Search results for: logistic regression models
8805 Detection of Chaos in General Parametric Model of Infectious Disease
Authors: Javad Khaligh, Aghileh Heydari, Ali Akbar Heydari
Abstract:
Mathematical epidemiological models for the spread of disease through a population are used to predict the prevalence of a disease or to study the impacts of treatment or prevention measures. Initial conditions for these models are measured from statistical data collected from a population since these initial conditions can never be exact, the presence of chaos in mathematical models has serious implications for the accuracy of the models as well as how epidemiologists interpret their findings. This paper confirms the chaotic behavior of a model for dengue fever and SI by investigating sensitive dependence, bifurcation, and 0-1 test under a variety of initial conditions.Keywords: epidemiological models, SEIR disease model, bifurcation, chaotic behavior, 0-1 test
Procedia PDF Downloads 3248804 Hepatitis B Vaccination Status and Its Determinants among Primary Health Care Workers in Northwest Pakistan
Authors: Mohammad Tahir Yousafzai, Rubina Qasim
Abstract:
We assessed Hepatitis B vaccination and its determinants among health care workers (HCW) in Northwest Pakistan. HCWs from both public and private clinics were interviewed about hepatitis B vaccination, socio-demographic, hepatitis B virus transmission modes, disease threat and benefits of vaccination. Logistic regression was performed. Hepatitis B vaccination was 40% (Qualified Physicians: 86% and non-qualified Dispensers:16%). Being Qualified Physician (Adj. OR 26.6; 95%CI 9.3-73.2), Non-qualified Physician (Adj.OR 1.9; 95%CI 0.8-4.6), qualified Dispensers (Adj. OR 3.6; 95%CI 1.3-9.5) compared to non-qualified Dispensers, working in public clinics (Adj. OR 2.5; 95%CI 1.1-5.7) compared to private, perceived disease threat after exposure to blood and body fluids (Adj. OR 1.1; 95%CI 1.1-1.2) and perceived benefits of vaccination (Adj. OR 1.1; 95%CI 1.1-1.2) were significant predictors of hepatitis B vaccination. Improved perception of disease threat and benefits of vaccination and qualification of HCWs are associated with hepatitis B vaccination.Keywords: Hepatitis B vaccine, immunization, healthcare workers, primary health
Procedia PDF Downloads 3148803 Determinants of Stone Free Status After a Single Session of Flexible Ureteroscopy with Laser Lithotripsy for Renal Calculi
Authors: Mohamed Elkoushy, Sameer Munshi, Waseem Tayeb
Abstract:
Background: Flexible ureteroscopy (fURS) has dramatically improved the minimally invasive management of complex nephrolithiasis. fUR is increasingly being used as the first-line treatment for patients with renal stones. Stone-free status (SFS) is the primary goal in the management of patients with urolithiasis. However, substantial variations exist in the reported SFS following fURS. Objectives: This study determines the predictors of SFS after a single session of fURS with holmium laser lithotripsy (HLL) for renal calculi. Methods: A retrospective review of prospectively collected data was performed for all consecutive patients undergoing fURS and HLL for renal calculi at a tertiary care center. Patients with previous ipsilateral URS for the same stones were excluded. All patients underwent JJ ureteral stent insertion at the end of the procedure. SFS was defined as the presence of no residuals or ≤4-mm non-obstructing stone and was assessed by CT/KUB imaging after 3-4 weeks post-operatively. Multivariate logistic regression was used to detect possible predictors of SFS. Results: A total of 212 patients were included with a mean age of 52.3±8.3 years and a stone burden <20 mm (49.1%), 20-30 mm (41.0%) and >30 mm (9.9%). Overall SFS after a single session of fURS was 71.7%, 92% and 52% for stones less and larger than 20 mm, respectively. Patients with stones> 20 mm need retreatment with a mean number of 1.8 (1.3-2.7) fURS. SFS was significantly associated with male gender, stone bulk <20 mm (95.7% vs. 56.2%), non-lower pole stones, hydronephrotic kidney, low stone intensity, ureteral access sheath, and preoperative stenting. SFS was associated with a lower readmission rate (5.9% vs. 38.9%) and urinary tract infections (3.8% vs. 25.9%). In multivariate regression analysis, SFS maintains its significant association with low stone burden of <20 mm (OR: 5.21), stone intensity <600 HFU (OR: 2.87), and non-lower caliceal stones (OR: 3.84). Conclusion: Best results after a single-session fURS for renal stone were obtained for the stone burden of less than 20 mm and low stone attenuation. Lower calyceal stones may influence stone clearance and need a different approach than fURS, especially for higher stone burden.Keywords: ureteroscopy, kidney stone, lithotripsy, stone-free, predictors
Procedia PDF Downloads 188802 Illustrative Effects of Social Capital on Perceived Health Status and Quality of Life among Older Adult in India: Evidence from WHO-Study on Global AGEing and Adults Health India
Authors: Himansu, Bedanga Talukdar
Abstract:
The aim of present study is to investigate the prevalence of various health outcomes and quality of life and analyzes the moderating role of social capital on health outcomes (i.e., self-rated good health (SRH), depression, functional health and quality of life) among elderly in India. Using WHO Study on Global AGEing and adults health (SAGE) data, with sample of 6559 elderly between 50 and above (Mage=61.81, SD=9.00) age were selected for analysis. Multivariate analysis accessed the prevalence of SRH, depression, functional limitation and quality of life among older adults. Logistic regression evaluates the effect of social capital along with other co-founders on SRH, depression, and functional limitation, whereas linear regression evaluates the effect of social capital with other co-founders on quality of life (QoL) among elderly. Empirical results reveal that (74%) of respondents were married, (70%) having low social action, (46%) medium sociability, (45%) low trust-solidarity, (58%) high safety, (65%) medium civic engagement and 37% reported medium psychological resources. The multivariate analysis, explains (SRH) is associated with age, female, having education, higher social action great trust, safety and greater psychological resources. Depression among elderly is greatly related to age, sex, education and higher wealth, higher sociability, having psychological resources. QoL is negatively associated with age, sex, being Muslim, whereas positive associated with higher education, currently married, civic engagement, having wealth, social action, trust and solidarity, safeness, and strong psychological resources.Keywords: depressive symptom, functional limitation, older adults, quality of life, self rated health, social capital
Procedia PDF Downloads 2258801 Mutual Fund Anchoring Bias with its Parent Firm Performance: Evidence from Mutual Fund Industry of Pakistan
Authors: Muhammad Tahir
Abstract:
Purpose The purpose of the study is to find anchoring bias behavior in mutual fund return with its parent firm performance in Pakistan. Research Methodology The paper used monthly returns of equity funds whose parent firm exist from 2011 to 2021, along with parent firm return. Proximity to 52-week highest return calculated by dividing fund return by parent firm 52-week highest return. Control variables are also taken and used pannel regression model to estimate our results. For robust results, we also used feasible generalize least square (FGLS) model. Findings The results showed that there exist anchoring biased in mutual fund return with its parent firm performance. The FGLS results reaffirms the same results as obtained from panner regression results. Proximity to 52-week highest Xc is significant in both models. Research Implication Since most of mutual funds has a parent firm, anchoring behavior biased found in mutual fund with its parent firm performance. Practical Implication Mutual fund investors in Pakistan invest in equity funds in which behavioral bias exist, although there might be better opportunity in market. Originality/Value Addition Our research is a pioneer study to investigate anchoring bias in mutual fund return with its parent firm performance. Research limitations Our sample is limited to only 23 equity funds, which has a parent firm and data was available from 2011 to 2021.Keywords: mutual fund, anchoring bias, 52-week high return, proximity to 52-week high, parent firm performance, pannel regression, FGLS
Procedia PDF Downloads 1188800 The Effect of Artificial Intelligence on Construction Development
Authors: Shady Gamal Aziz Shehata
Abstract:
Difficulty in defining construction quality arises due to perception based on the nature and requirements of the market, the different partners themselves and the results they want. Quantitative research was used in this constructivist research. A case-based study was conducted to assess the structures of positive attitudes and expectations in the context of quality improvement. A survey based on expert opinions was analyzed among construction organizations/companies operating in the construction industry in Pakistan. The financial strength, management structure and construction experience of the construction companies formed the basis of their selection. A good concept is visible at the project level and is seen as the most valuable part of the construction project. Each quality improvement technique was expected to increase the user's profits by improving the efficiency of the construction project. The Survey is useful for construction professionals to evaluate current construction concepts and expectations for the application of quality improvement techniques in construction projects.Keywords: correlation analysis, lean construction tools, lean construction, logistic regression analysis, risk management, safety construction quality, expectation, improvement, perception
Procedia PDF Downloads 598799 Prediction on Housing Price Based on Deep Learning
Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang
Abstract:
In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.Keywords: deep learning, convolutional neural network, LSTM, housing prediction
Procedia PDF Downloads 3068798 Predictive Modeling of Student Behavior in Virtual Reality: A Machine Learning Approach
Authors: Gayathri Sadanala, Shibam Pokhrel, Owen Murphy
Abstract:
In the ever-evolving landscape of education, Virtual Reality (VR) environments offer a promising avenue for enhancing student engagement and learning experiences. However, understanding and predicting student behavior within these immersive settings remain challenging tasks. This paper presents a comprehensive study on the predictive modeling of student behavior in VR using machine learning techniques. We introduce a rich data set capturing student interactions, movements, and progress within a VR orientation program. The dataset is divided into training and testing sets, allowing us to develop and evaluate predictive models for various aspects of student behavior, including engagement levels, task completion, and performance. Our machine learning approach leverages a combination of feature engineering and model selection to reveal hidden patterns in the data. We employ regression and classification models to predict student outcomes, and the results showcase promising accuracy in forecasting behavior within VR environments. Furthermore, we demonstrate the practical implications of our predictive models for personalized VR-based learning experiences and early intervention strategies. By uncovering the intricate relationship between student behavior and VR interactions, we provide valuable insights for educators, designers, and developers seeking to optimize virtual learning environments.Keywords: interaction, machine learning, predictive modeling, virtual reality
Procedia PDF Downloads 1438797 An Infinite Mixture Model for Modelling Stutter Ratio in Forensic Data Analysis
Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer
Abstract:
Forensic DNA analysis has received much attention over the last three decades, due to its incredible usefulness in human identification. The statistical interpretation of DNA evidence is recognised as one of the most mature fields in forensic science. Peak heights in an Electropherogram (EPG) are approximately proportional to the amount of template DNA in the original sample being tested. A stutter is a minor peak in an EPG, which is not masking as an allele of a potential contributor, and considered as an artefact that is presumed to be arisen due to miscopying or slippage during the PCR. Stutter peaks are mostly analysed in terms of stutter ratio that is calculated relative to the corresponding parent allele height. Analysis of mixture profiles has always been problematic in evidence interpretation, especially with the presence of PCR artefacts like stutters. Unlike binary and semi-continuous models; continuous models assign a probability (as a continuous weight) for each possible genotype combination, and significantly enhances the use of continuous peak height information resulting in more efficient reliable interpretations. Therefore, the presence of a sound methodology to distinguish between stutters and real alleles is essential for the accuracy of the interpretation. Sensibly, any such method has to be able to focus on modelling stutter peaks. Bayesian nonparametric methods provide increased flexibility in applied statistical modelling. Mixture models are frequently employed as fundamental data analysis tools in clustering and classification of data and assume unidentified heterogeneous sources for data. In model-based clustering, each unknown source is reflected by a cluster, and the clusters are modelled using parametric models. Specifying the number of components in finite mixture models, however, is practically difficult even though the calculations are relatively simple. Infinite mixture models, in contrast, do not require the user to specify the number of components. Instead, a Dirichlet process, which is an infinite-dimensional generalization of the Dirichlet distribution, is used to deal with the problem of a number of components. Chinese restaurant process (CRP), Stick-breaking process and Pólya urn scheme are frequently used as Dirichlet priors in Bayesian mixture models. In this study, we illustrate an infinite mixture of simple linear regression models for modelling stutter ratio and introduce some modifications to overcome weaknesses associated with CRP.Keywords: Chinese restaurant process, Dirichlet prior, infinite mixture model, PCR stutter
Procedia PDF Downloads 3308796 Innovative Methods of Improving Train Formation in Freight Transport
Authors: Jaroslav Masek, Juraj Camaj, Eva Nedeliakova
Abstract:
The paper is focused on the operational model for transport the single wagon consignments on railway network by using two different models of train formation. The paper gives an overview of possibilities of improving the quality of transport services. Paper deals with two models used in problematic of train formatting - time continuously and time discrete. By applying these models in practice, the transport company can guarantee a higher quality of service and expect increasing of transport performance. The models are also applicable into others transport networks. The models supplement a theoretical problem of train formation by new ways of looking to affecting the organization of wagon flows.Keywords: train formation, wagon flows, marshalling yard, railway technology
Procedia PDF Downloads 4378795 A Comparative Study on Sampling Techniques of Polynomial Regression Model Based Stochastic Free Vibration of Composite Plates
Authors: S. Dey, T. Mukhopadhyay, S. Adhikari
Abstract:
This paper presents an exhaustive comparative investigation on sampling techniques of polynomial regression model based stochastic natural frequency of composite plates. Both individual and combined variations of input parameters are considered to map the computational time and accuracy of each modelling techniques. The finite element formulation of composites is capable to deal with both correlated and uncorrelated random input variables such as fibre parameters and material properties. The results obtained by Polynomial regression (PR) using different sampling techniques are compared. Depending on the suitability of sampling techniques such as 2k Factorial designs, Central composite design, A-Optimal design, I-Optimal, D-Optimal, Taguchi’s orthogonal array design, Box-Behnken design, Latin hypercube sampling, sobol sequence are illustrated. Statistical analysis of the first three natural frequencies is presented to compare the results and its performance.Keywords: composite plate, natural frequency, polynomial regression model, sampling technique, uncertainty quantification
Procedia PDF Downloads 5138794 Low-Cost, Portable Optical Sensor with Regression Algorithm Models for Accurate Monitoring of Nitrites in Environments
Authors: David X. Dong, Qingming Zhang, Meng Lu
Abstract:
Nitrites enter waterways as runoff from croplands and are discharged from many industrial sites. Excessive nitrite inputs to water bodies lead to eutrophication. On-site rapid detection of nitrite is of increasing interest for managing fertilizer application and monitoring water source quality. Existing methods for detecting nitrites use spectrophotometry, ion chromatography, electrochemical sensors, ion-selective electrodes, chemiluminescence, and colorimetric methods. However, these methods either suffer from high cost or provide low measurement accuracy due to their poor selectivity to nitrites. Therefore, it is desired to develop an accurate and economical method to monitor nitrites in environments. We report a low-cost optical sensor, in conjunction with a machine learning (ML) approach to enable high-accuracy detection of nitrites in water sources. The sensor works under the principle of measuring molecular absorptions of nitrites at three narrowband wavelengths (295 nm, 310 nm, and 357 nm) in the ultraviolet (UV) region. These wavelengths are chosen because they have relatively high sensitivity to nitrites; low-cost light-emitting devices (LEDs) and photodetectors are also available at these wavelengths. A regression model is built, trained, and utilized to minimize cross-sensitivities of these wavelengths to the same analyte, thus achieving precise and reliable measurements with various interference ions. The measured absorbance data is input to the trained model that can provide nitrite concentration prediction for the sample. The sensor is built with i) a miniature quartz cuvette as the test cell that contains a liquid sample under test, ii) three low-cost UV LEDs placed on one side of the cell as light sources, with each LED providing a narrowband light, and iii) a photodetector with a built-in amplifier and an analog-to-digital converter placed on the other side of the test cell to measure the power of transmitted light. This simple optical design allows measuring the absorbance data of the sample at the three wavelengths. To train the regression model, absorbances of nitrite ions and their combination with various interference ions are first obtained at the three UV wavelengths using a conventional spectrophotometer. Then, the spectrophotometric data are inputs to different regression algorithm models for training and evaluating high-accuracy nitrite concentration prediction. Our experimental results show that the proposed approach enables instantaneous nitrite detection within several seconds. The sensor hardware costs about one hundred dollars, which is much cheaper than a commercial spectrophotometer. The ML algorithm helps to reduce the average relative errors to below 3.5% over a concentration range from 0.1 ppm to 100 ppm of nitrites. The sensor has been validated to measure nitrites at three sites in Ames, Iowa, USA. This work demonstrates an economical and effective approach to the rapid, reagent-free determination of nitrites with high accuracy. The integration of the low-cost optical sensor and ML data processing can find a wide range of applications in environmental monitoring and management.Keywords: optical sensor, regression model, nitrites, water quality
Procedia PDF Downloads 728793 Revealing the Risks of Obstructive Sleep Apnea
Authors: Oyuntsetseg Sandag, Lkhagvadorj Khosbayar, Naidansuren Tsendeekhuu, Densenbal Dansran, Bandi Solongo
Abstract:
Introduction: Obstructive sleep apnea (OSA) is a common disorder affecting at least 2% to 4% of the adult population. It is estimated that nearly 80% of men and 93% of women with moderate to severe sleep apnea are undiagnosed. A number of screening questionnaires and clinical screening models have been developed to help identify patients with OSA, also it’s indeed to clinical practice. Purpose of study: Determine dependence of obstructive sleep apnea between for severe risk and risk factor. Material and Methods: A cross-sectional study included 114 patients presenting from theCentral state 3th hospital and Central state 1th hospital. Patients who had obstructive sleep apnea (OSA)selected in this study. Standard StopBang questionnaire was obtained from all patients.According to the patients’ response to the StopBang questionnaire was divided into low risk, intermediate risk, and high risk.Descriptive statistics were presented mean ± standard deviation (SD). Each questionnaire was compared on the likelihood ratio for a positive result, the likelihood ratio for a negative test result of regression. Statistical analyses were performed utilizing SPSS 16. Results: 114 patients were obtained (mean age 48 ± 16, male 57)that divided to low risk 54 (47.4%), intermediate risk 33 (28.9%), high risk 27 (23.7%). Result of risk factor showed significantly increasing that mean age (38 ± 13vs. 54 ± 14 vs. 59 ± 10, p<0.05), blood pressure (115 ± 18vs. 133 ± 19vs. 142 ± 21, p<0.05), BMI(24 IQR 22; 26 vs. 24 IQR 22; 29 vs. 28 IQR 25; 34, p<0.001), neck circumference (35 ± 3.4 vs. 38 ± 4.7 vs. 41 ± 4.4, p<0.05)were increased. Results from multiple logistic regressions showed that age is significantly independently factor for OSA (odds ratio 1.07, 95% CI 1.02-1.23, p<0.01). Predictive value of age was significantly higher factor for OSA (AUC=0.833, 95% CI 0.758-0.909, p<0.001). Our study showing that risk of OSA is beginning 47 years old (sensitivity 78.3%, specifity74.1%). Conclusions: According to most of all patients’ response had intermediate risk and high risk. Also, age, blood pressure, neck circumference and BMI were increased such as risk factor was increased for OSA. Especially age is independently factor and highest significance for OSA. Patients’ age one year is increased likelihood risk factor 1.1 times is increased.Keywords: obstructive sleep apnea, Stop-Bang, BMI (Body Mass Index), blood pressure
Procedia PDF Downloads 3108792 Efficient Model Selection in Linear and Non-Linear Quantile Regression by Cross-Validation
Authors: Yoonsuh Jung, Steven N. MacEachern
Abstract:
Check loss function is used to define quantile regression. In the prospect of cross validation, it is also employed as a validation function when underlying truth is unknown. However, our empirical study indicates that the validation with check loss often leads to choosing an over estimated fits. In this work, we suggest a modified or L2-adjusted check loss which rounds the sharp corner in the middle of check loss. It has a large effect of guarding against over fitted model in some extent. Through various simulation settings of linear and non-linear regressions, the improvement of check loss by L2 adjustment is empirically examined. This adjustment is devised to shrink to zero as sample size grows.Keywords: cross-validation, model selection, quantile regression, tuning parameter selection
Procedia PDF Downloads 4388791 Financial Inclusion and Modernization: Secure Energy Performance in Shanghai Cooperation Organization
Authors: Shama Urooj
Abstract:
The present work investigates the relationship among financial inclusion, modernization, and energy performance in SCO member countries during the years 2011–2021. PCA is used to create composite indexes of financial inclusion, modernization, and energy performance. We used panel regression models that are both reliable and heteroscedasticity-consistent to look at the relationship among variables. The findings indicate that financial inclusion (FI) and modernization, along with the increased FDI, all appear to contribute to the energy performance in the SCO member countries. However, per capita GDP has a negative impact on energy performance. These results are unbiased and consistent with the robust results obtained by applying different econometric models. Feasible Generalized Least Square (FGLS) estimation is also used for checking the uniformity of the main model results. This research work concludes that there has been no policy coherence in SCO member countries regarding the coordination of growing financial inclusion and modernization for energy sustainability in recent years. In order to improve energy performance with modern development, policies regarding financial inclusion and modernization need be integrated both at national as well as international levels.Keywords: financial inclusion, energy performance, modernization, technological development, SCO.
Procedia PDF Downloads 758790 Thin-Layer Drying Characteristics and Modelling of Instant Coffee Solution
Authors: Apolinar Picado, Ronald Solís, Rafael Gamero
Abstract:
The thin-layer drying characteristics of instant coffee solution were investigated in a laboratory tunnel dryer. Drying experiments were carried out at three temperatures (80, 100 and 120 °C) and an air velocity of 1.2 m/s. Drying experimental data obtained are fitted to six (6) thin-layer drying models using the non-linear least squares regression analysis. The acceptability of the thin-layer drying model has been based on a value of the correlation coefficient that should be close to one, and low values for root mean square error (RMSE) and chi-square (x²). According to this evaluation, the most suitable model for describing drying process of thin-layer instant coffee solution is the Page model. Further, the effective moisture diffusivity and the activation energy were computed employing the drying experimental data. The effective moisture diffusivity values varied from 1.6133 × 10⁻⁹ to 1.6224 × 10⁻⁹ m²/s over the temperature range studied and the activation energy was estimated to be 162.62 J/mol.Keywords: activation energy, diffusivity, instant coffee, thin-layer models
Procedia PDF Downloads 2628789 Factors Affecting Bus Use as a Sustainable Mode of Transportation: Insights from Kerman, Iran
Authors: Fatemeh Rahmani, Navid Nadimi, Vahid Khalifeh
Abstract:
In the near future, cities with medium populations will face traffic congestion, air pollution, high fuel consumption, and noise pollution. It is possible to improve the sustainability of cities by utilizing public transportation. A study of the factors that influence citizens' bus usage in medium-sized cities is presented in this paper. For this purpose, Kerman's citizens were surveyed online. The model was based on a binary logistic regression. A descriptive analysis revealed that simple measures like renewing the fleet, upgrading the stations, establishing a schedule program, and cleaning the buses could improve passenger satisfaction. In addition, the modeling results showed that future traffic congestion can be prevented by implementing road and parking lot pricing plans. Further, as the number and length of trips increases, the probability of citizens taking the bus increases. In conclusion, Kerman's bus system is both secure and fast, but these two characteristics can be improved to increase bus ridership.Keywords: sustainability, transportation, bus, congestion, satisfaction
Procedia PDF Downloads 108788 Personalty Traits as Predictors of Emotional Distress among Awaiting-trials Inmates in Some Selected Correctional Centers in Nigeria
Authors: Fasanmi Samuel Sunday
Abstract:
This study investigated the influence of gender and personality traits on emotional distress among awaiting trial inmates in Nigeria. Participants were three hundred and twenty (320) awaiting trial inmates, drawn from three main correctional centres in Northeast Nigeria, namely: Gashua Correctional Centre, Postiskum Correctional Centre, and Bauchi Correctional Centre. Expo facto research design was adopted. Questionnaires such as the Big Five Inventory and the Perceived Emotional Distress Inventory (PEDI) were used to measure the variables of the study. Three hypotheses were tested. Logistic regression was used for data analysis. Results of the analysis indicated that conscientiousness significantly predicted emotional distress among awaiting trial inmates. However, most of the identified personality traits did not significantly predict emotional distress among awaiting trial inmates. There was no significant gender difference in emotional distress among awaiting-trial inmates. The implications of the study were discussed.Keywords: personality traits, emotional distress, awaiting-trial inmates, gender
Procedia PDF Downloads 988787 Prevalence, Antimicrobial Susceptibility Pattern and Associated Risk Factors for Salmonella Species and Escherichia coli from Raw Meat at Butchery Houses in Mekelle, Tigray, Ethiopia
Authors: Haftay Abraha Tadesse, Atsebaha Gebrekidan Kahsay, Mahumd Abdulkader
Abstract:
Background: Salmonella species and Escherichia coli are important foodborne pathogens affecting humans and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. This study was aimed to determine the prevalence, antimicrobial susceptibility patterns and associated risk factors for Salmonella species and E. coli in raw meat from butchery houses of Mekelle, Northern Ethiopia. Methodology: A cross-sectional study was conducted from January to September 2019. Socio-demographic data and risk factors were collected using a predesigned questionnaire. Meat samples were collected aseptically from the butchery houses and transported using icebox to Mekelle University, College of Veterinary Sciences for the isolation and identification of Salmonella species and E. coli, Antimicrobial susceptibility patterns were determined using Kirby disc diffusion method. Data obtained were cleaned and entered into Statistical Package for the Social Sciences version 22 and logistic regression models with odds ratio were calculated. P-value < 0.05 was considered as statistically significant. Results: A total of 153 out of 384 (39.8%) of the meat specimens were found to be contaminated. The contamination of Salmonella species and E. coli were 15.6% (n=60) and 20.8%) (n=80), respectively. Mixed contamination (Salmonella species and E. coli) was observed in 13 (3.4 %) of the analyzed. Poor washing hands regularly (AOR = 8.37; 95% CI: 2.75-25.50) and not using gloves during meat handling (AOR=11. 28; 95% CI: (4.69 27.10) were associated with an overall bacterial contamination.About 95.5% of the tested isolates were sensitive to chloramphenicol and norfloxacin while the resistance of amoxyclav_amoxicillin and erythromycin were both isolated bacteria species. The overall multidrug resistance pattern for Salmonella and E. coli were 51.4% (n=19) and 31.8% (14), respectively. Conclusion: Of the 153 (153/384) contaminated raw meat, 60 (15.6%) and 80 (20.8%) were contaminated by Salmonella species and E. coli, respectively. Poor hand washing practice and not using glove during meat handling showed significant association with bacterial contamination. Multidrug-resistant showed in Salmonella species and E. coli were 19 (51.4%) and 14 (31.8%), respectively.Keywords: antimicrobial susceptibility test, butchery houses, e. coli, salmonella species
Procedia PDF Downloads 528786 SOM Map vs Hopfield Neural Network: A Comparative Study in Microscopic Evacuation Application
Authors: Zouhour Neji Ben Salem
Abstract:
Microscopic evacuation focuses on the evacuee behavior and way of search of safety place in an egress situation. In recent years, several models handled microscopic evacuation problem. Among them, we have proposed Artificial Neural Network (ANN) as an alternative to mathematical models that can deal with such problem. In this paper, we present two ANN models: SOM map and Hopfield Network used to predict the evacuee behavior in a disaster situation. These models are tested in a real case, the second floor of Tunisian children hospital evacuation in case of fire. The two models are studied and compared in order to evaluate their performance.Keywords: artificial neural networks, self-organization map, hopfield network, microscopic evacuation, fire building evacuation
Procedia PDF Downloads 4048785 Possibility of Making Ceramic Models from Condemned Plaster of Paris (Pop) Moulds for Ceramics Production in Edo State Nigeria
Authors: Osariyekemwen, Daniel Nosakhare
Abstract:
Some ceramic wastes, such as discarded (condemn) Plaster of Paris (POP) in Auchi Polytechnic, Edo State, constitute environmental hazards. This study, therefore, bridges the forgoing gaps by undertaking the use of these discarded (POP) moulds to produced ceramic models for making casting moulds for mass production. This is in line with the possibility of using this medium to properly manage the discarded (condemn) Plaster of Paris (POP) that littered our immediate environment. Presently these are major wastes disposal in the department. Hence, the study has been made to fabricate sanitary miniature models and contract fuse models, respectively. Findings arising from this study show that discarded (condemn) Plaster of Paris (POP) can be carved when to set it neither shrink nor expand; hence warping is quite unusual. Above all, it also gives good finishing with little deterioration with time when compared to clay models.Keywords: plaster of Paris, condemn, moulds, models, production
Procedia PDF Downloads 1888784 Short Review on Models to Estimate the Risk in the Financial Area
Authors: Tiberiu Socaciu, Tudor Colomeischi, Eugenia Iancu
Abstract:
Business failure affects in various proportions shareholders, managers, lenders (banks), suppliers, customers, the financial community, government and society as a whole. In the era in which we have telecommunications networks, exists an interdependence of markets, the effect of a failure of a company is relatively instant. To effectively manage risk exposure is thus require sophisticated support systems, supported by analytical tools to measure, monitor, manage and control operational risks that may arise. As we know, bankruptcy is a phenomenon that managers do not want no matter what stage of life is the company they direct / lead. In the analysis made by us, by the nature of economic models that are reviewed (Altman, Conan-Holder etc.), estimating the risk of bankruptcy of a company corresponds to some extent with its own business cycle tracing of the company. Various models for predicting bankruptcy take into account direct / indirect aspects such as market position, company growth trend, competition structure, characteristics and customer retention, organization and distribution, location etc. From the perspective of our research we will now review the economic models known in theory and practice for estimating the risk of bankruptcy; such models are based on indicators drawn from major accounting firms.Keywords: Anglo-Saxon models, continental models, national models, statistical models
Procedia PDF Downloads 4058783 Improve Safety Performance of Un-Signalized Intersections in Oman
Authors: Siham G. Farag
Abstract:
The main objective of this paper is to provide a new methodology for road safety assessment in Oman through the development of suitable accident prediction models. GLM technique with Poisson or NBR using SAS package was carried out to develop these models. The paper utilized the accidents data of 31 un-signalized T-intersections during three years. Five goodness-of-fit measures were used to assess the overall quality of the developed models. Two types of models were developed separately; the flow-based models including only traffic exposure functions, and the full models containing both exposure functions and other significant geometry and traffic variables. The results show that, traffic exposure functions produced much better fit to the accident data. The most effective geometric variables were major-road mean speed, minor-road 85th percentile speed, major-road lane width, distance to the nearest junction, and right-turn curb radius. The developed models can be used for intersection treatment or upgrading and specify the appropriate design parameters of T- intersections. Finally, the models presented in this thesis reflect the intersection conditions in Oman and could represent the typical conditions in several countries in the middle east area, especially gulf countries.Keywords: accidents prediction models (APMs), generalized linear model (GLM), T-intersections, Oman
Procedia PDF Downloads 2738782 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes
Authors: L. S. Chathurika
Abstract:
Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.Keywords: algorithm, classification, evaluation, features, testing, training
Procedia PDF Downloads 1198781 Antibacterial Evaluation, in Silico ADME and QSAR Studies of Some Benzimidazole Derivatives
Authors: Strahinja Kovačević, Lidija Jevrić, Miloš Kuzmanović, Sanja Podunavac-Kuzmanović
Abstract:
In this paper, various derivatives of benzimidazole have been evaluated against Gram-negative bacteria Escherichia coli. For all investigated compounds the minimum inhibitory concentration (MIC) was determined. Quantitative structure-activity relationships (QSAR) attempts to find consistent relationships between the variations in the values of molecular properties and the biological activity for a series of compounds so that these rules can be used to evaluate new chemical entities. The correlation between MIC and some absorption, distribution, metabolism and excretion (ADME) parameters was investigated, and the mathematical models for predicting the antibacterial activity of this class of compounds were developed. The quality of the multiple linear regression (MLR) models was validated by the leave-one-out (LOO) technique, as well as by the calculation of the statistical parameters for the developed models and the results are discussed on the basis of the statistical data. The results of this study indicate that ADME parameters have a significant effect on the antibacterial activity of this class of compounds. Principal component analysis (PCA) and agglomerative hierarchical clustering algorithms (HCA) confirmed that the investigated molecules can be classified into groups on the basis of the ADME parameters: Madin-Darby Canine Kidney cell permeability (MDCK), Plasma protein binding (PPB%), human intestinal absorption (HIA%) and human colon carcinoma cell permeability (Caco-2).Keywords: benzimidazoles, QSAR, ADME, in silico
Procedia PDF Downloads 3758780 Wealth-Based Inequalities in Child Health: A Micro-Level Analysis of Maharashtra State in India
Abstract:
The study examines the degree and magnitude of wealth-based inequalities in child health and its determinants in India. Despite making strides in economic growth, India has failed to secure a better nutritional status for all the children. The country currently faces the double burden of malnutrition as well as the problems of overweight and obesity. Child malnutrition, obesity, unsafe water, sanitation among others are identified as the risk factors for Non-Communicable Diseases (NCDs). Eliminating malnutrition in all its forms will catalyse improved health and economic outcomes. The assessment of the distributive dimension of child health across various segments of the population is essential for effective policy intervention. The study utilises the fourth round of District Level Health Survey for 2012-13 to analyse the inequalities among children in the age group 0-14 years in Maharashtra, a state in the western region of India with a population of 11.24 crores which constitutes 9.3 percent of the total population of India. The study considers the extent of health inequality by state, districts, sector, age-groups, and gender. The z-scores of four child health outcome variables are computed to assess the nutritional status of pre-school and school children using WHO reference. The descriptive statistics, concentration curves, concentration indices, correlation matrix, logistic regression have been used to analyse the data. The results indicate that magnitude of inequality is higher in Maharashtra and child health inequalities manifest primarily among the weaker sections of society. The concentration curves show that there exists a pro-poor inequality in child malnutrition measured by stunting, wasting, underweight, anaemia and a pro-rich overweight inequality. The inequalities in anaemia are observably lower due to the widespread prevalence. Rural areas exhibit a higher incidence of malnutrition, but greater inequality is observed in the urban areas. Overall, the wealth-based inequalities do not vary significantly between age groups. It appears that there is no gender discrimination at the state level. Further, rural-urban differentials in gender show that boys from the rural area and girls living in the urban region experience higher disparities in health. The relative distribution of undernutrition across districts in Maharashtra reveals that malnutrition is rampant and considerable heterogeneity also exists. A negative correlation is established between malnutrition prevalence and human development indicators. The findings of logistic regression analysis reveal that lower economic status of the household is associated with a higher probability of being malnourished. The study recognises household wealth, education of the parent, child gender, and household size as factors significantly related to malnutrition. The results suggest that among the supply-side variables, child-oriented government programmes might be beneficial in tackling nutrition deficit. In order to bridge the health inequality gap, the government needs to target the schemes better and should expand the coverage of services.Keywords: child health, inequality, malnutrition, obesity
Procedia PDF Downloads 1468779 Determination Power and Sample Size Zero-Inflated Negative Binomial Dependent Death Rate of Age Model (ZINBD): Regression Analysis Mortality Acquired Immune Deficiency Deciency Syndrome (AIDS)
Authors: Mohd Asrul Affendi Bin Abdullah
Abstract:
Sample size calculation is especially important for zero inflated models because a large sample size is required to detect a significant effect with this model. This paper verify how to present percentage of power approximation for categorical and then extended to zero inflated models. Wald test was chosen to determine power sample size of AIDS death rate because it is frequently used due to its approachability and its natural for several major recent contribution in sample size calculation for this test. Power calculation can be conducted when covariates are used in the modeling ‘excessing zero’ data and assist categorical covariate. Analysis of AIDS death rate study is used for this paper. Aims of this study to determine the power of sample size (N = 945) categorical death rate based on parameter estimate in the simulation of the study.Keywords: power sample size, Wald test, standardize rate, ZINBDR
Procedia PDF Downloads 4358778 Predicting Growth of Eucalyptus Marginata in a Mediterranean Climate Using an Individual-Based Modelling Approach
Authors: S.K. Bhandari, E. Veneklaas, L. McCaw, R. Mazanec, K. Whitford, M. Renton
Abstract:
Eucalyptus marginata, E. diversicolor and Corymbia calophylla form widespread forests in south-west Western Australia (SWWA). These forests have economic and ecological importance, and therefore, tree growth and sustainable management are of high priority. This paper aimed to analyse and model the growth of these species at both stand and individual levels, but this presentation will focus on predicting the growth of E. Marginata at the individual tree level. More specifically, the study wanted to investigate how well individual E. marginata tree growth could be predicted by considering the diameter and height of the tree at the start of the growth period, and whether this prediction could be improved by also accounting for the competition from neighbouring trees in different ways. The study also wanted to investigate how many neighbouring trees or what neighbourhood distance needed to be considered when accounting for competition. To achieve this aim, the Pearson correlation coefficient was examined among competition indices (CIs), between CIs and dbh growth, and selected the competition index that can best predict the diameter growth of individual trees of E. marginata forest managed under different thinning regimes at Inglehope in SWWA. Furthermore, individual tree growth models were developed using simple linear regression, multiple linear regression, and linear mixed effect modelling approaches. Individual tree growth models were developed for thinned and unthinned stand separately. The developed models were validated using two approaches. In the first approach, models were validated using a subset of data that was not used in model fitting. In the second approach, the model of the one growth period was validated with the data of another growth period. Tree size (diameter and height) was a significant predictor of growth. This prediction was improved when the competition was included in the model. The fit statistic (coefficient of determination) of the model ranged from 0.31 to 0.68. The model with spatial competition indices validated as being more accurate than with non-spatial indices. The model prediction can be optimized if 10 to 15 competitors (by number) or competitors within ~10 m (by distance) from the base of the subject tree are included in the model, which can reduce the time and cost of collecting the information about the competitors. As competition from neighbours was a significant predictor with a negative effect on growth, it is recommended including neighbourhood competition when predicting growth and considering thinning treatments to minimize the effect of competition on growth. These model approaches are likely to be useful tools for the conservations and sustainable management of forests of E. marginata in SWWA. As a next step in optimizing the number and distance of competitors, further studies in larger size plots and with a larger number of plots than those used in the present study are recommended.Keywords: competition, growth, model, thinning
Procedia PDF Downloads 1288777 The Relationship between Class Attendance and Performance of Industrial Engineering Students Enrolled for a Statistics Subject at the University of Technology
Authors: Tshaudi Motsima
Abstract:
Class attendance is key at all levels of education. At tertiary level many students develop a tendency of not attending all classes without being aware of the repercussions of not attending all classes. It is important for all students to attend all classes as they can receive first-hand information and they can benefit more. The student who attends classes is likely to perform better academically than the student who does not. The aim of this paper is to assess the relationship between class attendance and academic performance of industrial engineering students. The data for this study were collected through the attendance register of students and the other data were accessed from the Integrated Tertiary Software and the Higher Education Data Analyzer Portal. Data analysis was conducted on a sample of 93 students. The results revealed that students with medium predicate scores (OR = 3.8; p = 0.027) and students with low predicate scores (OR = 21.4, p < 0.001) were significantly likely to attend less than 80% of the classes as compared to students with high predicate scores. Students with examination performance of less than 50% were likely to attend less than 80% of classes than students with examination performance of 50% and above, but the differences were not statistically significant (OR = 1.3; p = 0.750).Keywords: class attendance, examination performance, final outcome, logistic regression
Procedia PDF Downloads 1338776 QSRR Analysis of 17-Picolyl and 17-Picolinylidene Androstane Derivatives Based on Partial Least Squares and Principal Component Regression
Authors: Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Lidija Jevrić, Evgenija Djurendić, Jovana Ajduković
Abstract:
There are several methods for determination of the lipophilicity of biologically active compounds, however chromatography has been shown as a very suitable method for this purpose. Chromatographic (C18-RP-HPLC) analysis of a series of 24 17-picolyl and 17-picolinylidene androstane derivatives was carried out. The obtained retention indices (logk, methanol (90%) / water (10%)) were correlated with calculated physicochemical and lipophilicity descriptors. The QSRR analysis was carried out applying principal component regression (PCR) and partial least squares regression (PLS). The PCR and PLS model were selected on the basis of the highest variance and the lowest root mean square error of cross-validation. The obtained PCR and PLS model successfully correlate the calculated molecular descriptors with logk parameter indicating the significance of the lipophilicity of compounds in chromatographic process. On the basis of the obtained results it can be concluded that the obtained logk parameters of the analyzed androstane derivatives can be considered as their chromatographic lipophilicity. These results are the part of the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina and CMST COST Action CM1105.Keywords: androstane derivatives, chromatography, molecular structure, principal component regression, partial least squares regression
Procedia PDF Downloads 276