Search results for: delays resulting from two separate causes at the same time
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21410

Search results for: delays resulting from two separate causes at the same time

20810 Performance Evaluation of Al Jame’s Roundabout Using SIDRA

Authors: D. Muley, H. S. Al-Mandhari

Abstract:

This paper evaluates the performance of a multi-lane four-legged modern roundabout operating in Muscat using SIDRA model. The performance measures include Degree of Saturation (DOS), average delay, and queue lengths. The geometric and traffic data were used for model preparation. Gap acceptance parameters, critical gap, and follow-up headway were used for calibration of SIDRA model. The results from the analysis showed that currently the roundabout is experiencing delays up to 610 seconds with DOS 1.67 during peak hour. Further, sensitivity analysis for general and roundabout parameters was performed, amongst lane width, cruise speed, inscribed diameter, entry radius, and entry angle showed that inscribed diameter is the most crucial factor affecting delay and DOS. Upgradation of the roundabout to the fully signalized junction was found as the suitable solution which will serve for future years with LOS C for design year having DOS of 0.9 with average control delay of 51.9 seconds per vehicle.

Keywords: performance analysis, roundabout, sensitivity analysis, SIDRA

Procedia PDF Downloads 382
20809 Digital Material Characterization Using the Quantum Fourier Transform

Authors: Felix Givois, Nicolas R. Gauger, Matthias Kabel

Abstract:

The efficient digital material characterization is of great interest to many fields of application. It consists of the following three steps. First, a 3D reconstruction of 2D scans must be performed. Then, the resulting gray-value image of the material sample is enhanced by image processing methods. Finally, partial differential equations (PDE) are solved on the segmented image, and by averaging the resulting solutions fields, effective properties like stiffness or conductivity can be computed. Due to the high resolution of current CT images, the latter is typically performed with matrix-free solvers. Among them, a solver that uses the explicit formula of the Green-Eshelby operator in Fourier space has been proposed by Moulinec and Suquet. Its algorithmic, most complex part is the Fast Fourier Transformation (FFT). In our talk, we will discuss the potential quantum advantage that can be obtained by replacing the FFT with the Quantum Fourier Transformation (QFT). We will especially show that the data transfer for noisy intermediate-scale quantum (NISQ) devices can be improved by using appropriate boundary conditions for the PDE, which also allows using semi-classical versions of the QFT. In the end, we will compare the results of the QFT-based algorithm for simple geometries with the results of the FFT-based homogenization method.

Keywords: most likelihood amplitude estimation (MLQAE), numerical homogenization, quantum Fourier transformation (QFT), NISQ devises

Procedia PDF Downloads 78
20808 Prediction of the Crustal Deformation of Volcán - Nevado Del RUíz in the Year 2020 Using Tropomi Tropospheric Information, Dinsar Technique, and Neural Networks

Authors: Juan Sebastián Hernández

Abstract:

The Nevado del Ruíz volcano, located between the limits of the Departments of Caldas and Tolima in Colombia, presented an unstable behaviour in the course of the year 2020, this volcanic activity led to secondary effects on the crust, which is why the prediction of deformations becomes the task of geoscientists. In the course of this article, the use of tropospheric variables such as evapotranspiration, UV aerosol index, carbon monoxide, nitrogen dioxide, methane, surface temperature, among others, is used to train a set of neural networks that can predict the behaviour of the resulting phase of an unrolled interferogram with the DInSAR technique, whose main objective is to identify and characterise the behaviour of the crust based on the environmental conditions. For this purpose, variables were collected, a generalised linear model was created, and a set of neural networks was created. After the training of the network, validation was carried out with the test data, giving an MSE of 0.17598 and an associated r-squared of approximately 0.88454. The resulting model provided a dataset with good thematic accuracy, reflecting the behaviour of the volcano in 2020, given a set of environmental characteristics.

Keywords: crustal deformation, Tropomi, neural networks (ANN), volcanic activity, DInSAR

Procedia PDF Downloads 103
20807 Crime Prevention with Artificial Intelligence

Authors: Mehrnoosh Abouzari, Shahrokh Sahraei

Abstract:

Today, with the increase in quantity and quality and variety of crimes, the discussion of crime prevention has faced a serious challenge that human resources alone and with traditional methods will not be effective. One of the developments in the modern world is the presence of artificial intelligence in various fields, including criminal law. In fact, the use of artificial intelligence in criminal investigations and fighting crime is a necessity in today's world. The use of artificial intelligence is far beyond and even separate from other technologies in the struggle against crime. Second, its application in criminal science is different from the discussion of prevention and it comes to the prediction of crime. Crime prevention in terms of the three factors of the offender, the offender and the victim, following a change in the conditions of the three factors, based on the perception of the criminal being wise, and therefore increasing the cost and risk of crime for him in order to desist from delinquency or to make the victim aware of self-care and possibility of exposing him to danger or making it difficult to commit crimes. While the presence of artificial intelligence in the field of combating crime and social damage and dangers, like an all-seeing eye, regardless of time and place, it sees the future and predicts the occurrence of a possible crime, thus prevent the occurrence of crimes. The purpose of this article is to collect and analyze the studies conducted on the use of artificial intelligence in predicting and preventing crime. How capable is this technology in predicting crime and preventing it? The results have shown that the artificial intelligence technologies in use are capable of predicting and preventing crime and can find patterns in the data set. find large ones in a much more efficient way than humans. In crime prediction and prevention, the term artificial intelligence can be used to refer to the increasing use of technologies that apply algorithms to large sets of data to assist or replace police. The use of artificial intelligence in our debate is in predicting and preventing crime, including predicting the time and place of future criminal activities, effective identification of patterns and accurate prediction of future behavior through data mining, machine learning and deep learning, and data analysis, and also the use of neural networks. Because the knowledge of criminologists can provide insight into risk factors for criminal behavior, among other issues, computer scientists can match this knowledge with the datasets that artificial intelligence uses to inform them.

Keywords: artificial intelligence, criminology, crime, prevention, prediction

Procedia PDF Downloads 75
20806 Modeling and Simulation Methods Using MATLAB/Simulink

Authors: Jamuna Konda, Umamaheswara Reddy Karumuri, Sriramya Muthugi, Varun Pishati, Ravi Shakya,

Abstract:

This paper investigates the challenges involved in mathematical modeling of plant simulation models ensuring the performance of the plant models much closer to the real time physical model. The paper includes the analysis performed and investigation on different methods of modeling, design and development for plant model. Issues which impact the design time, model accuracy as real time model, tool dependence are analyzed. The real time hardware plant would be a combination of multiple physical models. It is more challenging to test the complete system with all possible test scenarios. There are possibilities of failure or damage of the system due to any unwanted test execution on real time.

Keywords: model based design (MBD), MATLAB, Simulink, stateflow, plant model, real time model, real-time workshop (RTW), target language compiler (TLC)

Procedia PDF Downloads 343
20805 Coordination of Traffic Signals on Arterial Streets in Duhok City

Authors: Dilshad Ali Mohammed, Ziyad Nayef Shamsulddin Aldoski, Millet Salim Mohammed

Abstract:

The increase in levels of traffic congestion along urban signalized arterials needs efficient traffic management. The application of traffic signal coordination can improve the traffic operation and safety for a series of signalized intersection along the arterials. The objective of this study is to evaluate the benefits achievable through actuated traffic signal coordination and make a comparison in control delay against the same signalized intersection in case of being isolated. To accomplish this purpose, a series of eight signalized intersections located on two major arterials in Duhok City was chosen for conducting the study. Traffic data (traffic volumes, link and approach speeds, and passenger car equivalent) were collected at peak hours. Various methods had been used for collecting data such as video recording technique, moving vehicle method and manual methods. Geometric and signalization data were also collected for the purpose of the study. The coupling index had been calculated to check the coordination attainability, and then time space diagrams were constructed representing one-way coordination for the intersections on Barzani and Zakho Streets, and others represented two-way coordination for the intersections on Zakho Street with accepted progression bandwidth efficiency. The results of this study show great progression bandwidth of 54 seconds for east direction coordination and 17 seconds for west direction coordination on Barzani Street under suggested controlled speed of 60 kph agreeable with the present data. For Zakho Street, the progression bandwidth is 19 seconds for east direction coordination and 18 seconds for west direction coordination under suggested controlled speed of 40 kph. The results show that traffic signal coordination had led to high reduction in intersection control delays on both arterials.

Keywords: bandwidth, congestion, coordination, traffic, signals, streets

Procedia PDF Downloads 307
20804 Fast Estimation of Fractional Process Parameters in Rough Financial Models Using Artificial Intelligence

Authors: Dávid Kovács, Bálint Csanády, Dániel Boros, Iván Ivkovic, Lóránt Nagy, Dalma Tóth-Lakits, László Márkus, András Lukács

Abstract:

The modeling practice of financial instruments has seen significant change over the last decade due to the recognition of time-dependent and stochastically changing correlations among the market prices or the prices and market characteristics. To represent this phenomenon, the Stochastic Correlation Process (SCP) has come to the fore in the joint modeling of prices, offering a more nuanced description of their interdependence. This approach has allowed for the attainment of realistic tail dependencies, highlighting that prices tend to synchronize more during intense or volatile trading periods, resulting in stronger correlations. Evidence in statistical literature suggests that, similarly to the volatility, the SCP of certain stock prices follows rough paths, which can be described using fractional differential equations. However, estimating parameters for these equations often involves complex and computation-intensive algorithms, creating a necessity for alternative solutions. In this regard, the Fractional Ornstein-Uhlenbeck (fOU) process from the family of fractional processes offers a promising path. We can effectively describe the rough SCP by utilizing certain transformations of the fOU. We employed neural networks to understand the behavior of these processes. We had to develop a fast algorithm to generate a valid and suitably large sample from the appropriate process to train the network. With an extensive training set, the neural network can estimate the process parameters accurately and efficiently. Although the initial focus was the fOU, the resulting model displayed broader applicability, thus paving the way for further investigation of other processes in the realm of financial mathematics. The utility of SCP extends beyond its immediate application. It also serves as a springboard for a deeper exploration of fractional processes and for extending existing models that use ordinary Wiener processes to fractional scenarios. In essence, deploying both SCP and fractional processes in financial models provides new, more accurate ways to depict market dynamics.

Keywords: fractional Ornstein-Uhlenbeck process, fractional stochastic processes, Heston model, neural networks, stochastic correlation, stochastic differential equations, stochastic volatility

Procedia PDF Downloads 118
20803 Mapping Feature Models to Code Using a Reference Architecture: A Case Study

Authors: Karam Ignaim, Joao M. Fernandes, Andre L. Ferreira

Abstract:

Mapping the artifacts coming from a set of similar products family developed in an ad-hoc manner to make up the resulting software product line (SPL) plays a key role to maintain the consistency between requirements and code. This paper presents a feature mapping approach that focuses on tracing the artifact coming from the migration process, the current feature model (FM), to the other artifacts of the resulting SPL, the reference architecture, and code. Thus, our approach relates each feature of the current FM to its locations in the implementation code, using the reference architecture as an intermediate artifact (as a centric point) to preserve consistency among them during an SPL evolution. The approach uses a particular artifact (i.e., traceability tree) as a solution for managing the mapping process. Tool support is provided using friendlyMapper. We have evaluated the feature mapping approach and tool support by putting the approach into practice (i.e., conducting a case study) of the automotive domain for Classical Sensor Variants Family at Bosch Car Multimedia S.A. The evaluation reveals that the mapping approach presented by this paper fits the automotive domain.

Keywords: feature location, feature models, mapping, software product lines, traceability

Procedia PDF Downloads 127
20802 A Regression Model for Predicting Sugar Crystal Size in a Fed-Batch Vacuum Evaporative Crystallizer

Authors: Sunday B. Alabi, Edikan P. Felix, Aniediong M. Umo

Abstract:

Crystal size distribution is of great importance in the sugar factories. It determines the market value of granulated sugar and also influences the cost of production of sugar crystals. Typically, sugar is produced using fed-batch vacuum evaporative crystallizer. The crystallization quality is examined by crystal size distribution at the end of the process which is quantified by two parameters: the average crystal size of the distribution in the mean aperture (MA) and the width of the distribution of the coefficient of variation (CV). Lack of real-time measurement of the sugar crystal size hinders its feedback control and eventual optimisation of the crystallization process. An attractive alternative is to use a soft sensor (model-based method) for online estimation of the sugar crystal size. Unfortunately, the available models for sugar crystallization process are not suitable as they do not contain variables that can be measured easily online. The main contribution of this paper is the development of a regression model for estimating the sugar crystal size as a function of input variables which are easy to measure online. This has the potential to provide real-time estimates of crystal size for its effective feedback control. Using 7 input variables namely: initial crystal size (Lo), temperature (T), vacuum pressure (P), feed flowrate (Ff), steam flowrate (Fs), initial super-saturation (S0) and crystallization time (t), preliminary studies were carried out using Minitab 14 statistical software. Based on the existing sugar crystallizer models, and the typical ranges of these 7 input variables, 128 datasets were obtained from a 2-level factorial experimental design. These datasets were used to obtain a simple but online-implementable 6-input crystal size model. It seems the initial crystal size (Lₒ) does not play a significant role. The goodness of the resulting regression model was evaluated. The coefficient of determination, R² was obtained as 0.994, and the maximum absolute relative error (MARE) was obtained as 4.6%. The high R² (~1.0) and the reasonably low MARE values are an indication that the model is able to predict sugar crystal size accurately as a function of the 6 easy-to-measure online variables. Thus, the model can be used as a soft sensor to provide real-time estimates of sugar crystal size during sugar crystallization process in a fed-batch vacuum evaporative crystallizer.

Keywords: crystal size, regression model, soft sensor, sugar, vacuum evaporative crystallizer

Procedia PDF Downloads 208
20801 Determination of the Bank's Customer Risk Profile: Data Mining Applications

Authors: Taner Ersoz, Filiz Ersoz, Seyma Ozbilge

Abstract:

In this study, the clients who applied to a bank branch for loan were analyzed through data mining. The study was composed of the information such as amounts of loans received by personal and SME clients working with the bank branch, installment numbers, number of delays in loan installments, payments available in other banks and number of banks to which they are in debt between 2010 and 2013. The client risk profile was examined through Classification and Regression Tree (CART) analysis, one of the decision tree classification methods. At the end of the study, 5 different types of customers have been determined on the decision tree. The classification of these types of customers has been created with the rating of those posing a risk for the bank branch and the customers have been classified according to the risk ratings.

Keywords: client classification, loan suitability, risk rating, CART analysis

Procedia PDF Downloads 338
20800 Design and Simulation of a Double-Stator Linear Induction Machine with Short Squirrel-Cage Mover

Authors: David Rafetseder, Walter Bauer, Florian Poltschak, Wolfgang Amrhein

Abstract:

A flat double-stator linear induction machine (DSLIM) with a short squirrel-cage mover is designed for high thrust force at moderate speed < 5m/s. The performance and motor parameters are determined on the basis of a 2D time-transient simulation with the finite element (FE) software Maxwell 2015. Design guidelines and transformation rules for space vector theory of the LIM are presented. Resulting thrust calculated by flux and current vectors is compared with the FE results showing good coherence and reduced noise. The parameters of the equivalent circuit model are obtained.

Keywords: equivalent circuit model, finite element model, linear induction motor, space vector theory

Procedia PDF Downloads 566
20799 Ecological Relationships Between Material, Colonizing Organisms, and Resulting Performances

Authors: Chris Thurlbourne

Abstract:

Due to the continual demand for material to build, and a limit of good environmental material credentials of 'normal' building materials, there is a need to look at new and reconditioned material types - both biogenic and non-biogenic - and a field of research that accompanies this. This research development focuses on biogenic and non-biogenic material engineering and the impact of our environment on new and reconditioned material types. In our building industry and all the industries involved in constructing our built environment, building material types can be broadly categorized into two types, biogenic and non-biogenic material properties. Both play significant roles in shaping our built environment. Regardless of their properties, all material types originate from our earth, whereas many are modified through processing to provide resistance to 'forces of nature', be it rain, wind, sun, gravity, or whatever the local environmental conditions throw at us. Modifications are succumbed to offer benefits in endurance, resistance, malleability in handling (building with), and ergonomic values - in all types of building material. We assume control of all building materials through rigorous quality control specifications and regulations to ensure materials perform under specific constraints. Yet materials confront an external environment that is not controlled with live forces undetermined, and of which materials naturally act and react through weathering, patination and discoloring, promoting natural chemical reactions such as rusting. The purpose of the paper is to present recent research that explores the after-life of specific new and reconditioned biogenic and non-biogenic material types and how the understanding of materials' natural processes of transformation when exposed to the external climate, can inform initial design decisions. With qualities to receive in a transient and contingent manner, ecological relationships between material, the colonizing organisms and resulting performances invite opportunities for new design explorations for the benefit of both the needs of human society and the needs of our natural environment. The research follows designing for the benefit of both and engaging in both biogenic and non-biogenic material engineering whilst embracing the continual demand for colonization - human and environment, and the aptitude of a material to be colonized by one or several groups of living organisms without necessarily undergoing any severe deterioration, but embracing weathering, patination and discoloring, and at the same time establishing new habitat. The research follows iterative prototyping processes where knowledge has been accumulated via explorations of specific material performances, from laboratory to construction mock-ups focusing on the architectural qualities embedded in control of production techniques and facilitating longer-term patinas of material surfaces to extend the aesthetic beyond common judgments. Experiments are therefore focused on how the inherent material qualities drive a design brief toward specific investigations to explore aesthetics induced through production, patinas and colonization obtained over time while exposed and interactions with external climate conditions.

Keywords: biogenic and non-biogenic, natural processes of transformation, colonization, patina

Procedia PDF Downloads 87
20798 Anomaly: A Case of Babri Masjid Dispute

Authors: Karitikeya Sonker

Abstract:

Religion as a discrete system through its lawful internal working produces an output in the form of realised spatial order with its social logic and a social order with its spatial logic. Thus, it appears to exhibit its duality of spatial and trans-spatial. The components of this system share a relevance forming a collective. This shared relevance creates meaning forming a group where all collectives share one identity. This group with its new social order and its spatial logic revive the already existing spatial order. These religious groups do so having a tendency to expand resulting in the production of space in a situation of encounter where they have found relevance. But an encounter without a lawful internal working of a discrete system results in anomaly because groups do not find relevance due to the absence of collective identity. Events happen all around. One of the main reasons we could say that something became an event is because of conflict. Conflict not in its definitive sense but any occurrence that happens because of an intervention that creates an event worth remembering. The unfolding of such events creates Cities and Urban spaces which exhibit their duality of spatial and trans-spatial by behaving as a discrete system. This system through its lawful internal working produces an output in the form of realized spatial order with its social logic and a social order with spatial logic. The components of this system form a collective through a shared a relevance. This shared relevance creates meaning forming a group where all collectives share one identity. This group with its new social order and its spatial logic revives the already existing spatial order. These groups do so having a tendency to expand resulting in the production of space in a situation of encounter where they have found relevance. But an encounter without a lawful internal working of the discrete system results in anomaly because groups do not find relevance due to the absence of collective identity. This paper makes an effort to explore one such even in the case of Babri Mosque and Ramjanmabhumi, Ayodhya to explain the anomaly as transposition of social and spatial. The paper through the case studies makes an attempt to generate an equation explaining the two different situations of religious encounters, former reviving the social and spatial order and the other resulting in anomaly. Through the case study, it makes an attempt to generate an equation explaining the two different situations of religious encounters, former reviving the social and spatial order and the other resulting in anomaly.

Keywords: Babri Masjid, Ayodhya, conflict, religion

Procedia PDF Downloads 275
20797 Effect of Carbon Nanotubes on Thermophysical Properties of Photothermal Fluid and Enhancement of Photothermal Deflection Signal

Authors: Muhammad Shafiq Ahmed, Sabastine Ezugwu

Abstract:

Thermophysical properties of Carbon Tetrachloride (CCl₄), a photothermal fluid used frequently in Photothermal Deflection Spectroscopy (PDS), containing different volume fractions of single walled carbon nanotube (SWCNTs) and their effect on the amplitude of PDS signal are investigated. It is found that the presence of highly thermally conducting SWCNTs in CCl₄ enhances the heat transfer from heated sample to the adjoining photothermal fluid, resulting in an increase in the intensity of amplitude of PDS signal. With the increasing volume fraction of SWCNTs in CCl₄, the amplitude of PDS signal is nearly doubled for volume fraction fopt =3.7X10⁻³ %., after that the signal drops with a further increase in the fraction of SWCNTs. It is shown that the use of highly thermally conducting carbon nanotubes enhances the heat exchange coefficient between the heated sample surface and adjoining fluid, resulting to an enhancement of PDS signal and consequently the improvement in the sensitivity of PDS technique.

Keywords: carbon nanotubes, heat transfer, nanofluid, photothermal deflection spectroscopy, thermophysical properties

Procedia PDF Downloads 158
20796 Research Action Fields at the Nexus of Digital Transformation and Supply Chain Management: Findings from Practitioner Focus Group Workshops

Authors: Brandtner Patrick, Staberhofer Franz

Abstract:

Logistics and Supply Chain Management are of crucial importance for organisational success. In the era of Digitalization, several implications and improvement potentials for these domains arise, which at the same time could lead to decreased competitiveness and could endanger long-term company success if ignored or neglected. However, empirical research on the issue of Digitalization and benefits purported to it by practitioners is scarce and mainly focused on single technologies or separate, isolated Supply Chain blocks as e.g. distribution logistics or procurement only. The current paper applies a holistic focus group approach to elaborate practitioner use cases at the nexus of the concepts of Supply Chain Management (SCM) and Digitalization. In the course of three focus group workshops with over 45 participants from more than 20 organisations, a comprehensive set of benefit entitlements and areas for improvement in terms of applying digitalization to SCM is developed. The main results of the paper indicate the relevance of Digitalization being realized in practice. In the form of seventeen concrete research action fields, the benefit entitlements are aggregated and transformed into potential starting points for future research projects in this area. The main contribution of this paper is an empirically grounded basis for future research projects and an overview of actual research action fields from practitioners’ point of view.

Keywords: digital supply chain, digital transformation, supply chain management, value networks

Procedia PDF Downloads 177
20795 Proteolysis in Serbian Traditional Dry Fermented Sausage Petrovská Klobása as Influenced by Different Ripening Processes

Authors: P. M. Ikonić, T. A. Tasić, L. S. Petrović, S. B. Škaljac, M. R. Jokanović, V. M. Tomović, B. V. Šojić, N. R. Džinić, A. M. Torbica, B. B. Ikonić

Abstract:

The aim of the study was to determine how different ripening processes (traditional vs. industrial) influenced the proteolysis in traditional Serbian dry-fermented sausage Petrovská klobása. The obtained results indicated more intensive pH decline (0.7 units after 9 days) in industrially ripened products (I), what had a positive impact on drying process and proteolytic changes in these samples. Thus, moisture content in I sausages was lower at each sampling time, amounting 24.7% at the end of production period (90 days). Likewise, the process of proteolysis was more pronounced in I samples, resulting in higher contents of non-protein nitrogen (NPN) and free amino acids nitrogen (FAAN), as well as in faster and more intensive degradation of myosin (≈220 kDa), actin (≈45 kDa) and other polypeptides during processing. Consequently, the appearance and accumulation of several protein fragments were registered.

Keywords: dry-fermented sausage, Petrovská klobása, proteolysis, ripening process

Procedia PDF Downloads 332
20794 Failure Analysis of Pipe System at a Hydroelectric Power Plant

Authors: Ali Göksenli, Barlas Eryürek

Abstract:

In this study, failure analysis of pipe system at a micro hydroelectric power plant is investigated. Failure occurred at the pipe system in the powerhouse during shut down operation of the water flow by a valve. This locking had caused a sudden shock wave, also called “Water-hammer effect”, resulting in noise and inside pressure increase. After visual investigation of the effect of the shock wave on the system, a circumference crack was observed at the pipe flange weld region. To establish the reason for crack formation, calculations of pressure and stress values at pipe, flange and welding seams were carried out and concluded that safety factor was high (2.2), indicating that no faulty design existed. By further analysis, pipe system and hydroelectric power plant was examined. After observations it is determined that the plant did not include a ventilation nozzle (air trap), that prevents the system of sudden pressure increase inside the pipes which is caused by water-hammer effect. Analyses were carried out to identify the influence of water-hammer effect on inside pressure increase and it was concluded that, according Jowkowsky’s equation, shut down time is effective on inside pressure increase. The valve closing time was uncertain but by a shut down time of even one minute, inside pressure would increase by 7.6 bar (working pressure was 34.6 bar). Detailed investigations were also carried out on the assembly of the pipe-flange system by considering technical drawings. It was concluded that the pipe-flange system was not installed according to the instructions. Two of five weld seams were not applied and one weld was carried out faulty. This incorrect and inadequate weld seams resulted in; insufficient connection of the pipe to the flange constituting a strong notch effect at weld seam regions, increase in stress values and the decrease of strength and safety factor

Keywords: failure analysis, hydroelectric plant, crack, shock wave, welding seam

Procedia PDF Downloads 344
20793 The Role of Deformation Strain and Annealing Temperature on Grain Boundary Engineering and Texture Evolution of Haynes 230

Authors: Mohsen Sanayei, Jerzy Szpunar

Abstract:

The present study investigates the effects of deformation strain and annealing temperature on the formation of twin boundaries, deformation and recrystallization texture evolution and grain boundary networks and connectivity. The resulting microstructures were characterized using Electron Backscatter Diffraction (EBSD) and X-Ray Diffraction (XRD) both immediately following small amount of deformation and after short time annealing at high temperature to correlate the micro and macro texture evolution of these alloys. Furthermore, this study showed that the process of grain boundary engineering, consisting cycles of deformation and annealing, is found to substantially reduce the mass and size of random boundaries and increase the proportion of low Coincidence Site Lattice (CSL) grain boundaries.

Keywords: coincidence site lattice, grain boundary engineering, electron backscatter diffraction, texture, x-ray diffraction

Procedia PDF Downloads 311
20792 Interfacial Investigation and Chemical Bonding in Graphene Reinforced Alumina Ceramic Nanocomposites

Authors: Iftikhar Ahmad, Mohammad Islam

Abstract:

Thermally exfoliated graphene nanomaterial was reinforced into Al2O3 ceramic and the nanocomposites were consolidated using rapid high-frequency induction heat sintering route. The resulting nanocomposites demonstrated higher mechanical properties due to efficient GNS incorporation and chemical interaction with the Al2O3 matrix grains. The enhancement in mechanical properties is attributed to (i) uniformly-dispersed GNS in the consolidated structure (ii) ability of GNS to decorate Al2O3 nanoparticles and (iii) strong GNS/Al2O3 chemical interaction during colloidal mixing and pullout/crack bridging toughening mechanisms during mechanical testing. The GNS/Al2O3 interaction during different processing stages was thoroughly examined by thermal and structural investigation of the interfacial area. The formation of an intermediate aluminum oxycarbide phase (Al2OC) via a confined carbothermal reduction reaction at the GNS/Al2O3 interface was observed using advanced electron microscopes. The GNS surface roughness improves GNS/Al2O3 mechanical locking and chemical compatibility. The sturdy interface phase facilitates efficient load transfer and delayed failure through impediment of crack propagation. The resulting nanocomposites, therefore, offer superior toughness.

Keywords: ceramics, nanocomposites, interfaces, nanostructures, electron microscopy, Al2O3

Procedia PDF Downloads 358
20791 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station

Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner

Abstract:

A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.

Keywords: radio base station, maintenance, classification, detection, deep learning, automation

Procedia PDF Downloads 201
20790 Scenario Based Reaction Time Analysis for Seafarers

Authors: Umut Tac, Leyla Tavacioglu, Pelin Bolat

Abstract:

Human factor has been one of the elements that cause vulnerabilities which can be resulted with accidents in maritime transportation. When the roots of human factor based accidents are analyzed, gaps in performing cognitive abilities (reaction time, attention, memory…) are faced as the main reasons for the vulnerabilities in complex environment of maritime systems. Thus cognitive processes in maritime systems have arisen important subject that should be investigated comprehensively. At this point, neurocognitive tests such as reaction time analysis tests have been used as coherent tools that enable us to make valid assessments for cognitive status. In this respect, the aim of this study is to evaluate the reaction time (response time or latency) of seafarers due to their occupational experience and age. For this study, reaction time for different maneuverers has been taken while the participants were performing a sea voyage through a simulator which was run up with a certain scenario. After collecting the data for reaction time, a statistical analyze has been done to understand the relation between occupational experience and cognitive abilities.

Keywords: cognitive abilities, human factor, neurocognitive test battery, reaction time

Procedia PDF Downloads 298
20789 Feedback Matrix Approach for Relativistic Runaway Electron Avalanches Dynamics in Complex Electric Field Structures

Authors: Egor Stadnichuk

Abstract:

Relativistic runaway electron avalanches (RREA) are a widely accepted source of thunderstorm gamma-radiation. In regions with huge electric field strength, RREA can multiply via relativistic feedback. The relativistic feedback is caused both by positron production and by runaway electron bremsstrahlung gamma-rays reversal. In complex multilayer thunderstorm electric field structures, an additional reactor feedback mechanism appears due to gamma-ray exchange between separate strong electric field regions with different electric field directions. The study of this reactor mechanism in conjunction with the relativistic feedback with Monte Carlo simulations or by direct solution of the kinetic Boltzmann equation requires a significant amount of computational time. In this work, a theoretical approach to study feedback mechanisms in RREA physics is developed. It is based on the matrix of feedback operators construction. With the feedback matrix, the problem of the dynamics of avalanches in complex electric structures is reduced to the problem of finding eigenvectors and eigenvalues. A method of matrix elements calculation is proposed. The proposed concept was used to study the dynamics of RREAs in multilayer thunderclouds.

Keywords: terrestrial Gamma-ray flashes, thunderstorm ground enhancement, relativistic runaway electron avalanches, gamma-rays, high-energy atmospheric physics, TGF, TGE, thunderstorm, relativistic feedback, reactor feedback, reactor model

Procedia PDF Downloads 172
20788 Using Deep Learning in Lyme Disease Diagnosis

Authors: Teja Koduru

Abstract:

Untreated Lyme disease can lead to neurological, cardiac, and dermatological complications. Rapid diagnosis of the erythema migrans (EM) rash, a characteristic symptom of Lyme disease is therefore crucial to early diagnosis and treatment. In this study, we aim to utilize deep learning frameworks including Tensorflow and Keras to create deep convolutional neural networks (DCNN) to detect images of acute Lyme Disease from images of erythema migrans. This study uses a custom database of erythema migrans images of varying quality to train a DCNN capable of classifying images of EM rashes vs. non-EM rashes. Images from publicly available sources were mined to create an initial database. Machine-based removal of duplicate images was then performed, followed by a thorough examination of all images by a clinician. The resulting database was combined with images of confounding rashes and regular skin, resulting in a total of 683 images. This database was then used to create a DCNN with an accuracy of 93% when classifying images of rashes as EM vs. non EM. Finally, this model was converted into a web and mobile application to allow for rapid diagnosis of EM rashes by both patients and clinicians. This tool could be used for patient prescreening prior to treatment and lead to a lower mortality rate from Lyme disease.

Keywords: Lyme, untreated Lyme, erythema migrans rash, EM rash

Procedia PDF Downloads 241
20787 Structural Insulated Panels

Authors: R. Padmini, G. V. Manoj Kumar

Abstract:

Structural insulated panels (SIPs) are a high-performance building system for residential and light commercial construction. The panels consist of an insulating foam core sandwiched between two structural facings, typically oriented strand board (OSB). SIPs are manufactured under factory controlled conditions and can be fabricated to fit nearly any building design. The result is a building system that is extremely strong, energy efficient and cost effective. Building with SIPs will save you time, money and labor. Building with SIPs generally costs about the same as building with wood frame construction when you factor in the labor savings resulting from shorter construction time and less job-site waste. Other savings are realized because smaller heating and cooling systems are required with SIP construction. Structural insulated panels (SIPs) are one of the most airtight and well-insulated building systems available, making them an inherently green product. An airtight SIP building will use less energy to heat and cool, allow for better control over indoor environmental conditions, and reduce construction waste. Green buildings use less energy, reducing carbon dioxide emissions and playing an important role in combating global climate change. Buildings also use a tremendous amount of natural resources to construct and operate. Constructing green buildings that use these resources more efficiently, while minimizing pollution that can harm renewable natural resources, is crucial to a sustainable future.

Keywords: high performance, under factory controlled, wood frame, carbon dioxide emissions, natural resources

Procedia PDF Downloads 436
20786 Optimization of Gastro-Retentive Matrix Formulation and Its Gamma Scintigraphic Evaluation

Authors: Swapnila V. Shinde, Hemant P. Joshi, Sumit R. Dhas, Dhananjaysingh B. Rajput

Abstract:

The objective of the present study is to develop hydro-dynamically balanced system for atenolol, β-blocker as a single unit floating tablet. Atenolol shows pH dependent solubility resulting into a bioavailability of 36%. Thus, site specific oral controlled release floating drug delivery system was developed. Formulation includes novice use of rate controlling polymer such as locust bean gum (LBG) in combination of HPMC K4M and gas generating agent sodium bicarbonate. Tablet was prepared by direct compression method and evaluated for physico-mechanical properties. The statistical method was utilized to optimize the effect of independent variables, namely amount of HPMC K4M, LBG and three dependent responses such as cumulative drug release, floating lag time, floating time. Graphical and mathematical analysis of the results allowed the identification and quantification of the formulation variables influencing the selected responses. To study the gastrointestinal transit of the optimized gastro-retentive formulation, in vivo gamma scintigraphy was carried out in six healthy rabbits, after radio labeling the formulation with 99mTc. The transit profiles demonstrated that the dosage form was retained in the stomach for more than 5 hrs. The study signifies the potential of the developed system for stomach targeted delivery of atenolol with improved bioavailability.

Keywords: floating tablet, factorial design, gamma scintigraphy, antihypertensive model drug, HPMC, locust bean gum

Procedia PDF Downloads 275
20785 Geographical Data Visualization Using Video Games Technologies

Authors: Nizar Karim Uribe-Orihuela, Fernando Brambila-Paz, Ivette Caldelas, Rodrigo Montufar-Chaveznava

Abstract:

In this paper, we present the advances corresponding to the implementation of a strategy to visualize geographical data using a Software Development Kit (SDK) for video games. We use multispectral images from Landsat 7 platform and Laser Imaging Detection and Ranging (LIDAR) data from The National Institute of Geography and Statistics of Mexican (INEGI). We select a place of interest to visualize from Landsat platform and make some processing to the image (rotations, atmospheric correction and enhancement). The resulting image will be our gray scale color-map to fusion with the LIDAR data, which was selected using the same coordinates than in Landsat. The LIDAR data is translated to 8-bit raw data. Both images are fused in a software developed using Unity (an SDK employed for video games). The resulting image is then displayed and can be explored moving around. The idea is the software could be used for students of geology and geophysics at the Engineering School of the National University of Mexico. They will download the software and images corresponding to a geological place of interest to a smartphone and could virtually visit and explore the site with a virtual reality visor such as Google cardboard.

Keywords: virtual reality, interactive technologies, geographical data visualization, video games technologies, educational material

Procedia PDF Downloads 246
20784 Civic Engagement and Political Participation in Bangladesh

Authors: Syeda Salina Aziz, Tanvir Ahmed Mozumder

Abstract:

Citizenship is an important concept of democracy which broadly defines the relationship between the state and its citizens; at the same time, it analyzes the rights and duties of a citizen. The universal citizenship principle demands that citizens should be aware of the political system, possess democratic attitudes, and join the political activity. Bangladesh presents an interesting case for democracy; the democratic practices in the country have been long introduced, have been interrupted several times, and the democratic values and practices have yet to be established in the country. These transitions have influenced citizens’ ideologies and participation in decision-making and also shaped their expectations differently. In this backdrop, this paper aims to understand and explain the citizenship behavior of Bangladeshi nationals. Based on nationally representative household survey data of 4000 respondents, this paper creates a composite citizenship index which is a combination of three separate indices, including participation index, knowledge and awareness index, and ideology index. The paper then tries to explain the factors that affect the citizenship index. Using fixed effect regression analysis, the paper intends to explore the association between citizenship and socio-demographic variables, including education, location, gender, and exposure to the media of respondents. Additionally, using national election polls, the paper creates a variable to measure long-term support towards the current ruling party and tests whether and how this affects the citizenship variables.

Keywords: citizenship, political participation, Bangladesh, stronghold

Procedia PDF Downloads 82
20783 Hierarchical Piecewise Linear Representation of Time Series Data

Authors: Vineetha Bettaiah, Heggere S. Ranganath

Abstract:

This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity.

Keywords: data mining, dimensionality reduction, piecewise linear representation, time series representation

Procedia PDF Downloads 275
20782 Heroin Withdrawal, Prison and Multiple Temporalities

Authors: Ian Walmsley

Abstract:

The aim of this paper is to explore the influence of time and temporality on the experience of coming off heroin in prison. The presentation draws on qualitative data collected during a small-scale pilot study of the role of self-care in the process of coming off drugs in prison. Time and temporality emerged as a key theme in the interview transcripts. Drug dependent prisoners experience of time in prison has not been recognized in the research literature. Instead, the literature on prison time typically views prisoners as a homogenous group or tends to focus on the influence of aging and gender on prison time. Furthermore, there is a tendency in the literature on prison drug treatment and recovery to conceptualize drug dependent prisoners as passive recipients of prison healthcare, rather than active agents. In building on these gaps, this paper argues that drug dependent prisoners experience multiple temporalities which involve an interaction between the body-times of the drug dependent prisoner and the economy of time in prison. One consequence of this interaction is the feeling that they are doing, at this point in their prison sentence, double prison time. The second part of the argument is that time and temporality were a means through which they governed their withdrawing bodies. In addition, this paper will comment on the challenges of prison research in England.

Keywords: heroin withdrawal, time and temporality, prison, body

Procedia PDF Downloads 276
20781 A Time Delay Neural Network for Prediction of Human Behavior

Authors: A. Hakimiyan, H. Namazi

Abstract:

Human behavior is defined as a range of behaviors exhibited by humans who are influenced by different internal or external sources. Human behavior is the subject of much research in different areas of psychology and neuroscience. Despite some advances in studies related to forecasting of human behavior, there are not many researches which consider the effect of the time delay between the presence of stimulus and the related human response. Analysis of EEG signal as a fractal time series is one of the major tools for studying the human behavior. In the other words, the human brain activity is reflected in his EEG signal. Artificial Neural Network has been proved useful in forecasting of different systems’ behavior especially in engineering areas. In this research, a time delay neural network is trained and tested in order to forecast the human EEG signal and subsequently human behavior. This neural network, by introducing a time delay, takes care of the lagging time between the occurrence of the stimulus and the rise of the subsequent action potential. The results of this study are useful not only for the fundamental understanding of human behavior forecasting, but shall be very useful in different areas of brain research such as seizure prediction.

Keywords: human behavior, EEG signal, time delay neural network, prediction, lagging time

Procedia PDF Downloads 663