithium as cathode and polypropylene (PP) as separator. For investigating the effect of different Li salts on the electrochemical performance of ZnO/MWCNT nanocomposite anode material electrochemical tests were performed at room temperature.

Keywords: anode, electrolyte, Li-ion battery, ZnO/MWCNT

Procedia PDF Downloads 215
364 Green Synthesis of Silver Nanoparticles from Citrus aurantium Aqueous Pollen Extract and Their Antibacterial Activity

Authors: Mohammad Ali Karimi, Hossein Tavallali, Abdolhamid Hatefi-Mehrjardi

Abstract:

Pollen extract of in vitro plants raised of Citrus aurantium as reducer and stabilizer was assessed for the green synthesis of silver nanoparticles (AgNPs). The synthesis of AgNPs was performed at room temperature assisting in solutions by reduction takes place rapidly for 10 min. Surface plasmon resonance (SPR) peaks in UV–Vis spectra indicated the formation of polydispersive AgNPs. Silver ions concentration, pH, temperature and reaction time were optimized in the synthesis of AgNPs. The nanoparticles obtained were characterized by UV-Vis spectrophotometer, transmission electron microscopy (TEM). X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy techniques. The synthesized AgNPs were mostly spherical in shape with an average size of 15 nm. XRD study shows that the AgNPs are crystalline in nature with face-centered cubic (fcc) geometry. It shows the significant antibacterial efficacy against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) by disk diffusion method using Mueller-Hinton Agar.

Keywords: green synthesis, Citrus aurantium, silver nanoparticles, antibacterial activity

Procedia PDF Downloads 268
363 N₂O₂ Salphen-Like Ligand and Its Pd(II), Ag(I) and Cu(II) Complexes as Potentially Anticancer Agents: Design, Synthesis, Antimicrobial, CT-DNA Binding and Molecular Docking

Authors: Laila H. Abdel-Rahman, Mohamed Shaker S. Adam, Ahmed M. Abu-Dief, Hanan El-Sayed Ahmed

Abstract:

In this investigation, Cu(II), Pd(II) and Ag(I) complexes with the tetra-dentate DSPH Schiff base ligand were synthesized. The DSPH Schiff base and its complexes were characterized by using different physicochemical and spectral analysis. The results revealed that the metal ions coordinated with DSPH ligand through azomethine nitrogen and phenolic oxygen. Cu(II), Pd(II) and Ag(I) complexes are present in a 1:1 molar ratio. Pd(II) and Ag(I) complexes have square planar geometries while, Cu(II) has a distorted octahedral (Oh) geometry. All investigated complexes are nonelectrolytes. The investigated compounds were tested against different strains of bacteria and fungi. Both prepared compounds showed good results of inhibition against the selected pathogenic microorganism. Moreover, the interaction of investigated complexes with CT-DNA was studied via various techniques and the binding modes are mainly intercalative and grooving modes. Operating Environment MOE package was used to do docking studies for the investigated complexes to explore the potential binding mode and energy. Furthermore, the growth inhibitory effect of the investigated compounds was examined on some cancer cells lines.

Keywords: tetradentate, antimicrobial, CT-DNA interaction, docking, anticancer

Procedia PDF Downloads 219