Search results for: grid connected
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2302

Search results for: grid connected

1702 Our Shared Humanity: Bridging the Great Divide of Different Religions

Authors: Aida Raissi, Holly Wong, Elma Raissi

Abstract:

Background: Connection is a primal need established during infancy and reiterated in many forms of social interaction. When we make connections with others we experience growth, continuity, and gain an understanding of the other’s sense of the world. Feeling socially connected to another individual or community has been shown to increase self-esteem, happiness, and meaning. However, feeling connected to another individual or a specific community may also decrease the motivation to seek connection with more distant individuals or communities. Furthermore, we allow ourselves to interact with those in other communities as apart from us, and in some cases, to dehumanize their existence. Objective: The aim of this project is to bridge the gap between different communities, specifically religious communities and foster feelings of connection as one with all members through the medium of art, specifically photography. Method: Members of all major faiths including Agnosticism, Atheism, Buddhism, Catholicism, Christianity, Ismaili, Jewish, Ja’far Shia, Sunni will be interviewed. Participants will be asked to partake in a brief interview of two parts: A. Answering two questions: 1. What are you most looking forward to in the future, and why? 2. What does religion mean to you? B. Having their picture taken. Our questions aim to elicit individual stories that together, show that we have more in common, than differences, despite our faiths. With the completion of the interviews, the responses will be compiled together and major themes will be identified. Impact: The resulting stories and corresponding individual pictures provide an excellent opportunity to encourage and inspire people to get to know those of other beliefs and values, participate in each other’s communities and develop a sense of oneness within our shared humanity. Knowledge translation: The personal stories, and the common themes they illustrate, will be shared with various audiences, including the general public, academia and targeted groups such as students. This will be done through displaying the photographs and responses at art galleries, conferences, in print and online.

Keywords: social justice, religion, connection, understanding, community

Procedia PDF Downloads 396
1701 Friction and Wear, Including Mechanisms, Modeling,Characterization, Measurement and Testing (Bangladesh Case)

Authors: Gor Muradyan

Abstract:

The paper is about friction and wear, including mechanisms, modeling, characterization, measurement and testing case in Bangladesh. Bangladesh is a country under development, A lot of people live here, approximately 145 million. The territory of this country is very small. Therefore buildings are very close to each other. As the pipe lines are very old, and people get almost dirty water, there are a lot of ongoing projects under ADB. In those projects the contractors using HDD machines (Horizontal Directional Drilling ) and grundoburst. These machines are working underground. As ground in Bangladesh is very sludge, machine can't work relevant because of big friction in the soil. When drilling works are finished machine is pulling the pipe underground. Very often the pulling of the pipes becomes very complicated because of the friction. Therefore long section of the pipe laying can’t be done because of a big friction. In that case, additional problems rise, as well as additional work must be done. As we mentioned above it is not possible to do big section of the pipe laying because of big friction in the soil, Because of this it is coming out that contractors must do more joints, more pressure test. It is always connected with additional expenditure and losing time. This machine can pull in 75 mm to 500 mm pipes connected with the soil condition. Length is possible till 500m related how much friction it will had on the puller. As less as much it can pull. Another machine grundoburst is not working at this soil condition at all. The machine is working with air compressor. This machine are using for the smaller diameter pipes, 20 mm to 63 mm. Most of the cases these machines are being used for the installing of the house connection pipes, for making service connection. To make a friction less contractors using bigger pulling had then the pipe. It is taking down the friction, But the problem of this machine is that it can't work at sludge. Because of mentioned reasons the friction has a big mining during this kind of works. There are a lot of ways to reduce the friction. In this paper we'll introduce the ways that we have researched during our practice in Bangladesh.

Keywords: Bangladesh, friction and wear, HDD machines, reducing friction

Procedia PDF Downloads 316
1700 Fractal Analysis of Some Bifurcations of Discrete Dynamical Systems in Higher Dimensions

Authors: Lana Horvat Dmitrović

Abstract:

The main purpose of this paper is to study the box dimension as fractal property of bifurcations of discrete dynamical systems in higher dimensions. The paper contains the fractal analysis of the orbits near the hyperbolic and non-hyperbolic fixed points in discrete dynamical systems. It is already known that in one-dimensional case the orbit near the hyperbolic fixed point has the box dimension equal to zero. On the other hand, the orbit near the non-hyperbolic fixed point has strictly positive box dimension which is connected to the non-degeneracy condition of certain bifurcation. One of the main results in this paper is the generalisation of results about box dimension near the hyperbolic and non-hyperbolic fixed points to higher dimensions. In the process of determining box dimension, the restriction of systems to stable, unstable and center manifolds, Lipschitz property of box dimension and the notion of projective box dimension are used. The analysis of the bifurcations in higher dimensions with one multiplier on the unit circle is done by using the normal forms on one-dimensional center manifolds. This specific change in box dimension of an orbit at the moment of bifurcation has already been explored for some bifurcations in one and two dimensions. It was shown that specific values of box dimension are connected to appropriate bifurcations such as fold, flip, cusp or Neimark-Sacker bifurcation. This paper further explores this connection of box dimension as fractal property to some specific bifurcations in higher dimensions, such as fold-flip and flip-Neimark-Sacker. Furthermore, the application of the results to the unit time map of continuous dynamical system near hyperbolic and non-hyperbolic singularities is presented. In that way, box dimensions which are specific for certain bifurcations of continuous systems can be obtained. The approach to bifurcation analysis by using the box dimension as specific fractal property of orbits can lead to better understanding of bifurcation phenomenon. It could also be useful in detecting the existence or nonexistence of bifurcations of discrete and continuous dynamical systems.

Keywords: bifurcation, box dimension, invariant manifold, orbit near fixed point

Procedia PDF Downloads 251
1699 Digital Game Fostering Spatial Abilities for Children with Special Needs

Authors: Pedro Barros, Ana Breda, Eugenio Rocha, M. Isabel Santos

Abstract:

As visual and spatial awareness develops, children apprehension of the concept of direction, (relative) distance and (relative) location materializes. Here we present the educational inclusive digital game ORIESPA, under development by the Thematic Line Geometrix, for children aged between 6 and 10 years old, aiming the improvement of their visual and spatial awareness. Visual-spatial abilities are of crucial importance to succeed in many everyday life tasks. Unavoidable in the technological age we are living in, they are essential in many fields of study as, for instance, mathematics.The game, set on a 2D/3D environment, focusses in tasks/challenges on the following categories (1) static orientation of the subject and object, requiring an understanding of the notions of up–down, left–right, front–back, higher-lower or nearer-farther; (2) interpretation of perspectives of three-dimensional objects, requiring the understanding of 2D and 3D representations of three-dimensional objects; and (3) orientation of the subject in real space, requiring the reading and interpreting of itineraries. In ORIESPA, simpler tasks are based on a quadrangular grid, where the front-back and left-right directions and the rotations of 90º, 180º and 270º play the main requirements. The more complex ones are produced on a cubic grid adding the up and down movements. In the first levels, the game's mechanics regarding the reading and interpreting maps (from point A to point B) is based on map routes, following a given set of instructions. In higher levels, the player must produce a list of instructions taking the game character to the desired destination, avoiding obstacles. Being an inclusive game the user has the possibility to interact through the mouse (point and click with a single button), the keyboard (small set of well recognized keys) or a Kinect device (using simple gesture moves). The character control requires the action on buttons corresponding to movements in 2D and 3D environments. Buttons and instructions are also complemented with text, sound and sign language.

Keywords: digital game, inclusion, itinerary, spatial ability

Procedia PDF Downloads 178
1698 Empirical Analysis of the Effect of Cloud Movement in a Basic Off-Grid Photovoltaic System: Case Study Using Transient Response of DC-DC Converters

Authors: Asowata Osamede, Christo Pienaar, Johan Bekker

Abstract:

Mismatch in electrical energy (power) or outage from commercial providers, in general, does not promote development to the public and private sector, these basically limit the development of industries. The necessity for a well-structured photovoltaic (PV) system is of importance for an efficient and cost-effective monitoring system. The major renewable energy potential on earth is provided from solar radiation and solar photovoltaics (PV) are considered a promising technological solution to support the global transformation to a low-carbon economy and reduction on the dependence on fossil fuels. Solar arrays which consist of various PV module should be operated at the maximum power point in order to reduce the overall cost of the system. So power regulation and conditioning circuits should be incorporated in the set-up of a PV system. Power regulation circuits used in PV systems include maximum power point trackers, DC-DC converters and solar chargers. Inappropriate choice of power conditioning device in a basic off-grid PV system can attribute to power loss, hence the need for a right choice of power conditioning device to be coupled with the system of the essence. This paper presents the design and implementation of a power conditioning devices in order to improve the overall yield from the availability of solar energy and the system’s total efficiency. The power conditioning devices taken into consideration in the project includes the Buck and Boost DC-DC converters as well as solar chargers with MPPT. A logging interface circuit (LIC) is designed and employed into the system. The LIC is designed on a printed circuit board. It basically has DC current signalling sensors, specifically the LTS 6-NP. The LIC is consequently required to program the voltages in the system (these include the PV voltage and the power conditioning device voltage). The voltage is structured in such a way that it can be accommodated by the data logger. Preliminary results which include availability of power as well as power loss in the system and efficiency will be presented and this would be used to draw the final conclusion.

Keywords: tilt and orientation angles, solar chargers, PV panels, storage devices, direct solar radiation

Procedia PDF Downloads 135
1697 Balancing Biodiversity and Agriculture: A Broad-Scale Analysis of the Land Sparing/Land Sharing Trade-Off for South African Birds

Authors: Chevonne Reynolds, Res Altwegg, Andrew Balmford, Claire N. Spottiswoode

Abstract:

Modern agriculture has revolutionised the planet’s capacity to support humans, yet has simultaneously had a greater negative impact on biodiversity than any other human activity. Balancing the demand for food with the conservation of biodiversity is one of the most pressing issues of our time. Biodiversity-friendly farming (‘land sharing’), or alternatively, separation of conservation and production activities (‘land sparing’), are proposed as two strategies for mediating the trade-off between agriculture and biodiversity. However, there is much debate regarding the efficacy of each strategy, as this trade-off has typically been addressed by short term studies at fine spatial scales. These studies ignore processes that are relevant to biodiversity at larger scales, such as meta-population dynamics and landscape connectivity. Therefore, to better understand species response to agricultural land-use and provide evidence to underpin the planning of better production landscapes, we need to determine the merits of each strategy at larger scales. In South Africa, a remarkable citizen science project - the South African Bird Atlas Project 2 (SABAP2) – collates an extensive dataset describing the occurrence of birds at a 5-min by 5-min grid cell resolution. We use these data, along with fine-resolution data on agricultural land-use, to determine which strategy optimises the agriculture-biodiversity trade-off in a southern African context, and at a spatial scale never considered before. To empirically test this trade-off, we model bird species population density, derived for each 5-min grid cell by Royle-Nicols single-species occupancy modelling, against both the amount and configuration of different types of agricultural production in the same 5-min grid cell. In using both production amount and configuration, we can show not only how species population densities react to changes in yield, but also describe the production landscape patterns most conducive to conservation. Furthermore, the extent of both the SABAP2 and land-cover datasets allows us to test this trade-off across multiple regions to determine if bird populations respond in a consistent way and whether results can be extrapolated to other landscapes. We tested the land sparing/sharing trade-off for 281 bird species across three different biomes in South Africa. Overall, a higher proportion of species are classified as losers, and would benefit from land sparing. However, this proportion of loser-sparers is not consistent and varies across biomes and the different types of agricultural production. This is most likely because of differences in the intensity of agricultural land-use and the interactions between the differing types of natural vegetation and agriculture. Interestingly, we observe a higher number of species that benefit from agriculture than anticipated, suggesting that agriculture is a legitimate resource for certain bird species. Our results support those seen at smaller scales and across vastly different agricultural systems, that land sparing benefits the most species. However, our analysis suggests that land sparing needs to be implemented at spatial scales much larger than previously considered. Species persistence in agricultural landscapes will require the conservation of large tracts of land, and is an important consideration in developing countries, which are undergoing rapid agricultural development.

Keywords: agriculture, birds, land sharing, land sparing

Procedia PDF Downloads 207
1696 Graphical Theoretical Construction of Discrete time Share Price Paths from Matroid

Authors: Min Wang, Sergey Utev

Abstract:

The lessons from the 2007-09 global financial crisis have driven scientific research, which considers the design of new methodologies and financial models in the global market. The quantum mechanics approach was introduced in the unpredictable stock market modeling. One famous quantum tool is Feynman path integral method, which was used to model insurance risk by Tamturk and Utev and adapted to formalize the path-dependent option pricing by Hao and Utev. The research is based on the path-dependent calculation method, which is motivated by the Feynman path integral method. The path calculation can be studied in two ways, one way is to label, and the other is computational. Labeling is a part of the representation of objects, and generating functions can provide many different ways of representing share price paths. In this paper, the recent works on graphical theoretical construction of individual share price path via matroid is presented. Firstly, a study is done on the knowledge of matroid, relationship between lattice path matroid and Tutte polynomials and ways to connect points in the lattice path matroid and Tutte polynomials is suggested. Secondly, It is found that a general binary tree can be validly constructed from a connected lattice path matroid rather than general lattice path matroid. Lastly, it is suggested that there is a way to represent share price paths via a general binary tree, and an algorithm is developed to construct share price paths from general binary trees. A relationship is also provided between lattice integer points and Tutte polynomials of a transversal matroid. Use this way of connection together with the algorithm, a share price path can be constructed from a given connected lattice path matroid.

Keywords: combinatorial construction, graphical representation, matroid, path calculation, share price, Tutte polynomial

Procedia PDF Downloads 135
1695 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization

Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın

Abstract:

There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.

Keywords: aircraft, fatigue, joint, life, optimization, prediction.

Procedia PDF Downloads 175
1694 Maresin Like 1 Treatment: Curbing the Pathogenesis of Behavioral Dysfunction and Neurodegeneration in Alzheimer's Disease Mouse Model

Authors: Yan Lu, Song Hong, Janakiraman Udaiyappan, Aarti Nagayach, Quoc-Viet A. Duong, Masao Morita, Shun Saito, Yuichi Kobayashi, Yuhai, Zhao, Hongying Peng, Nicholas B. Pham, Walter J Lukiw, Christopher A. Vuong, Nicolas G. Bazan

Abstract:

Aims: Neurodegeneration and behavior dysfunction occurs in patients with Alzheimer's Disease (AD), and as the disease progresses many patients develop cognitive impairment. 5XFAD mouse model of AD is widely used to study AD pathogenesis and treatment. This study aimed to investigate the effect of maresin like 1 (MaR-L1) treatment in AD pathology using 5XFAD mice. Methods: We tested 12-month-old male 5XFAD mice and wild type control mice treated with MaR-L1 in a battery of behavioral tasks. We performed open field test, beam walking test, clasping test, inverted grid test, acetone test, marble burring test, elevated plus maze test, cross maze test and novel object recognition test. We also studied neuronal loss, amyloid β burden, and inflammation in the brains of 5XFAD mice using immunohistology and Western blotting. Results: MaR-L1 treatment to the 5XFAD mice showed improved cognitive function of 5XFAD mice. MaR-L1 showed decreased anxiety behavior in open field test and marble burring test, increased muscular strength in the beam walking test, clasping test and inverted grid test. Cognitive function was improved in MaR-L1 treated 5XFAD mice in the novel object recognition test. MaR-L1 prevented neuronal loss and aberrant inflammation. Conclusion: Our finding suggests that behavioral abnormalities were normalized by the administration of MaR-L1 and the neuroprotective role of MaR-L1 in the AD. It also indicates that MaR-L1 treatment is able to prevent and or ameliorate neuronal loss and aberrant inflammation. Further experiments to validate the results are warranted using other AD models in the future.

Keywords: Alzheimer's disease, motor and cognitive behavior, 5XFAD mice, Maresin Like 1, microglial cell, astrocyte, neurodegeneration, inflammation, resolution of inflammation

Procedia PDF Downloads 178
1693 Fast Transient Workflow for External Automotive Aerodynamic Simulations

Authors: Christina Peristeri, Tobias Berg, Domenico Caridi, Paul Hutcheson, Robert Winstanley

Abstract:

In recent years the demand for rapid innovations in the automotive industry has led to the need for accelerated simulation procedures while retaining a detailed representation of the simulated phenomena. The project’s aim is to create a fast transient workflow for external aerodynamic CFD simulations of road vehicles. The geometry used was the SAE Notchback Closed Cooling DrivAer model, and the simulation results were compared with data from wind tunnel tests. The meshes generated for this study were of two types. One was a mix of polyhedral cells near the surface and hexahedral cells away from the surface. The other was an octree hex mesh with a rapid method of fitting to the surface. Three different grid refinement levels were used for each mesh type, with the biggest total cell count for the octree mesh being close to 1 billion. A series of steady-state solutions were obtained on three different grid levels using a pseudo-transient coupled solver and a k-omega-based RANS turbulence model. A mesh-independent solution was found in all cases with a medium level of refinement with 200 million cells. Stress-Blended Eddy Simulation (SBES) was chosen for the transient simulations, which uses a shielding function to explicitly switch between RANS and LES mode. A converged pseudo-transient steady-state solution was used to initialize the transient SBES run that was set up with the SIMPLEC pressure-velocity coupling scheme to reach the fastest solution (on both CPU & GPU solvers). An important part of this project was the use of FLUENT’s Multi-GPU solver. Tesla A100 GPU has been shown to be 8x faster than an Intel 48-core Sky Lake CPU system, leading to significant simulation speed-up compared to the traditional CPU solver. The current study used 4 Tesla A100 GPUs and 192 CPU cores. The combination of rapid octree meshing and GPU computing shows significant promise in reducing time and hardware costs for industrial strength aerodynamic simulations.

Keywords: CFD, DrivAer, LES, Multi-GPU solver, octree mesh, RANS

Procedia PDF Downloads 114
1692 Integrating Renewable Energy Forecasting Systems with HEMS and Developing It with a Bottom-Up Approach

Authors: Punit Gandhi, J. C. Brezet, Tim Gorter, Uchechi Obinna

Abstract:

This paper introduces how weather forecasting could help in more efficient energy management for smart homes with the use of Home Energy Management Systems (HEMS). The paper also focuses on educating consumers and helping them make more informed decisions while using the HEMS. A combined approach of technical and user perspective has been selected to develop a novel HEMS-product-service combination in a more comprehensive manner. The current HEMS switches on/off the energy intensive appliances based on the fluctuating electricity tariffs, but with weather forecasting, it is possible to shift the time of use of energy intensive appliances to maximum electricity production from the renewable energy system installed in the house. Also, it is possible to estimate the heating/cooling load of the house for the day ahead demand. Hence, relevant insight is gained in the expected energy production and consumption load for the next day, facilitating better (more efficient, peak shaved, cheaper, etc.) energy management practices for smart homes. In literature, on the user perspective, it has been observed that consumers lose interest in using HEMS after three to four months. Therefore, to further help in better energy management practices, the new system had to be designed in a way that consumers would sustain their interaction with the system on a structural basis. It is hypothesized that, if consumers feel more comfortable with using such system, it would lead to a prolonged usage, including more energy savings and hence financial savings. To test the hypothesis, a survey for the HEMS is conducted, to which 59 valid responses were recorded. Analysis of the survey helped in designing a system which imparts better information about the energy production and consumption to the consumers. It is also found from the survey that, consumers like a variety of options and they do not like a constant reminder of what they should do. Hence, the final system is designed to encourage consumers to make an informed decision about their energy usage with a wide variety of behavioral options available. It is envisaged that the new system will be tested in several pioneering smart energy grid projects in both the Netherlands and India, with a continued ‘design thinking’ approach, combining the technical and user perspective, as the basis for further improvements.

Keywords: weather forecasting, smart grid, renewable energy forecasting, user defined HEMS

Procedia PDF Downloads 229
1691 Determining the Extent and Direction of Relief Transformations Caused by Ski Run Construction Using LIDAR Data

Authors: Joanna Fidelus-Orzechowska, Dominika Wronska-Walach, Jaroslaw Cebulski

Abstract:

Mountain areas are very often exposed to numerous transformations connected with the development of tourist infrastructure. In mountain areas in Poland ski tourism is very popular, so agricultural areas are often transformed into tourist areas. The construction of new ski runs can change the direction and rate of slope development. The main aim of this research was to determine geomorphological and hydrological changes within slopes caused by ski run constructions. The study was conducted in the Remiaszów catchment in the Inner Polish Carpathians (southern Poland). The mean elevation of the catchment is 859 m a.s.l. and the maximum is 946 m a.s.l. The surface area of the catchment is 1.16 km2, of which 16.8% is the area of the two studied ski runs. The studied ski runs were constructed in 2014 and 2015. In order to determine the relief transformations connected with new ski run construction high resolution LIDAR data was analyzed. The general relief changes in the studied catchment were determined on the basis of ALS (Airborne Laser Scanning ) data obtained before (2013) and after (2016) ski run construction. Based on the two sets of ALS data a digital elevation models of differences (DoDs) was created, which made it possible to determine the quantitative relief changes in the entire studied catchment. Additionally, cross and longitudinal profiles were calculated within slopes where new ski runs were built. Detailed data on relief changes within selected test surfaces was obtained based on TLS (Terrestrial Laser Scanning). Hydrological changes within the analyzed catchment were determined based on the convergence and divergence index. The study shows that the construction of the new ski runs caused significant geomorphological and hydrological changes in the entire studied catchment. However, the most important changes were identified within the ski slopes. After the construction of ski runs the entire catchment area lowered about 0.02 m. Hydrological changes in the studied catchment mainly led to the interruption of surface runoff pathways and changes in runoff direction and geometry.

Keywords: hydrological changes, mountain areas, relief transformations, ski run construction

Procedia PDF Downloads 142
1690 Developing Motorized Spectroscopy System for Tissue Scanning

Authors: Tuba Denkceken, Ayse Nur Sarı, Volkan Ihsan Tore, Mahmut Denkceken

Abstract:

The aim of the presented study was to develop a newly motorized spectroscopy system. Our system is composed of probe and motor parts. The probe part consists of bioimpedance and fiber optic components that include two platinum wires (each 25 micrometer in diameter) and two fiber cables (each 50 micrometers in diameter) respectively. Probe was examined on tissue phantom (polystyrene microspheres with different diameters). In the bioimpedance part of the probe current was transferred to the phantom and conductivity information was obtained. Adjacent two fiber cables were used in the fiber optic part of the system. Light was transferred to the phantom by fiber that was connected to the light source and backscattered light was collected with the other adjacent fiber for analysis. It is known that the nucleus expands and the nucleus-cytoplasm ratio increases during the cancer progression in the cell and this situation is one of the most important criteria for evaluating the tissue for pathologists. The sensitivity of the probe to particle (nucleus) size in phantom was tested during the study. Spectroscopic data obtained from our system on phantom was evaluated by multivariate statistical analysis. Thus the information about the particle size in the phantom was obtained. Bioimpedance and fiber optic experiments results which were obtained from polystyrene microspheres showed that the impedance value and the oscillation amplitude were increasing while the size of particle was enlarging. These results were compatible with the previous studies. In order to motorize the system within the motor part, three driver electronic circuits were designed primarily. In this part, supply capacitors were placed symmetrically near to the supply inputs which were used for balancing the oscillation. Female capacitors were connected to the control pin. Optic and mechanic switches were made. Drivers were structurally designed as they could command highly calibrated motors. It was considered important to keep the drivers’ dimension as small as we could (4.4x4.4x1.4 cm). Then three miniature step motors were connected to each other along with three drivers. Since spectroscopic techniques are quantitative methods, they yield more objective results than traditional ones. In the future part of this study, it is planning to get spectroscopic data that have optic and impedance information from the cell culture which is normal, low metastatic and high metastatic breast cancer. In case of getting high sensitivity in differentiated cells, it might be possible to scan large surface tissue areas in a short time with small steps. By means of motorize feature of the system, any region of the tissue will not be missed, in this manner we are going to be able to diagnose cancerous parts of the tissue meticulously. This work is supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) through 3001 project (115E662).

Keywords: motorized spectroscopy, phantom, scanning system, tissue scanning

Procedia PDF Downloads 190
1689 A Case Study of Low Head Hydropower Opportunities at Existing Infrastructure in South Africa

Authors: Ione Loots, Marco van Dijk, Jay Bhagwan

Abstract:

Historically, South Africa had various small-scale hydropower installations in remote areas that were not incorporated in the national electricity grid. Unfortunately, in the 1960s most of these plants were decommissioned when Eskom, the national power utility, rapidly expanded its grid and capability to produce cheap, reliable, coal-fired electricity. This situation persisted until 2008, when rolling power cuts started to affect all citizens. This, together with the rising monetary and environmental cost of coal-based power generation, has sparked new interest in small-scale hydropower development, especially in remote areas or at locations (like wastewater treatment works) that could not afford to be without electricity for long periods at a time. Even though South Africa does not have the same, large-scale, hydropower potential as some other African countries, significant potential for micro- and small-scale hydropower is hidden in various places. As an example, large quantities of raw and potable water are conveyed daily under either pressurized or gravity conditions over large distances and elevations. Due to the relative water scarcity in the country, South Africa also has more than 4900 registered dams of varying capacities. However, institutional capacity and skills have not been maintained in recent years and therefore the identification of hydropower potential, as well as the development of micro- and small-scale hydropower plants has not gained significant momentum. An assessment model and decision support system for low head hydropower development has been developed to assist designers and decision makers with first-order potential analysis. As a result, various potential sites were identified and many of these sites were situated at existing infrastructure like weirs, barrages or pipelines. One reason for the specific interest in existing infrastructure is the fact that capital expenditure could be minimized and another is the reduced negative environmental impact compared to greenfield sites. This paper will explore the case study of retrofitting an unconventional and innovative hydropower plant to the outlet of a wastewater treatment works in South Africa.

Keywords: low head hydropower, retrofitting, small-scale hydropower, wastewater treatment works

Procedia PDF Downloads 251
1688 Applicability of Linearized Model of Synchronous Generator for Power System Stability Analysis

Authors: J. Ritonja, B. Grcar

Abstract:

For the synchronous generator simulation and analysis and for the power system stabilizer design and synthesis a mathematical model of synchronous generator is needed. The model has to accurately describe dynamics of oscillations, while at the same time has to be transparent enough for an analysis and sufficiently simplified for design of control system. To study the oscillations of the synchronous generator against to the rest of the power system, the model of the synchronous machine connected to an infinite bus through a transmission line having resistance and inductance is needed. In this paper, the linearized reduced order dynamic model of the synchronous generator connected to the infinite bus is presented and analysed in details. This model accurately describes dynamics of the synchronous generator only in a small vicinity of an equilibrium state. With the digression from the selected equilibrium point the accuracy of this model is decreasing considerably. In this paper, the equations’ descriptions and the parameters’ determinations for the linearized reduced order mathematical model of the synchronous generator are explained and summarized and represent the useful origin for works in the areas of synchronous generators’ dynamic behaviour analysis and synchronous generator’s control systems design and synthesis. The main contribution of this paper represents the detailed analysis of the accuracy of the linearized reduced order dynamic model in the entire synchronous generator’s operating range. Borders of the areas where the linearized reduced order mathematical model represents accurate description of the synchronous generator’s dynamics are determined with the systemic numerical analysis. The thorough eigenvalue analysis of the linearized models in the entire operating range is performed. In the paper, the parameters of the linearized reduced order dynamic model of the laboratory salient poles synchronous generator were determined and used for the analysis. The theoretical conclusions were confirmed with the agreement of experimental and simulation results.

Keywords: eigenvalue analysis, mathematical model, power system stability, synchronous generator

Procedia PDF Downloads 242
1687 Embodied Neoliberalism and the Mind as Tool to Manage the Body: A Descriptive Study Applied to Young Australian Amateur Athletes

Authors: Alicia Ettlin

Abstract:

Amid the rise of neoliberalism to the leading economic policy model in Western societies in the 1980s, people have started to internalise a neoliberal way of thinking, whereby the human body has become an entity that can and needs to be precisely managed through free yet rational decision-making processes. The neoliberal citizen has consequently become an entrepreneur of the self who is free, independent, rational, productive and responsible for themselves, their health and wellbeing as well as their appearance. The focus on individuals as entrepreneurs who manage their bodies through the rationally thinking mind has, however, become increasingly criticised for viewing the social actor as ‘disembodied’, as a detached, social actor whose powerful mind governs over the passive body. On the other hand, the discourse around embodiment seeks to connect rational decision-making processes to the dominant neoliberal discourse which creates an embodied understanding that the body, just as other areas of people’s lives, can and should be shaped, monitored and managed through cognitive and rational thinking. This perspective offers an understanding of the body regarding its connections with the social environment that reaches beyond the debates around mind-body binary thinking. Hence, following this argument, body management should not be thought of as either solely guided by embodied discourses nor as merely falling into a mind-body dualism, but rather, simultaneously and inseparably as both at once. The descriptive, qualitative analysis of semi-structured in-depth interviews conducted with young Australian amateur athletes between the age of 18 and 24 has shown that most participants are interested in measuring and managing their body to create self-knowledge and self-improvement. The participants thereby connected self-improvement to weight loss, muscle gain or simply staying fit and healthy. Self-knowledge refers to body measurements including weight, BMI or body fat percentage. Self-management and self-knowledge that are reliant on one another to take rational and well-thought-out decisions, are both characteristic values of the neoliberal doctrine. A neoliberal way of thinking and looking after the body has also by many been connected to rewarding themselves for their discipline, hard work or achievement of specific body management goals (e.g. eating chocolate for reaching the daily step count goal). A few participants, however, have shown resistance against these neoliberal values, and in particular, against the precise monitoring and management of the body with the help of self-tracking devices. Ultimately, however, it seems that most participants have internalised the dominant discourses around self-responsibility, and by association, a sense of duty to discipline their body in normative ways. Even those who have indicated their resistance against body work and body management practices that follow neoliberal thinking and measurement systems, are aware and have internalised the concept of the rational operating mind that needs or should decide how to look after the body in terms of health but also appearance ideals. The discussion around the collected data thereby shows that embodiment and the mind/body dualism constitute two connected, rather than two separate or opposing concepts.

Keywords: dualism, embodiment, mind, neoliberalism

Procedia PDF Downloads 162
1686 Battle of Narratives: Georgia between Dialogue and Confrontation

Authors: Ketevan Epadze

Abstract:

The paper aims to examine conflicting historical narratives proposed by the Georgian and Abkhazian scholars on the territorial affiliation of Abkhazia in the 1950s, explain how these narratives were connected to the Soviet nationalities policy after WW II and demonstrate the dynamic of the narratives’ battle in the last years of the Soviet system, which was followed by military conflict in the post-Soviet era. Abkhazia –a breakaway region of Georgia- self-declared its independence in 1992. Historical dispute on the territorial rights of Abkhazia emerged long before the military conflict began and was connected to the theory of Abkhazian ethnogenesis written by the Georgian literary scholar Pavle Ingorokva. He argued that medieval Abkhazians were Georgians, while modern Abkhazians are newcomers in Abkhazia. After the de-Stalinization, Abkhazian historians developed historical narrative opposed to Ingorokva’s theory. In the 1980s, Georgian dissidents who strove for Georgia’s independence used Ingorokva’s thesis to oppose Abkhazians desire for self-determination and sovereignty. Abkhazian political actors in their turn employed opposite historical arguments to legitimate their rights over autonomy. Ingorokva’s theory is one of the principal issues, discussed during the Georgian-Abkhazian dialogue; it often confuses Georgians and gives the reasons to Abkhazians for complaining about the Georgian discrimination in the Soviet past. The study is based on the different kind of sources: archival materials of the 1950s (Communist Party Archive of Georgia, Soviet Journal ‘Mnatobi’), the book by Pavle Ingorokva ‘Giorgi Merchule’ (1947-1954) and Zurab Anchabadze’s responsive work to Ingorokva’s book – ‘From the medieval history of Abkhazia’ (1956-1959), political speeches of the Georgian and Abkhazian political actors in the 1980s, secondary sources on the Soviet nationalities policy from the 1950s to the 1990s.

Keywords: Soviet, history, ethnicity, nationalism, politics, post-Soviet, conflict

Procedia PDF Downloads 174
1685 Analysis and Comparison of Asymmetric H-Bridge Multilevel Inverter Topologies

Authors: Manel Hammami, Gabriele Grandi

Abstract:

In recent years, multilevel inverters have become more attractive for single-phase photovoltaic (PV) systems, due to their known advantages over conventional H-bridge pulse width-modulated (PWM) inverters. They offer improved output waveforms, smaller filter size, lower total harmonic distortion (THD), higher output voltages and others. The most common multilevel converter topologies, presented in literature, are the neutral-point-clamped (NPC), flying capacitor (FC) and Cascaded H-Bridge (CHB) converters. In both NPC and FC configurations, the number of components drastically increases with the number of levels what leads to complexity of the control strategy, high volume, and cost. Whereas, increasing the number of levels in case of the cascaded H-bridge configuration is a flexible solution. However, it needs isolated power sources for each stage, and it can be applied to PV systems only in case of PV sub-fields. In order to improve the ratio between the number of output voltage levels and the number of components, several hybrids and asymmetric topologies of multilevel inverters have been proposed in the literature such as the FC asymmetric H-bridge (FCAH) and the NPC asymmetric H-bridge (NPCAH) topologies. Another asymmetric multilevel inverter configuration that could have interesting applications is the cascaded asymmetric H-bridge (CAH), which is based on a modular half-bridge (two switches and one capacitor, also called level doubling network, LDN) cascaded to a full H-bridge in order to double the output voltage level. This solution has the same number of switches as the above mentioned AH configurations (i.e., six), and just one capacitor (as the FCAH). CAH is becoming popular, due to its simple, modular and reliable structure, and it can be considered as a retrofit which can be added in series to an existing H-Bridge configuration in order to double the output voltage levels. In this paper, an original and effective method for the analysis of the DC-link voltage ripple is given for single-phase asymmetric H-bridge multilevel inverters based on level doubling network (LDN). Different possible configurations of the asymmetric H-Bridge multilevel inverters have been considered and the analysis of input voltage and current are analytically determined and numerically verified by Matlab/Simulink for the case of cascaded asymmetric H-bridge multilevel inverters. A comparison between FCAH and the CAH configurations is done on the basis of the analysis of the DC and voltage ripple for the DC source (i.e., the PV system). The peak-to-peak DC and voltage ripple amplitudes are analytically calculated over the fundamental period as a function of the modulation index. On the basis of the maximum peak-to-peak values of low frequency and switching ripple voltage components, the DC capacitors can be designed. Reference is made to unity output power factor, as in case of most of the grid-connected PV generation systems. Simulation results will be presented in the full paper in order to prove the effectiveness of the proposed developments in all the operating conditions.

Keywords: asymmetric inverters, dc-link voltage, level doubling network, single-phase multilevel inverter

Procedia PDF Downloads 206
1684 Prediction of Turbulent Separated Flow in a Wind Tunel

Authors: Karima Boukhadia

Abstract:

In the present study, the subsonic flow in an asymmetrical diffuser was simulated numerically using code CFX 11.0 and its generator of grid ICEM CFD. Two models of turbulence were tested: K- ε and K- ω SST. The results obtained showed that the K- ε model singularly over-estimates the speed value close to the wall and that the K- ω SST model is qualitatively in good agreement with the experimental results of Buice and Eaton 1997. They also showed that the separation and reattachment of the fluid on the tilted wall strongly depends on its angle of inclination and that the length of the zone of separation increases with the angle of inclination of the lower wall of the diffuser.

Keywords: asymmetric diffuser, separation, reattachment, tilt angle, separation zone

Procedia PDF Downloads 574
1683 Evaluation Of Reservoir Quality In Cretaceous Sandstone Complex, Western Flank Of Anambra Basin, Southern Nigeria

Authors: Bayole Omoniyi

Abstract:

This study demonstrates the value of outcrops as analogues for evaluating reservoir quality of sandbody in a typical high-sinuosity fluvial system. The study utilized data acquired from selected outcrops in the Campanian-Maastrichtian siliciclastic succession of the western flank of Anambra Basin, southern Nigeria. Textural properties derived from outcrop samples were correlated and compared with porosity and permeability using established standard charts. Porosity was estimated from thin sections of selected samples to reduce uncertainty in the estimates. Following facies classification, 14 distinct facies were grouped into three facies associations (FA1-FA3) and were subsequently modeled as discrete properties in a block-centered Cartesian grid on a scale that captures geometry of principal sandbodies. Porosity and permeability estimated from charts were populated in the grid using comparable geostatistical techniques that reflect their spatial distribution. The resultant models were conditioned to facies property to honour available data. The results indicate a strong control of geometrical parameters on facies distribution, lateral continuity and connectivity with resultant effect on porosity and permeability distribution. Sand-prone FA1 and FA2 display reservoir quality that varies internally from channel axis to margin in each succession. Furthermore, isolated stack pattern of sandbodies reduces static connectivity and thus, increases risk of poor communication between reservoir-quality sandbodies. FA3 is non-reservoir because it is mud-prone. In conclusion, the risk of poor communication between sandbodies may be effectively accentuated in reservoirs that have similar architecture because of thick lateral accretion deposits, usually mudstone, that tend to disconnect good-quality point-bar sandbodies. In such reservoirs, mudstone may act as a barrier to impede flow vertically from one sandbody to another and laterally at the margins of each channel-fill succession in the system. The development plan, therefore, must be designed to effectively mitigate these risks and the risk of stratigraphic compartmentalization for maximum hydrocarbon recovery.

Keywords: analogues, architecture, connectivity, fluvial

Procedia PDF Downloads 23
1682 Simulation of Maximum Power Point Tracking in a Photovoltaic System: A Circumstance Using Pulse Width Modulation Analysis

Authors: Asowata Osamede

Abstract:

Optimized gain in respect to output power of stand-alone photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers in general does not promote development to the public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0o north, with a corresponding tilt angle of 36 o, 26o and 16o. The load employed in this set-up are three Lead Acid Batteries (LAB). The percentage fully charged, charging and not charging conditions are observed for all three batteries. The results obtained in this research is used to draw the conclusion that would provide a benchmark for researchers and scientist worldwide. This is done so as to have an idea of the best tilt and orientation angles for maximum power point in a basic off-grid PV system. A quantitative analysis would be employed in this research. Quantitative research tends to focus on measurement and proof. Inferential statistics are frequently used to generalize what is found about the study sample to the population as a whole. This would involve: selecting and defining the research question, deciding on a study type, deciding on the data collection tools, selecting the sample and its size, analyzing, interpreting and validating findings Preliminary results which include regression analysis (normal probability plot and residual plot using polynomial 6) showed the maximum power point in the system. The best tilt angle for maximum power point tracking proves that the 36o tilt angle provided the best average on time which in turns put the system into a pulse width modulation stage.

Keywords: power-conversion, meteonorm, PV panels, DC-DC converters

Procedia PDF Downloads 146
1681 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 146
1680 Estimating the Traffic Impacts of Green Light Optimal Speed Advisory Systems Using Microsimulation

Authors: C. B. Masera, M. Imprialou, L. Budd, C. Morton

Abstract:

Even though signalised intersections are necessary for urban road traffic management, they can act as bottlenecks and disrupt traffic operations. Interrupted traffic flow causes congestion, delays, stop-and-go conditions (i.e. excessive acceleration/deceleration) and longer journey times. Vehicle and infrastructure connectivity offers the potential to provide improved new services with additional functions of assisting drivers. This paper focuses on one of the applications of vehicle-to-infrastructure communication namely Green Light Optimal Speed Advisory (GLOSA). To assess the effectiveness of GLOSA in the urban road network, an integrated microscopic traffic simulation framework is built into VISSIM software. Vehicle movements and vehicle-infrastructure communications are simulated through the interface of External Driver Model. A control algorithm is developed for recommending an optimal speed that is continuously updated in every time step for all vehicles approaching a signal-controlled point. This algorithm allows vehicles to pass a traffic signal without stopping or to minimise stopping times at a red phase. This study is performed with all connected vehicles at 100% penetration rate. Conventional vehicles are also simulated in the same network as a reference. A straight road segment composed of two opposite directions with two traffic lights per lane is studied. The simulation is implemented under 150 vehicles per hour and 200 per hour traffic volume conditions to identify how different traffic densities influence the benefits of GLOSA. The results indicate that traffic flow is improved by the application of GLOSA. According to this study, vehicles passed through the traffic lights more smoothly, and waiting times were reduced by up to 28 seconds. Average delays decreased for the entire network by 86.46% and 83.84% under traffic densities of 150 vehicles per hour per lane and 200 vehicles per hour per lane, respectively.

Keywords: connected vehicles, GLOSA, intelligent transport systems, vehicle-to-infrastructure communication

Procedia PDF Downloads 170
1679 Modeling the Downstream Impacts of River Regulation on the Grand Lake Meadows Complex using Delft3D FM Suite

Authors: Jaime Leavitt, Katy Haralampides

Abstract:

Numerical modelling has been used to investigate the long-term impact of a large dam on downstream wetland areas, specifically in terms of changing sediment dynamics in the system. The Mactaquac Generating Station (MQGS) is a 672MW run-of-the-river hydroelectric facility, commissioned in 1968 on the mainstem of the Wolastoq|Saint John River in New Brunswick, Canada. New Brunswick Power owns and operates the dam and has been working closely with the Canadian Rivers Institute at UNB Fredericton on a multi-year, multi-disciplinary project investigating the impact the dam has on its surrounding environment. With focus on the downstream river, this research discusses the initialization, set-up, calibration, and preliminary results of a 2-D hydrodynamic model using the Delft3d Flexible Mesh Suite (successor of the Delft3d 4 Suite). The flexible mesh allows the model grid to be structured in the main channel and unstructured in the floodplains and other downstream regions with complex geometry. The combination of grid types improves computational time and output. As the movement of water governs the movement of sediment, the calibrated and validated hydrodynamic model was applied to sediment transport simulations, particularly of the fine suspended sediments. Several provincially significant Protected Natural Areas and federally significant National Wildlife Areas are located 60km downstream of the MQGS. These broad, low-lying floodplains and wetlands are known as the Grand Lake Meadows Complex (GLM Complex). There is added pressure to investigate the impacts of river regulation on these protected regions that rely heavily on natural river processes like sediment transport and flooding. It is hypothesized that the fine suspended sediment would naturally travel to the floodplains for nutrient deposition and replenishment, particularly during the freshet and large storms. The purpose of this research is to investigate the impacts of river regulation on downstream environments and use the model as a tool for informed decision making to protect and maintain biologically productive wetlands and floodplains.

Keywords: hydrodynamic modelling, national wildlife area, protected natural area, sediment transport.

Procedia PDF Downloads 4
1678 Fog Computing- Network Based Computing

Authors: Navaneeth Krishnan, Chandan N. Bhagwat, Aparajit P. Utpat

Abstract:

Cloud Computing provides us a means to upload data and use applications over the internet. As the number of devices connecting to the cloud grows, there is undue pressure on the cloud infrastructure. Fog computing or Network Based Computing or Edge Computing allows to move a part of the processing in the cloud to the network devices present along the node to the cloud. Therefore the nodes connected to the cloud have a better response time. This paper proposes a method of moving the computation from the cloud to the network by introducing an android like appstore on the networking devices.

Keywords: cloud computing, fog computing, network devices, appstore

Procedia PDF Downloads 385
1677 BIM Modeling of Site and Existing Buildings: Case Study of ESTP Paris Campus

Authors: Rita Sassine, Yassine Hassani, Mohamad Al Omari, Stéphanie Guibert

Abstract:

Building Information Modelling (BIM) is the process of creating, managing, and centralizing information during the building lifecycle. BIM can be used all over a construction project, from the initiation phase to the planning and execution phases to the maintenance and lifecycle management phase. For existing buildings, BIM can be used for specific applications such as lifecycle management. However, most of the existing buildings don’t have a BIM model. Creating a compatible BIM for existing buildings is very challenging. It requires special equipment for data capturing and efforts to convert these data into a BIM model. The main difficulties for such projects are to define the data needed, the level of development (LOD), and the methodology to be adopted. In addition to managing information for an existing building, studying the impact of the built environment is a challenging topic. So, integrating the existing terrain that surrounds buildings into the digital model is essential to be able to make several simulations as flood simulation, energy simulation, etc. Making a replication of the physical model and updating its information in real-time to make its Digital Twin (DT) is very important. The Digital Terrain Model (DTM) represents the ground surface of the terrain by a set of discrete points with unique height values over 2D points based on reference surface (e.g., mean sea level, geoid, and ellipsoid). In addition, information related to the type of pavement materials, types of vegetation and heights and damaged surfaces can be integrated. Our aim in this study is to define the methodology to be used in order to provide a 3D BIM model for the site and the existing building based on the case study of “Ecole Spéciale des Travaux Publiques (ESTP Paris)” school of engineering campus. The property is located on a hilly site of 5 hectares and is composed of more than 20 buildings with a total area of 32 000 square meters and a height between 50 and 68 meters. In this work, the campus precise levelling grid according to the NGF-IGN69 altimetric system and the grid control points are computed according to (Réseau Gédésique Français) RGF93 – Lambert 93 french system with different methods: (i) Land topographic surveying methods using robotic total station, (ii) GNSS (Global Network Satellite sytem) levelling grid with NRTK (Network Real Time Kinematic) mode, (iii) Point clouds generated by laser scanning. These technologies allow the computation of multiple building parameters such as boundary limits, the number of floors, the floors georeferencing, the georeferencing of the 4 base corners of each building, etc. Once the entry data are identified, the digital model of each building is done. The DTM is also modeled. The process of altimetric determination is complex and requires efforts in order to collect and analyze multiple data formats. Since many technologies can be used to produce digital models, different file formats such as DraWinG (DWG), LASer (LAS), Comma-separated values (CSV), Industry Foundation Classes (IFC) and ReViT (RVT) will be generated. Checking the interoperability between BIM models is very important. In this work, all models are linked together and shared on 3DEXPERIENCE collaborative platform.

Keywords: building information modeling, digital terrain model, existing buildings, interoperability

Procedia PDF Downloads 110
1676 Compression and Air Storage Systems for Small Size CAES Plants: Design and Off-Design Analysis

Authors: Coriolano Salvini, Ambra Giovannelli

Abstract:

The use of renewable energy sources for electric power production leads to reduced CO2 emissions and contributes to improving the domestic energy security. On the other hand, the intermittency and unpredictability of their availability poses relevant problems in fulfilling safely and in a cost efficient way the load demand along the time. Significant benefits in terms of “grid system applications”, “end-use applications” and “renewable applications” can be achieved by introducing energy storage systems. Among the currently available solutions, CAES (Compressed Air Energy Storage) shows favorable features. Small-medium size plants equipped with artificial air reservoirs can constitute an interesting option to get efficient and cost-effective distributed energy storage systems. The present paper is addressed to the design and off-design analysis of the compression system of small size CAES plants suited to absorb electric power in the range of hundreds of kilowatt. The system of interest is constituted by an intercooled (in case aftercooled) multi-stage reciprocating compressor and a man-made reservoir obtained by connecting large diameter steel pipe sections. A specific methodology for the system preliminary sizing and off-design modeling has been developed. Since during the charging phase the electric power absorbed along the time has to change according to the peculiar CAES requirements and the pressure ratio increases continuously during the filling of the reservoir, the compressor has to work at variable mass flow rate. In order to ensure an appropriately wide range of operations, particular attention has been paid to the selection of the most suitable compressor capacity control device. Given the capacity regulation margin of the compressor and the actual level of charge of the reservoir, the proposed approach allows the instant-by-instant evaluation of minimum and maximum electric power absorbable from the grid. The developed tool gives useful information to appropriately size the compression system and to manage it in the most effective way. Various cases characterized by different system requirements are analysed. Results are given and widely discussed.

Keywords: artificial air storage reservoir, compressed air energy storage (CAES), compressor design, compression system management.

Procedia PDF Downloads 226
1675 The Flora of Bozdağ, Sizma–Konya, Turkey and Its Environs

Authors: Esra Ipekci, Murad Aydin Sanda

Abstract:

The flora of Bozdağ (Konya) and its surroundings were investigated between 2003 and 2005 years; 700 herbarium specimens belonging to 482 taxa, 257 genera and 62 families were collected and identified from the area. The families which have the most taxa in research area are Asteraceae 67 (14.0%), Fabaceae 60 (12.6%), Lamiaceae 57 (11.9%), Brassicaceae 34 (7.1%), Poaceae 30 (6.3%), Rosaceae 24 (5.0%), Caryophyllaceae 23 (4.8%), Liliaceae 19 (4.0%), Boraginaceae 17 (3.6%), Apiaceae 13 (2.7%). The research area is in the district of Konya and is in the B4 square according to the Grid System. The phytogeographic elements are represented in the study area as follows; Mediterranean 72 (14.9%), Irano-Turanian 91 (18.9%), Euro-Siberian 21 (4.3%). The phytogeographic regions of 273 (56.6%) taxa are either multi regional or unknown. The number of endemic taxa is 79 (16.3%).

Keywords: Sizma, Bozdağ, Flora, Konya, Turkey

Procedia PDF Downloads 552
1674 Optimal Allocation of Battery Energy Storage Considering Stiffness Constraints

Authors: Felipe Riveros, Ricardo Alvarez, Claudia Rahmann, Rodrigo Moreno

Abstract:

Around the world, many countries have committed to a decarbonization of their electricity system. Under this global drive, converter-interfaced generators (CIG) such as wind and photovoltaic generation appear as cornerstones to achieve these energy targets. Despite its benefits, an increasing use of CIG brings several technical challenges in power systems, especially from a stability viewpoint. Among the key differences are limited short circuit current capacity, inertia-less characteristic of CIG, and response times within the electromagnetic timescale. Along with the integration of CIG into the power system, one enabling technology for the energy transition towards low-carbon power systems is battery energy storage systems (BESS). Because of the flexibility that BESS provides in power system operation, its integration allows for mitigating the variability and uncertainty of renewable energies, thus optimizing the use of existing assets and reducing operational costs. Another characteristic of BESS is that they can also support power system stability by injecting reactive power during the fault, providing short circuit currents, and delivering fast frequency response. However, most methodologies for sizing and allocating BESS in power systems are based on economic aspects and do not exploit the benefits that BESSs can offer to system stability. In this context, this paper presents a methodology for determining the optimal allocation of battery energy storage systems (BESS) in weak power systems with high levels of CIG. Unlike traditional economic approaches, this methodology incorporates stability constraints to allocate BESS, aiming to mitigate instability issues arising from weak grid conditions with low short-circuit levels. The proposed methodology offers valuable insights for power system engineers and planners seeking to maintain grid stability while harnessing the benefits of renewable energy integration. The methodology is validated in the reduced Chilean electrical system. The results show that integrating BESS into a power system with high levels of CIG with stability criteria contributes to decarbonizing and strengthening the network in a cost-effective way while sustaining system stability. This paper potentially lays the foundation for understanding the benefits of integrating BESS in electrical power systems and coordinating their placements in future converter-dominated power systems.

Keywords: battery energy storage, power system stability, system strength, weak power system

Procedia PDF Downloads 60
1673 Laser Induced Transient Current in Quasi-One-Dimensional Nanostructure

Authors: Tokuei Sako

Abstract:

Light-induced ultrafast charge transfer in low-dimensional nanostructure has been studied by a model of a few electrons confined in a 1D electrostatic potential coupled to electrodes at both ends and subjected to an ultrashort pulsed laser field. The time-propagation of the one- and two-electron wave packets has been calculated by integrating the time-dependent Schrödinger equation by the symplectic integrator method with uniform Fourier grid. The temporal behavior of the resultant light-induced current in the studied systems has been discussed with respect to the central frequency and pulse width of the applied laser fields.

Keywords: pulsed laser field, nanowire, wave packet, quantum dots, conductivity

Procedia PDF Downloads 505