Search results for: laser applications
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7137

Search results for: laser applications

6537 HBTOnto: An Ontology Model for Analyzing Human Behavior Trajectories

Authors: Heba M. Wagih, Hoda M. O. Mokhtar

Abstract:

Social Network has recently played a significant role in both scientific and social communities. The growing adoption of social network applications has been a relevant source of information nowadays. Due to its popularity, several research trends are emerged to service the huge volume of users including, Location-Based Social Networks (LBSN), Recommendation Systems, Sentiment Analysis Applications, and many others. LBSNs applications are among the highly demanded applications that do not focus only on analyzing the spatiotemporal positions in a given raw trajectory but also on understanding the semantics behind the dynamics of the moving object. LBSNs are possible means of predicting human mobility based on users social ties as well as their spatial preferences. LBSNs rely on the efficient representation of users’ trajectories. Hence, traditional raw trajectory information is no longer convenient. In our research, we focus on studying human behavior trajectory which is the major pillar in location recommendation systems. In this paper, we propose an ontology design patterns with their underlying description logics to efficiently annotate human behavior trajectories.

Keywords: human behavior trajectory, location-based social network, ontology, social network

Procedia PDF Downloads 453
6536 Shape Management Method of Large Structure Based on Octree Space Partitioning

Authors: Gichun Cha, Changgil Lee, Seunghee Park

Abstract:

The objective of the study is to construct the shape management method contributing to the safety of the large structure. In Korea, the research of the shape management is lack because of the new attempted technology. Terrestrial Laser Scanning (TLS) is used for measurements of large structures. TLS provides an efficient way to actively acquire accurate the point clouds of object surfaces or environments. The point clouds provide a basis for rapid modeling in the industrial automation, architecture, construction or maintenance of the civil infrastructures. TLS produce a huge amount of point clouds. Registration, Extraction and Visualization of data require the processing of a massive amount of scan data. The octree can be applied to the shape management of the large structure because the scan data is reduced in the size but, the data attributes are maintained. The octree space partitioning generates the voxel of 3D space, and the voxel is recursively subdivided into eight sub-voxels. The point cloud of scan data was converted to voxel and sampled. The experimental site is located at Sungkyunkwan University. The scanned structure is the steel-frame bridge. The used TLS is Leica ScanStation C10/C5. The scan data was condensed 92%, and the octree model was constructed with 2 millimeter in resolution. This study presents octree space partitioning for handling the point clouds. The basis is created by shape management of the large structures such as double-deck tunnel, building and bridge. The research will be expected to improve the efficiency of structural health monitoring and maintenance. "This work is financially supported by 'U-City Master and Doctor Course Grant Program' and the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (NRF- 2015R1D1A1A01059291)."

Keywords: 3D scan data, octree space partitioning, shape management, structural health monitoring, terrestrial laser scanning

Procedia PDF Downloads 297
6535 An Introduction to the Radiation-Thrust Based on Alpha Decay and Spontaneous Fission

Authors: Shiyi He, Yan Xia, Xiaoping Ouyang, Liang Chen, Zhongbing Zhang, Jinlu Ruan

Abstract:

As the key system of the spacecraft, various propelling system have been developing rapidly, including ion thrust, laser thrust, solar sail and other micro-thrusters. However, there still are some shortages in these systems. The ion thruster requires the high-voltage or magnetic field to accelerate, resulting in extra system, heavy quantity and large volume. The laser thrust now is mostly ground-based and providing pulse thrust, restraint by the station distribution and the capacity of laser. The thrust direction of solar sail is limited to its relative position with the Sun, so it is hard to propel toward the Sun or adjust in the shadow.In this paper, a novel nuclear thruster based on alpha decay and spontaneous fission is proposed and the principle of this radiation-thrust with alpha particle has been expounded. Radioactive materials with different released energy, such as 210Po with 5.4MeV and 238Pu with 5.29MeV, attached to a metal film will provides various thrust among 0.02-5uN/cm2. With this repulsive force, radiation is able to be a power source. With the advantages of low system quantity, high accuracy and long active time, the radiation thrust is promising in the field of space debris removal, orbit control of nano-satellite array and deep space exploration. To do further study, a formula lead to the amplitude and direction of thrust by the released energy and decay coefficient is set up. With the initial formula, the alpha radiation elements with the half life period longer than a hundred days are calculated and listed. As the alpha particles emit continuously, the residual charge in metal film grows and affects the emitting energy distribution of alpha particles. With the residual charge or extra electromagnetic field, the emitting of alpha particles performs differently and is analyzed in this paper. Furthermore, three more complex situations are discussed. Radiation element generating alpha particles with several energies in different intensity, mixture of various radiation elements, and cascaded alpha decay are studied respectively. In combined way, it is more efficient and flexible to adjust the thrust amplitude. The propelling model of the spontaneous fission is similar with the one of alpha decay, which has a more complex angular distribution. A new quasi-sphere space propelling system based on the radiation-thrust has been introduced, as well as the collecting and processing system of excess charge and reaction heat. The energy and spatial angular distribution of emitting alpha particles on unit area and certain propelling system have been studied. As the alpha particles are easily losing energy and self-absorb, the distribution is not the simple stacking of each nuclide. With the change of the amplitude and angel of radiation-thrust, orbital variation strategy on space debris removal is shown and optimized.

Keywords: alpha decay, angular distribution, emitting energy, orbital variation, radiation-thruster

Procedia PDF Downloads 209
6534 Human Kinetics Education and the Computer Operations, Effects and Merits

Authors: Kehinde Adeyeye Adelabu

Abstract:

Computer applications has completely revolutionized the way of life of people which does not exclude the field of sport education. There are computer technologies which help to enhance teaching in every field of education. Invention of computers has done great to the field of education. This study was therefore carried out to examine the effects and merits of computer operations in Human Kinetics Education and Sports. The study was able to identify the component of computer, uses of computer in Human Kinetics education (sports), computer applications in some branches of human kinetics education. A qualitative research method was employed by the author in gathering experts’ views and used to analyze the effects and merits of computer applications in the field of human kinetics education. No experiment was performed in the cause of carrying out the study. The source of information for the study was text-books, journal, articles, past project reports, internet i.e. Google search engine. Computer has significantly helped to improve Education (Human Kinetic), it has complemented the basic physical fitness testing and gave a more scientific basis to the testing. The use of the software and packages has made cost projections, database applications, inventory control, management of events, word processing, electronic mailing and record keeping easier than the pasts.

Keywords: application, computer operation, education, human kinetics

Procedia PDF Downloads 186
6533 Web and Android-Based Applications as a Breakthrough in Preventing Non-System Fault Disturbances Due to Work Errors in the Transmission Unit

Authors: Dhany Irvandy, Ary Gemayel, Mohammad Azhar, Leidenti Dwijayanti, Iif Hafifah

Abstract:

Work safety is among the most important things in work execution. Unsafe conditions and actions are priorities in accident prevention in the world of work, especially in the operation and maintenance of electric power transmission. Considering the scope of work, operational work in the transmission has a very high safety risk. Various efforts have been made to avoid work accidents. However, accidents or disturbances caused by non-conformities in work implementation still often occur. Unsafe conditions or actions can cause these. Along with the development of technology, website-based applications and mobile applications have been widely used as a medium to monitor work in real-time and by more people. This paper explains the use of web and android-based applications to monitor work and work processes in the field to prevent work accidents or non-system fault disturbances caused by non-conformity of work implementation with predetermined work instructions. Because every job is monitored in real-time, recorded in time and documented systemically, this application can reduce the occurrence of possible unsafe actions carried out by job executors that can cause disruption or work accidents.

Keywords: work safety, unsafe action, application, non-system fault, real-time.

Procedia PDF Downloads 47
6532 The Touch Sensation: Ageing and Gender Influences

Authors: A. Abdouni, C. Thieulin, M. Djaghloul, R. Vargiolu, H. Zahouani

Abstract:

A decline in the main sensory modalities (vision, hearing, taste, and smell) is well reported to occur with advancing age, it is expected a similar change to occur with touch sensation and perception. In this study, we have focused on the touch sensations highlighting ageing and gender influences with in vivo systems. The touch process can be divided into two main phases: The first phase is the first contact between the finger and the object, during this contact, an adhesive force has been created which is the needed force to permit an initial movement of the finger. In the second phase, the finger mechanical properties with their surface topography play an important role in the obtained sensation. In order to understand the age and gender effects on the touch sense, we develop different ideas and systems for each phase. To better characterize the contact, the mechanical properties and the surface topography of human finger, in vivo studies on the pulp of 40 subjects (20 of each gender) of four age groups of 26±3, 35+-3, 45+-2 and 58±6 have been performed. To understand the first touch phase a classical indentation system has been adapted to measure the finger contact properties. The normal force load, the indentation speed, the contact time, the penetration depth and the indenter geometry have been optimized. The penetration depth of a glass indenter is recorded as a function of the applied normal force. Main assessed parameter is the adhesive force F_ad. For the second phase, first, an innovative approach is proposed to characterize the dynamic finger mechanical properties. A contactless indentation test inspired from the techniques used in ophthalmology has been used. The test principle is to blow an air blast to the finger and measure the caused deformation by a linear laser. The advantage of this test is the real observation of the skin free return without any outside influence. Main obtained parameters are the wave propagation speed and the Young's modulus E. Second, negative silicon replicas of subject’s fingerprint have been analyzed by a probe laser defocusing. A laser diode transmits a light beam on the surface to be measured, and the reflected signal is returned to a set of four photodiodes. This technology allows reconstructing three-dimensional images. In order to study the age and gender effects on the roughness properties, a multi-scale characterization of roughness has been realized by applying continuous wavelet transform. After determining the decomposition of the surface, the method consists of quantifying the arithmetic mean of surface topographic at each scale SMA. Significant differences of the main parameters are shown with ageing and gender. The comparison between men and women groups reveals that the adhesive force is higher for women. The results of mechanical properties show a Young’s modulus higher for women and also increasing with age. The roughness analysis shows a significant difference in function of age and gender.

Keywords: ageing, finger, gender, touch

Procedia PDF Downloads 265
6531 Aerial Survey and 3D Scanning Technology Applied to the Survey of Cultural Heritage of Su-Paiwan, an Aboriginal Settlement, Taiwan

Authors: April Hueimin Lu, Liangj-Ju Yao, Jun-Tin Lin, Susan Siru Liu

Abstract:

This paper discusses the application of aerial survey technology and 3D laser scanning technology in the surveying and mapping work of the settlements and slate houses of the old Taiwanese aborigines. The relics of old Taiwanese aborigines with thousands of history are widely distributed in the deep mountains of Taiwan, with a vast area and inconvenient transportation. When constructing the basic data of cultural assets, it is necessary to apply new technology to carry out efficient and accurate settlement mapping work. In this paper, taking the old Paiwan as an example, the aerial survey of the settlement of about 5 hectares and the 3D laser scanning of a slate house were carried out. The obtained orthophoto image was used as an important basis for drawing the settlement map. This 3D landscape data of topography and buildings derived from the aerial survey is important for subsequent preservation planning as well as building 3D scan provides a more detailed record of architectural forms and materials. The 3D settlement data from the aerial survey can be further applied to the 3D virtual model and animation of the settlement for virtual presentation. The information from the 3D scanning of the slate house can also be used for further digital archives and data queries through network resources. The results of this study show that, in large-scale settlement surveys, aerial surveying technology is used to construct the topography of settlements with buildings and spatial information of landscape, as well as the application of 3D scanning for small-scale records of individual buildings. This application of 3D technology, greatly increasing the efficiency and accuracy of survey and mapping work of aboriginal settlements, is much helpful for further preservation planning and rejuvenation of aboriginal cultural heritage.

Keywords: aerial survey, 3D scanning, aboriginal settlement, settlement architecture cluster, ecological landscape area, old Paiwan settlements, slat house, photogrammetry, SfM, MVS), Point cloud, SIFT, DSM, 3D model

Procedia PDF Downloads 173
6530 Optimization of the Flexural Strength of Biocomposites Samples Reinforced with Resin for Engineering Applications

Authors: Stephen Akong Takim

Abstract:

This study focused on the optimization of the flexural strength of bio-composite samples of palm kernel, whelks, clams, periwinkles shells and bamboo fiber reinforced with resin for engineering applications. The aim of the study was to formulate different samples of bio-composite reinforced with resin for engineering applications and to evaluate the flexural strength of the fabricated composite. The hand lay-up technique was used for the composites produced by incorporating different percentage compositions of the shells/fiber (10%, 15%, 20%, 25% and 30%) into varied proportions of epoxy resin and catalyst. The cured samples, after 24 hours, were subjected to tensile, impact, flexural and water absorption tests. The experiments were conducted using the Taguchi optimization method L25 (5x5) with five design parameters and five level combinations in Minitab 18 statistical software. The results showed that the average value of flexural was 114.87MPa when compared to the unreinforced 72.33MPa bio-composite. The study recommended that agricultural waste, like palm kernel shells, whelk shells, clams, periwinkle shells and bamboo fiber, should be converted into important engineering applications.

Keywords: bio-composite, resin, palm kernel shells, welk shells, periwinkle shells, bamboo fiber, Taguchi techniques and engineering application

Procedia PDF Downloads 77
6529 Analyzing Medical Workflows Using Market Basket Analysis

Authors: Mohit Kumar, Mayur Betharia

Abstract:

Healthcare domain, with the emergence of Electronic Medical Record (EMR), collects a lot of data which have been attracting Data Mining expert’s interest. In the past, doctors have relied on their intuition while making critical clinical decisions. This paper presents the means to analyze the Medical workflows to get business insights out of huge dumped medical databases. Market Basket Analysis (MBA) which is a special data mining technique, has been widely used in marketing and e-commerce field to discover the association between products bought together by customers. It helps businesses in increasing their sales by analyzing the purchasing behavior of customers and pitching the right customer with the right product. This paper is an attempt to demonstrate Market Basket Analysis applications in healthcare. In particular, it discusses the Market Basket Analysis Algorithm ‘Apriori’ applications within healthcare in major areas such as analyzing the workflow of diagnostic procedures, Up-selling and Cross-selling of Healthcare Systems, designing healthcare systems more user-friendly. In the paper, we have demonstrated the MBA applications using Angiography Systems, but can be extrapolated to other modalities as well.

Keywords: data mining, market basket analysis, healthcare applications, knowledge discovery in healthcare databases, customer relationship management, healthcare systems

Procedia PDF Downloads 174
6528 Simulation of Non-Crimp 3D Orthogonal Carbon Fabric Composite for Aerospace Applications Using Finite Element Method

Authors: Sh. Minapoor, S. Ajeli, M. Javadi Toghchi

Abstract:

Non-crimp 3D orthogonal fabric composite is one of the textile-based composite materials that are rapidly developing light-weight engineering materials. The present paper focuses on geometric and micro mechanical modeling of non-crimp 3D orthogonal carbon fabric and composites reinforced with it for aerospace applications. In this research meso-finite element (FE) modeling employs for stress analysis in different load conditions. Since mechanical testing of expensive textile carbon composites with specific application isn't affordable, simulation composite in a virtual environment is a helpful way to investigate its mechanical properties in different conditions.

Keywords: woven composite, aerospace applications, finite element method, mechanical properties

Procedia PDF Downloads 465
6527 Instruction and Learning Design Consideration for the Development of Mobile Learning Application

Authors: M. Sarrab, M. Elbasir

Abstract:

Most of mobile learning applications currently available are developed for the formal education and learning environment. Those applications are characterized by the improvement of the interaction process between instructors and learners to provide more collaboration and flexibility in the learning process. Despite the long history and large amount of research on Instruction design model and mobile learning there is no complete and well defined set of steps to follow in designing mobile learning applications. Based on this scenario, this paper focuses on identifying instruction design phases considerations and influencing factors in developing mobile learning application. This set of instruction design steps includes analysis, design, development, implementation, evaluation and continuous has been built from a literature study with focus on standards for learning and mobile application software quality and guidelines. The effort is part of an Omani-funded research project investigating the development, adoption and dissemination of mobile learning in Oman.

Keywords: instruction design, mobile learning, mobile application

Procedia PDF Downloads 604
6526 Natural Language Processing; the Future of Clinical Record Management

Authors: Khaled M. Alhawiti

Abstract:

This paper investigates the future of medicine and the use of Natural language processing. The importance of having correct clinical information available online is remarkable; improving patient care at affordable costs could be achieved using automated applications to use the online clinical information. The major challenge towards the retrieval of such vital information is to have it appropriately coded. Majority of the online patient reports are not found to be coded and not accessible as its recorded in natural language text. The use of Natural Language processing provides a feasible solution by retrieving and organizing clinical information, available in text and transforming clinical data that is available for use. Systems used in NLP are rather complex to construct, as they entail considerable knowledge, however significant development has been made. Newly formed NLP systems have been tested and have established performance that is promising and considered as practical clinical applications.

Keywords: clinical information, information retrieval, natural language processing, automated applications

Procedia PDF Downloads 404
6525 Application of Nanoparticles in Biomedical and MRI

Authors: Raziyeh Mohammadi

Abstract:

At present, nanoparticles are used for various biomedical applications where they facilitate laboratory diagnostics and therapeutics. The performance of nanoparticles for biomedical applications is often assessed by their narrow size distribution, suitable magnetic saturation, and low toxicity effects. Superparamagnetic iron oxide nanoparticles have received great attention due to their applications as contrast agents for magnetic resonance imaging (MRI. (Processes in the tissue where the blood brain barrier is intact in this way shielded from the contact to this conventional contrast agent and will only reveal changes in the tissue if it involves an alteration in the vasculature. This technique is very useful for detecting tumors and can even be used for detecting metabolic functional alterations in the brain, such as epileptic activity.SPIONs have found application in Magnetic Resonance Imaging (MRI) and magnetic hyperthermia. Unlike bulk iron, SPIONs do not have remnant magnetization in the absence of the external magnetic field; therefore, a precise remote control over their action is possible.

Keywords: nanoparticles, MRI, biomedical, iron oxide, spions

Procedia PDF Downloads 216
6524 Algorithms for Run-Time Task Mapping in NoC-Based Heterogeneous MPSoCs

Authors: M. K. Benhaoua, A. K. Singh, A. E. Benyamina, P. Boulet

Abstract:

Mapping parallelized tasks of applications onto these MPSoCs can be done either at design time (static) or at run-time (dynamic). Static mapping strategies find the best placement of tasks at design-time, and hence, these are not suitable for dynamic workload and seem incapable of runtime resource management. The number of tasks or applications executing in MPSoC platform can exceed the available resources, requiring efficient run-time mapping strategies to meet these constraints. This paper describes a new Spiral Dynamic Task Mapping heuristic for mapping applications onto NoC-based Heterogeneous MPSoC. This heuristic is based on packing strategy and routing Algorithm proposed also in this paper. Heuristic try to map the tasks of an application in a clustering region to reduce the communication overhead between the communicating tasks. The heuristic proposed in this paper attempts to map the tasks of an application that are most related to each other in a spiral manner and to find the best possible path load that minimizes the communication overhead. In this context, we have realized a simulation environment for experimental evaluations to map applications with varying number of tasks onto an 8x8 NoC-based Heterogeneous MPSoCs platform, we demonstrate that the new mapping heuristics with the new modified dijkstra routing algorithm proposed are capable of reducing the total execution time and energy consumption of applications when compared to state-of-the-art run-time mapping heuristics reported in the literature.

Keywords: multiprocessor system on chip, MPSoC, network on chip, NoC, heterogeneous architectures, run-time mapping heuristics, routing algorithm

Procedia PDF Downloads 489
6523 Second Time’s a Charm: The Intervention of the European Patent Office on the Strategic Use of Divisional Applications

Authors: Alissa Lefebre

Abstract:

It might seem intuitive to hope for a fast decision on the patent grant. After all, a granted patent provides you with a monopoly position, which allows you to obstruct others from using your technology. However, this does not take into account the strategic advantages one can obtain from keeping their patent applications pending. First, you have the financial advantage of postponing certain fees, although many applicants would probably agree that this is not the main benefit. As the scope of the patent protection is only decided upon at the grant, the pendency period introduces uncertainty amongst rivals. This uncertainty entails not knowing whether the patent will actually get granted and what the scope of protection will be. Consequently, rivals can only depend upon limited and uncertain information when deciding what technology is worth pursuing. One way to keep patent applications pending, is the use of divisional applications. These applicants can be filed out of a parent application as long as that parent application is still pending. This allows the applicant to pursue (part of) the content of the parent application in another application, as the divisional application cannot exceed the scope of the parent application. In a fast-moving and complex market such as the tele- and digital communications, it might allow applicants to obtain an actual monopoly position as competitors are discouraged to pursue a certain technology. Nevertheless, this practice also has downsides to it. First of all, it has an impact on the workload of the examiners at the patent office. As the number of patent filings have been increasing over the last decades, using strategies that increase this number even more, is not desirable from the patent examiners point of view. Secondly, a pending patent does not provide you with the protection of a granted patent, thus not only create uncertainty for the rivals, but also for the applicant. Consequently, the European patent office (EPO) has come up with a “raising the bar initiative” in which they have decided to tackle the strategic use of divisional applications. Over the past years, two rules have been implemented. The first rule in 2010 introduced a time limit, upon which divisional applications could only be filed within a 24-month limit after the first communication with the patent office. However, after carrying-out a user feedback survey, the EPO abolished the rule again in 2014 and replaced it by a fee mechanism. The fee mechanism is still in place today, which might be an indication of a better result compared to the first rule change. This study tests the impact of these rules on the strategic use of divisional applications in the tele- and digital communication industry and provides empirical evidence on their success. Upon using three different survival models, we find overall evidence that divisional applications prolong the pendency time and that only the second rule is able to tackle the strategic patenting and thus decrease the pendency time.

Keywords: divisional applications, regulatory changes, strategic patenting, EPO

Procedia PDF Downloads 130
6522 One Health Approach: The Importance of Improving the Identification of Waterborne Bacteria in Austrian Water

Authors: Aurora Gitto, Philipp Proksch

Abstract:

The presence of various microorganisms (bacteria, fungi) in surface water and groundwater represents an important issue for human health worldwide. The matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) has emerged as a promising and reliable tool for bacteria identification in clinical diagnostic microbiology and environmental strains thanks to an ionization technique that uses a laser energy absorbing matrix to create ions from large molecules with minimal fragmentation. The study aims first to conceptualise and set up library information and create a comprehensive database of MALDI-TOF-MS spectra from environmental water samples. The samples were analysed over a year (2021-2022) using membrane filtration methodology (0.45 μm and 0.22 μm) and then isolated on R2A agar for a period of 5 days and Yeast extract agar growing at 22 °C up to 4 days and 37 °C for 48 hours. The undetected organisms by MALDI-TOF-MS were analysed by PCR and then sequenced. The information obtained by the sequencing was further implemented in the MALDI-TOF-MS library. Among the culturable bacteria, the results show how the incubator temperature affects the growth of some genera instead of others, as demonstrated by Pseudomonas sp., which grows at 22 °C, compared to Bacillus sp., which is abundant at 37 °C. The bacteria community shows a variation in composition also between the media used, as demonstrated with R2A agar which has been defined by a higher presence of organisms not detected compared to YEA. Interesting is the variability of the Genus over one year of sampling and how the seasonality impacts the bacteria community; in fact, in some sampling locations, we observed how the composition changed, moving from winter to spring and summer. In conclusion, the bacteria community in groundwater and river bank filtration represents important information that needs to be added to the library to simplify future water quality analysis but mainly to prevent potential risks to human health.

Keywords: water quality, MALDI-TOF-MS, sequencing, library

Procedia PDF Downloads 83
6521 Reagentless Detection of Urea Based on ZnO-CuO Composite Thin Film

Authors: Neha Batra Bali, Monika Tomar, Vinay Gupta

Abstract:

A reagentless biosensor for detection of urea based on ZnO-CuO composite thin film is presented in following work. Biosensors have immense potential for varied applications ranging from environmental to clinical testing, health care, and cell analysis. Immense growth in the field of biosensors is due to the huge requirement in today’s world to develop techniques which are both cost effective and accurate for prevention of disease manifestation. The human body comprises of numerous biomolecules which in their optimum levels are essential for functioning. However mismanaged levels of these biomolecules result in major health issues. Urea is one of the key biomolecules of interest. Its estimation is of paramount significance not only for healthcare sector but also from environmental perspectives. If level of urea in human blood/serum is abnormal, i.e., above or below physiological range (15-40mg/dl)), it may lead to diseases like renal failure, hepatic failure, nephritic syndrome, cachexia, urinary tract obstruction, dehydration, shock, burns and gastrointestinal, etc. Various metal nanoparticles, conducting polymer, metal oxide thin films, etc. have been exploited to act as matrix to immobilize urease to fabricate urea biosensor. Amongst them, Zinc Oxide (ZnO), a semiconductor metal oxide with a wide band gap is of immense interest as an efficient matrix in biosensors by virtue of its natural abundance, biocompatibility, good electron communication feature and high isoelectric point (9.5). In spite of being such an attractive candidate, ZnO does not possess a redox couple of its own which necessitates the use of electroactive mediators for electron transfer between the enzyme and the electrode, thereby causing hindrance in realization of integrated and implantable biosensor. In the present work, an effort has been made to fabricate a matrix based on ZnO-CuO composite prepared by pulsed laser deposition (PLD) technique in order to incorporate redox properties in ZnO matrix and to utilize the same for reagentless biosensing applications. The prepared bioelectrode Urs/(ZnO-CuO)/ITO/glass exhibits high sensitivity (70µAmM⁻¹cm⁻²) for detection of urea (5-200 mg/dl) with high stability (shelf life ˃ 10 weeks) and good selectivity (interference ˂ 4%). The enhanced sensing response obtained for composite matrix is attributed to the efficient electron exchange between ZnO-CuO matrix and immobilized enzymes, and subsequently fast transfer of generated electrons to the electrode via matrix. The response is encouraging for fabricating reagentless urea biosensor based on ZnO-CuO matrix.

Keywords: biosensor, reagentless, urea, ZnO-CuO composite

Procedia PDF Downloads 290
6520 On Deterministic Chaos: Disclosing the Missing Mathematics from the Lorenz-Haken Equations

Authors: Meziane Belkacem

Abstract:

We aim at converting the original 3D Lorenz-Haken equations, which describe laser dynamics –in terms of self-pulsing and chaos- into 2-second-order differential equations, out of which we extract the so far missing mathematics and corroborations with respect to nonlinear interactions. Leaning on basic trigonometry, we pull out important outcomes; a fundamental result attributes chaos to forbidden periodic solutions inside some precisely delimited region of the control parameter space that governs the bewildering dynamics.

Keywords: Physics, optics, nonlinear dynamics, chaos

Procedia PDF Downloads 158
6519 Quantum Dot – DNA Conjugates for Biological Applications

Authors: A. Banerjee, C. Grazon, B. Nadal, T. Pons, Y. Krishnan, B. Dubertret

Abstract:

Quantum Dots (QDs) have emerged as novel fluorescent probes for biomedical applications. The photophysical properties of QDs such as broad absorption, narrow emission spectrum, reduced blinking, and enhanced photostability make them advantageous over organic fluorophores. However, for some biological applications, QDs need to be first targeted to specific intracellular locations. It parallel, base pairing properties and biocompatibility of DNA has been extensively used for biosensing, targetting and intracellular delivery of numerous bioactive agents. The combination of the photophysical properties of QDs and targettability of DNA has yielded fluorescent, stable and targetable nanosensors. QD-DNA conjugates have used in drug delivery, siRNA, intracellular pH sensing and several other applications; and continue to be an active area of research. In this project, a novel method to synthesise QD-DNA conjugates and their applications in bioimaging are investigated. QDs are first solubilized in water using a thiol based amphiphilic co-polymer and, then conjugated to amine functionalized DNA using a heterobifunctional linker. The conjugates are purified by size exclusion chromatography and characterized by UV-Vis absorption and fluorescence spectroscopy, electrophoresis and microscopy. Parameters that influence the conjugation yield such as reducing agents, the excess of salt and pH have been investigated in detail. In optimized reaction conditions, up to 12 single-stranded DNA (15 mer length) can be conjugated per QD. After conjugation, the QDs retain their colloidal stability and high quantum yield; and the DNA is available for hybridization. The reaction has also been successfully tested on QDs emitting different colors and on Gold nanoparticles and therefore highly generalizable. After extensive characterization and robust synthesis of QD-DNA conjugates in vitro, the physical properties of these conjugates in cellular milieu are being invistigated. Modification of QD surface with DNA appears to remarkably alter the fate of QD inside cells and can have potential implications in therapeutic applications.

Keywords: bioimaging, cellular targeting, drug delivery, photostability

Procedia PDF Downloads 425
6518 BIM Modeling of Site and Existing Buildings: Case Study of ESTP Paris Campus

Authors: Rita Sassine, Yassine Hassani, Mohamad Al Omari, Stéphanie Guibert

Abstract:

Building Information Modelling (BIM) is the process of creating, managing, and centralizing information during the building lifecycle. BIM can be used all over a construction project, from the initiation phase to the planning and execution phases to the maintenance and lifecycle management phase. For existing buildings, BIM can be used for specific applications such as lifecycle management. However, most of the existing buildings don’t have a BIM model. Creating a compatible BIM for existing buildings is very challenging. It requires special equipment for data capturing and efforts to convert these data into a BIM model. The main difficulties for such projects are to define the data needed, the level of development (LOD), and the methodology to be adopted. In addition to managing information for an existing building, studying the impact of the built environment is a challenging topic. So, integrating the existing terrain that surrounds buildings into the digital model is essential to be able to make several simulations as flood simulation, energy simulation, etc. Making a replication of the physical model and updating its information in real-time to make its Digital Twin (DT) is very important. The Digital Terrain Model (DTM) represents the ground surface of the terrain by a set of discrete points with unique height values over 2D points based on reference surface (e.g., mean sea level, geoid, and ellipsoid). In addition, information related to the type of pavement materials, types of vegetation and heights and damaged surfaces can be integrated. Our aim in this study is to define the methodology to be used in order to provide a 3D BIM model for the site and the existing building based on the case study of “Ecole Spéciale des Travaux Publiques (ESTP Paris)” school of engineering campus. The property is located on a hilly site of 5 hectares and is composed of more than 20 buildings with a total area of 32 000 square meters and a height between 50 and 68 meters. In this work, the campus precise levelling grid according to the NGF-IGN69 altimetric system and the grid control points are computed according to (Réseau Gédésique Français) RGF93 – Lambert 93 french system with different methods: (i) Land topographic surveying methods using robotic total station, (ii) GNSS (Global Network Satellite sytem) levelling grid with NRTK (Network Real Time Kinematic) mode, (iii) Point clouds generated by laser scanning. These technologies allow the computation of multiple building parameters such as boundary limits, the number of floors, the floors georeferencing, the georeferencing of the 4 base corners of each building, etc. Once the entry data are identified, the digital model of each building is done. The DTM is also modeled. The process of altimetric determination is complex and requires efforts in order to collect and analyze multiple data formats. Since many technologies can be used to produce digital models, different file formats such as DraWinG (DWG), LASer (LAS), Comma-separated values (CSV), Industry Foundation Classes (IFC) and ReViT (RVT) will be generated. Checking the interoperability between BIM models is very important. In this work, all models are linked together and shared on 3DEXPERIENCE collaborative platform.

Keywords: building information modeling, digital terrain model, existing buildings, interoperability

Procedia PDF Downloads 114
6517 X-Ray Fluorescence Molecular Imaging with Improved Sensitivity for Biomedical Applications

Authors: Guohua Cao, Xu Dong

Abstract:

X-ray Fluorescence Molecular Imaging (XFMI) holds great promise as a low-cost molecular imaging modality for biomedical applications with high chemical sensitivity. However, for in vivo biomedical applications, a key technical bottleneck is the relatively low chemical sensitivity of XFMI, especially at a reasonably low radiation dose. In laboratory x-ray source based XFMI, one of the main factors that limits the chemical sensitivity of XFMI is the scattered x-rays. We will present our latest findings on improving the chemical sensitivity of XFMI using excitation beam spectrum optimization. XFMI imaging experiments on two mouse-sized phantoms were conducted at three different excitation beam spectra. Our results show that the minimum detectable concentration (MDC) of iodine can be readily increased by five times via excitation spectrum optimization. Findings from this investigation could find use for in vivo pre-clinical small-animal XFMI in the future.

Keywords: molecular imaging, X-ray fluorescence, chemical sensitivity, X-ray scattering

Procedia PDF Downloads 188
6516 Enhanced Optical Nonlinearity in Bismuth Borate Glass: Effect of Size of Nanoparticles

Authors: Shivani Singla, Om Prakash Pandey, Gopi Sharma

Abstract:

Metallic nanoparticle doped glasses has lead to rapid development in the field of optics. Large third order non-linearity, ultrafast time response, and a wide range of resonant absorption frequencies make these metallic nanoparticles more important in comparison to their bulk material. All these properties are highly dependent upon the size, shape, and surrounding environment of the nanoparticles. In a quest to find a suitable material for optical applications, several efforts have been devoted to improve the properties of such glasses in the past. In the present study, bismuth borate glass doped with different size gold nanoparticles (AuNPs) has been prepared using the conventional melt-quench technique. Synthesized glasses are characterized by X-ray diffraction (XRD) and Fourier Transformation Infrared spectroscopy (FTIR) to observe the structural modification in the glassy matrix with the variation in the size of the AuNPs. Glasses remain purely amorphous in nature even after the addition of AuNPs, whereas FTIR proposes that the main structure contains BO₃ and BO₄ units. Field emission scanning electron microscopy (FESEM) confirms the existence and variation in the size of AuNPs. Differential thermal analysis (DTA) depicts that prepared glasses are thermally stable and are highly suitable for the fabrication of optical fibers. The nonlinear optical parameters (nonlinear absorption coefficient and nonlinear refractive index) are calculated out by using the Z-scan technique with a Ti: sapphire laser at 800 nm. It has been concluded that the size of the nanoparticles highly influences the structural thermal and optical properties system.

Keywords: bismuth borate glass, different size, gold nanoparticles, nonlinearity

Procedia PDF Downloads 123
6515 Tri/Tetra-Block Copolymeric Nanocarriers as a Potential Ocular Delivery System of Lornoxicam: Experimental Design-Based Preparation, in-vitro Characterization and in-vivo Estimation of Transcorneal Permeation

Authors: Alaa Hamed Salama, Rehab Nabil Shamma

Abstract:

Introduction: Polymeric micelles that can deliver drug to intended sites of the eye have attracted much scientific attention recently. The aim of this study was to review the aqueous-based formulation of drug-loaded polymeric micelles that hold significant promise for ophthalmic drug delivery. This study investigated the synergistic performance of mixed polymeric micelles made of linear and branched poly (ethylene oxide)-poly (propylene oxide) for the more effective encapsulation of Lornoxicam (LX) as a hydrophobic model drug. Methods: The co-micellization process of 10% binary systems combining different weight ratios of the highly hydrophilic poloxamers; Synperonic® PE/P84, and Synperonic® PE/F127 and the hydrophobic poloxamine counterpart (Tetronic® T701) was investigated by means of photon correlation spectroscopy and cloud point. The drug-loaded micelles were tested for their solubilizing capacity towards LX. Results: Results showed a sharp solubility increase from 0.46 mg/ml up to more than 4.34 mg/ml, representing about 136-fold increase. Optimized formulation was selected to achieve maximum drug solubilizing power and clarity with lowest possible particle size. The optimized formulation was characterized by 1HNMR analysis which revealed complete encapsulation of the drug within the micelles. Further investigations by histopathological and confocal laser studies revealed the non-irritant nature and good corneal penetrating power of the proposed nano-formulation. Conclusion: LX-loaded polymeric nanomicellar formulation was fabricated allowing easy application of the drug in the form of clear eye drops that do not cause blurred vision or discomfort, thus achieving high patient compliance.

Keywords: confocal laser scanning microscopy, Histopathological studies, Lornoxicam, micellar solubilization

Procedia PDF Downloads 449
6514 Iontophoretic Drug Transport: An Non-Invasive Transdermal Approach

Authors: Ashish Jain, Shivam Tayal

Abstract:

There has been great interest in the field of Iontophoresis since few years due to its great applications in the field of controlled transdermal drug delivery system. It is an technique which is used to enhance the transdermal permeation of ionized high molecular weight molecules across the skin membrane especially Peptides & Proteins by the application of direct current of 1-4 mA for 20-40 minutes whereas chemical must be placed on electrodes with same charge. Iontophoresis enhanced the delivery of drug into the skin via pores like hair follicles, sweat gland ducts etc. rather than through stratum corneum. It has wide applications in the field of experimental, Therapeutic, Diagnostic, Dentistry etc. Medical science is using it to treat Hyperhidrosis (Excessive sweating) in hands and feet and to treat other ailments like hypertension, Migraine etc. Nowadays commercial transdermal iontophoretic patches are available in the market to treat different ailments. Researchers are keen to research in this field due to its vast applications and advantages.

Keywords: iontophoresis, novel drug delivery, transdermal, permeation enhancer

Procedia PDF Downloads 255
6513 A Review on Applications of Evolutionary Algorithms to Reservoir Operation for Hydropower Production

Authors: Nkechi Neboh, Josiah Adeyemo, Abimbola Enitan, Oludayo Olugbara

Abstract:

Evolutionary algorithms are techniques extensively used in the planning and management of water resources and systems. It is useful in finding optimal solutions to water resources problems considering the complexities involved in the analysis. River basin management is an essential area that involves the management of upstream, river inflow and outflow including downstream aspects of a reservoir. Water as a scarce resource is needed by human and the environment for survival and its management involve a lot of complexities. Management of this scarce resource is necessary for proper distribution to competing users in a river basin. This presents a lot of complexities involving many constraints and conflicting objectives. Evolutionary algorithms are very useful in solving this kind of complex problems with ease. Evolutionary algorithms are easy to use, fast and robust with many other advantages. Many applications of evolutionary algorithms, which are population based search algorithm, are discussed. Different methodologies involved in the modeling and simulation of water management problems in river basins are explained. It was found from this work that different evolutionary algorithms are suitable for different problems. Therefore, appropriate algorithms are suggested for different methodologies and applications based on results of previous studies reviewed. It is concluded that evolutionary algorithms, with wide applications in water resources management, are viable and easy algorithms for most of the applications. The results suggested that evolutionary algorithms, applied in the right application areas, can suggest superior solutions for river basin management especially in reservoir operations, irrigation planning and management, stream flow forecasting and real-time applications. The future directions in this work are suggested. This study will assist decision makers and stakeholders on the best evolutionary algorithm to use in varied optimization issues in water resources management.

Keywords: evolutionary algorithm, multi-objective, reservoir operation, river basin management

Procedia PDF Downloads 491
6512 Carbon Nanotubes and Novel Applications for Textile

Authors: Ezgi Ismar

Abstract:

Carbon nanotubes (CNTs) are different from other allotropes of carbon, such as graphite, diamond and fullerene. Replacement of metals in flexible textiles has an advantage. Particularly in the last decade, both their electrical and mechanical properties have become an area of interest for Li-ion battery applications where the conductivity has a major importance. While carbon nanotubes are conductive, they are also less in weight compared to convectional conductive materials. Carbon nanotubes can be used inside the fiber so they can offer to create 3-D structures. In this review, you can find some examples of how carbon nanotubes adapted to textile products.

Keywords: carbon nanotubes, conductive textiles, nanotechnology, nanotextiles

Procedia PDF Downloads 383
6511 Functionalized Nanoparticles for Biomedical Applications

Authors: Temesgen Geremew

Abstract:

Functionalized nanoparticles have emerged as a revolutionary class of materials with immense potential in various biomedical applications. These engineered nanoparticles possess unique properties tailored to interact with biological systems, offering unprecedented opportunities in drug delivery, imaging, diagnostics, and therapy. This research delves into the design, synthesis, and characterization of functionalized nanoparticles for targeted biomedical applications. The primary focus lies on developing nanoparticles with precisely controlled size, surface chemistry, and biocompatibility for specific medical purposes. The research will also explore the crucial interaction of these nanoparticles with biological systems, encompassing cellular uptake, biodistribution, and potential toxicity evaluation. The successful development of functionalized nanoparticles holds the promise to revolutionize various aspects of healthcare. This research aspires to contribute significantly to this advancement by providing valuable insights into the design and application of these versatile materials within the ever-evolving field of biomedicine.

Keywords: nanoparticles, biomedicals, cancer, biocompatibility

Procedia PDF Downloads 68
6510 Technological Applications in Automobile Manufacturing Sector - A Case Study Analysis

Authors: Raja Kannusamy

Abstract:

The research focuses on the applicable technologies in the automobile industry and their effects on the productivity and annual revenue of the industry. A study has been conducted on 6 major automobile manufacturing industries represented in this research as M1, M2, M3, M4, M5 and M6. The results indicate that M1, which is a pioneer in technological applications, remains the market leader, followed by M5 & M2 taking the second and third positions, respectively. M3, M6 and M4 are the followers and are placed next in positions. It has also been observed that M1 and M2 have entered into an agreement to share the basic structural technologies and they maintain long-term and trusted relationships with their suppliers through the Keiretsu system. With technological giants such as Apple, Microsoft, Uber and Google entering the automobile industry in recent years, an upward trend is expected in the futuristic market with self-driving cars to dominate the automobile sector. To keep up with the market trend, it is essential for automobile manufacturers to understand the importance of developing technological capabilities and skills to be competitive in the marketplace.

Keywords: automobile manufacturing industries, competitiveness, performance improvement, technological applications

Procedia PDF Downloads 178
6509 PEINS: A Generic Compression Scheme Using Probabilistic Encoding and Irrational Number Storage

Authors: P. Jayashree, S. Rajkumar

Abstract:

With social networks and smart devices generating a multitude of data, effective data management is the need of the hour for networks and cloud applications. Some applications need effective storage while some other applications need effective communication over networks and data reduction comes as a handy solution to meet out both requirements. Most of the data compression techniques are based on data statistics and may result in either lossy or lossless data reductions. Though lossy reductions produce better compression ratios compared to lossless methods, many applications require data accuracy and miniature details to be preserved. A variety of data compression algorithms does exist in the literature for different forms of data like text, image, and multimedia data. In the proposed work, a generic progressive compression algorithm, based on probabilistic encoding, called PEINS is projected as an enhancement over irrational number stored coding technique to cater to storage issues of increasing data volumes as a cost effective solution, which also offers data security as a secondary outcome to some extent. The proposed work reveals cost effectiveness in terms of better compression ratio with no deterioration in compression time.

Keywords: compression ratio, generic compression, irrational number storage, probabilistic encoding

Procedia PDF Downloads 296
6508 A Framework for Protecting Teenagers from Cyber Crimes and Cyberbullying

Authors: Sultan Alanazi, Adwan Alanazi

Abstract:

Social applications consist of powerful tools that allow people to connect and interact with each other. However, its negative use cannot be ignored. Cyberbullying is a new and serious Internet problem. Cyberbullying is one of the most common risks for teenagers to go online. More than half of young people report that they do not tell their parents when this will occur, which can have significant physiological consequences. Cyberbullying involves the deliberate use of digital media on the Internet to convey false or embarrassing information about others. Therefore, this article provides a way to detect cyber-bullying in social media applications for parents. The purpose of our work is to develop an architectural model for identifying and measuring the state of Cyberbullying faced by children on social media applications. For parents, this will be a good tool for monitoring their children without invading their privacy. Finally, some interesting open-ended questions were raised, suggesting promising ideas for starting new research in this new field.

Keywords: cyberbullying, cyber bullying, internet crimes, social media security, E-crimes

Procedia PDF Downloads 140