Search results for: Paul Wang
1230 Hidden Populations and Women: New Political, Methodological and Ethical Challenges
Authors: Renée Fregosi
Abstract:
The contribution presently proposed will report on the beginnings of a Franco-Chilean study to be launched in 2015 by a multidisciplinary team of Renée Fregosi Political Science University Paris 3 / CECIEC, Norma Muñoz Public Policies University of Santiago of Chile, Jean-Daniel Lelievre, Medicine Paris 11 University, Marcelo WOLFF Medicine University of Chile, Cecilia Blatrix Political Science University Paris-Tech, Ernesto OTTONE, Political Science University of Chile, Paul DENY Medicine Paris 13 University, Rafael Bugueno Medicine Hospital Urgencia Pública of Santiago, Eduardo CARRASCO Political Science Paris 3 University. The problem of hidden populations challenges some criteria and concepts to re-examine: in particular the concept of target population, sampling methods to "snowball" and the cost-effectiveness criterion that shows the connection of political and scientific fields. Furthermore, if the pattern of homosexual transmission still makes up the highest percentage of the modes of infection with HIV, there is a continuous increase in the number of people infected through heterosexual sex, including women and persons aged 50 years and older. This group can be described as " unknown risk people." Access to these populations is a major challenge and raises methodological, ethical and political issues of prevention, particularly on the issue of screening. This paper proposes an inventory of these types of problems and their articulation, to define a new phase in the prevention against HIV refocused on women.Keywords: HIV testing, hidden populations, difficult to reach PLWHA, women, unknown risk people
Procedia PDF Downloads 5231229 Quorum-Sensing Driven Inhibitors for Mitigating Microbial Influenced Corrosion
Authors: Asma Lamin, Anna H. Kaksonen, Ivan Cole, Paul White, Xiao-Bo Chen
Abstract:
Microbiologically influenced corrosion (MIC) is a process in which microorganisms initiate, facilitate, or accelerate the electrochemical corrosion reactions of metallic components. Several reports documented that MIC accounts for about 20 to 40 % of the total cost of corrosion. Biofilm formation due to the presence of microorganisms on the surface of metal components is known to play a vital role in MIC, which can lead to severe consequences in various environmental and industrial settings. Quorum sensing (QS) system plays a major role in regulating biofilm formation and control the expression of some microbial enzymes. QS is a communication mechanism between microorganisms that involves the regulation of gene expression as a response to the microbial cell density within an environment. This process is employed by both Gram-positive and Gram-negative bacteria to regulate different physiological functions. QS involves production, detection, and responses to signalling chemicals, known as auto-inducers. QS controls specific processes important for the microbial community, such as biofilm formation, virulence factor expression, production of secondary metabolites and stress adaptation mechanisms. The use of QS inhibitors (QSIs) has been proposed as a possible solution to biofilm related challenges in many different applications. Although QSIs have demonstrated some strength in tackling biofouling, QSI-based strategies to control microbially influenced corrosion have not been thoroughly investigated. As such, our research aims to target the QS mechanisms as a strategy for mitigating MIC on metal surfaces in engineered systems.Keywords: quorum sensing, quorum quenching, biofilm, biocorrosion
Procedia PDF Downloads 911228 Training Engineering Students in Sustainable Development
Authors: Hoong C. Chin, Soon H. Chew, Zhaoxia Wang
Abstract:
Work on sustainable developments and the call for action in education for sustainable development have been ongoing for a number of years. Training engineering students with the relevant competencies, particularly in sustainable development literacy, has been identified as an urgent task in universities. This requires not only a holistic, multi-disciplinary approach to education but also a suitable training environment to develop the needed skills and to inculcate the appropriate attitudes in students towards sustainable development. To demonstrate how this can be done, a module involving an overseas field trip was introduced in 2013 at the National University of Singapore. This paper provides details of the module and describes its training philosophy and methods. Measured against the student learning outcomes, stipulated by the Engineering Accreditation Board, the module scored well on all of them, particularly those related to complex problem solving, environmental and sustainability awareness, multi-disciplinary team work and varied-level communications.Keywords: civil engineering education, socio-economically sustainable infrastructure, student learning outcome, sustainable development
Procedia PDF Downloads 3511227 Analysis of Cooperative Learning Behavior Based on the Data of Students' Movement
Authors: Wang Lin, Li Zhiqiang
Abstract:
The purpose of this paper is to analyze the cooperative learning behavior pattern based on the data of students' movement. The study firstly reviewed the cooperative learning theory and its research status, and briefly introduced the k-means clustering algorithm. Then, it used clustering algorithm and mathematical statistics theory to analyze the activity rhythm of individual student and groups in different functional areas, according to the movement data provided by 10 first-year graduate students. It also focused on the analysis of students' behavior in the learning area and explored the law of cooperative learning behavior. The research result showed that the cooperative learning behavior analysis method based on movement data proposed in this paper is feasible. From the results of data analysis, the characteristics of behavior of students and their cooperative learning behavior patterns could be found.Keywords: behavior pattern, cooperative learning, data analyze, k-means clustering algorithm
Procedia PDF Downloads 1881226 Research of Database Curriculum Construction under the Environment of Massive Open Online Courses
Authors: Wang Zhanquan, Yang Zeping, Gu Chunhua, Zhu Fazhi, Guo Weibin
Abstract:
Recently, Massive Open Online Courses (MOOCs) are becoming the new trend of education. There are many problems under the environment of Database Principle curriculum teaching process in MOOCs, such as teaching ideas and theories which are out of touch with the reality, how to carry out the technical teaching and interactive practice in the MOOCs environment, thus the methods of database course under the environment of MOOCs are proposed. There are three processes to deal with problem solving in the research, which are problems proposed, problems solved, and inductive analysis. The present research includes the design of teaching contents, teaching methods in classroom, flipped classroom teaching mode under the environment of MOOCs, learning flow method and large practice homework. The database designing ability is systematically improved based on the researching methods.Keywords: problem solving-driven, MOOCs, teaching art, learning flow;
Procedia PDF Downloads 3631225 Unsupervised Domain Adaptive Text Retrieval with Query Generation
Authors: Rui Yin, Haojie Wang, Xun Li
Abstract:
Recently, mainstream dense retrieval methods have obtained state-of-the-art results on some datasets and tasks. However, they require large amounts of training data, which is not available in most domains. The severe performance degradation of dense retrievers on new data domains has limited the use of dense retrieval methods to only a few domains with large training datasets. In this paper, we propose an unsupervised domain-adaptive approach based on query generation. First, a generative model is used to generate relevant queries for each passage in the target corpus, and then the generated queries are used for mining negative passages. Finally, the query-passage pairs are labeled with a cross-encoder and used to train a domain-adapted dense retriever. Experiments show that our approach is more robust than previous methods in target domains that require less unlabeled data.Keywords: dense retrieval, query generation, unsupervised training, text retrieval
Procedia PDF Downloads 731224 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the model-agnostic meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to an exponential growth of computation, this paper also proposes a key data extraction method that only extract part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: mutex task generation, data augmentation, meta-learning, text classification.
Procedia PDF Downloads 1441223 Research on the Public Policy of Vehicle Restriction under Traffic Control
Authors: Wang Qian, Bian Cheng Xiang
Abstract:
In recent years, with the improvement of China's urbanization level, the number of urban motor vehicles has grown rapidly. As residents' daily commuting necessities, cars cause a lot of exhaust emissions and urban traffic congestion. In the "Fourteenth Five Year Plan" of China, it is proposed to strive to reach the peak of carbon dioxide emissions by 2030 and achieve carbon neutrality by 2060. Urban transport accounts for a high proportion of carbon emission sources. It is an important driving force for the realization of China's carbon peak strategy. Some cities have introduced and implemented the policy of "car restriction" to solve related urban problems by reducing the use of cars. This paper analyzes the implementation of the "automobile restriction" policy, evaluates the relevant effects of the automobile restriction policy, and discusses how to better optimize the "automobile restriction" policy in the process of urban governance.Keywords: carbon emission, traffic jams, vehicle restrictions, evaluate
Procedia PDF Downloads 1611222 Factors Influencing University Students' Online Disinhibition Behavior: The Moderating Effects of Deterrence and Social Identity
Authors: Wang, Kuei-Ing, Jou-Fan Shih
Abstract:
This study adopts deterrence theory as well as social identities as moderators, and explores their moderating affects on online toxic disinhibition. Survey and Experimental methodologies are applied to test the research model and four hypotheses are developed in this study. The controllability of identity positively influenced the behavior of toxic disinhibition both in experimental and control groups while the fluidity of the identity did not have significant influences on online disinhibition. Punishment certainty, punishment severity as well as social identity negatively moderated the relation between the controllability of the identity and the toxic disinhibition. The result of this study shows that internet users hide their real identities when they behave inappropriately on internet, but once they acknowledge that the inappropriate behavior will be found and punished severely, the inappropriate behavior then will be weakened.Keywords: seductive properties of internet, online disinhibition, punishment certainty, punishment severity, social identity
Procedia PDF Downloads 5081221 Attention-based Adaptive Convolution with Progressive Learning in Speech Enhancement
Authors: Tian Lan, Yixiang Wang, Wenxin Tai, Yilan Lyu, Zufeng Wu
Abstract:
The monaural speech enhancement task in the time-frequencydomain has a myriad of approaches, with the stacked con-volutional neural network (CNN) demonstrating superiorability in feature extraction and selection. However, usingstacked single convolutions method limits feature represen-tation capability and generalization ability. In order to solvethe aforementioned problem, we propose an attention-basedadaptive convolutional network that integrates the multi-scale convolutional operations into a operation-specific blockvia input dependent attention to adapt to complex auditoryscenes. In addition, we introduce a two-stage progressivelearning method to enlarge the receptive field without a dra-matic increase in computation burden. We conduct a series ofexperiments based on the TIMIT corpus, and the experimen-tal results prove that our proposed model is better than thestate-of-art models on all metrics.Keywords: speech enhancement, adaptive convolu-tion, progressive learning, time-frequency domain
Procedia PDF Downloads 1241220 The Global Relationship between the Prevalence of Diabetes Mellitus and Incidence of Tuberculosis: 2000-2012
Authors: Alaa Badawi, Suzan Sayegh, Mohamed Sallam, Eman Sadoun, Mohamed Al-Thani, Muhammad W. Alam, Paul Arora
Abstract:
Background: The dual burden of tuberculosis (TB) and diabetes mellitus (DM) has increased over the past decade with DM prevalence increasing in countries already afflicted with a high burden of TB. The coexistence of the two conditions presents a serious threat to global public health. Objective: The present study examines the global relationship between the prevalence of DM and the incidence of TB to evaluate their coexistence worldwide and their contribution to one another. Methods: This is an ecological longitudinal study covering the period between years 2000 to 2012. We utilized data from the WHO and World Bank sources and International Diabetes Federation to estimate prevalence of DM (%) and the incidence of TB (per 100,000). Measures of central tendency and dispersion as well as the harmonic mean and linear regression were used for different WHO regions. The association between DM prevalence and TB incidence was examined by quartile of DM prevalence. Results: The worldwide average (±S.D.) prevalence of DM within the study period was 6.6±3.8% whereas TB incidence was 135.0±190.5 per 100,000. DM prevalence was highest in the Eastern Mediterranean (8.3±4.1) and West Pacific (8.2±5.6) regions and lowest in the Africa (3.5±2.6). TB incidence was highest in Africa (313.1±275.9 per 100,000) and South-East Asia (216.7±124.9) and lowest in the European (46.5±68.6) and American (47.2±52.9) regions. Only countries with high DM prevalence (>7.6%) showed a significant positive association with TB incidence (r=0.17, p=0.013). Conclusion: A positive association between DM and TB may exist in some – but not all – world regions, a dual burden that necessitates identifying the nature of this coexistence to assist in developing public health approaches that curb their rising burden.Keywords: diabetes mellitus, tuberculosis, disease burden, global association
Procedia PDF Downloads 4691219 TMIF: Transformer-Based Multi-Modal Interactive Fusion for Rumor Detection
Authors: Jiandong Lv, Xingang Wang, Cuiling Shao
Abstract:
The rapid development of social media platforms has made it one of the important news sources. While it provides people with convenient real-time communication channels, fake news and rumors are also spread rapidly through social media platforms, misleading the public and even causing bad social impact in view of the slow speed and poor consistency of artificial rumor detection. We propose an end-to-end rumor detection model-TIMF, which captures the dependencies between multimodal data based on the interactive attention mechanism, uses a transformer for cross-modal feature sequence mapping and combines hybrid fusion strategies to obtain decision results. This paper verifies two multi-modal rumor detection datasets and proves the superior performance and early detection performance of the proposed model.Keywords: hybrid fusion, multimodal fusion, rumor detection, social media, transformer
Procedia PDF Downloads 2501218 Understanding of Malaysian Community Disaster Resilience: Australian Scorecard Adaptation
Authors: Salizar Mohamed Ludin, Mohd Khairul Hasyimi Firdaus, Paul Arbon
Abstract:
Purpose: This paper aims to develop Malaysian Government and community-level critical thinking, planning and action for improving community disaster resilience by reporting Phase 1, Part 1 of a larger community disaster resilience measurement study about adapting the Torrens Resilience Institute Australian Community Disaster Resilience Scorecard to the Malaysian context. Methodology: Pparticipatory action research encouraged key people involved in managing the six most affected areas in the 2014 flooding of Kelantan in Malaysia’s north-east to participate in discussions about adapting and self-testing the Australian Community Disaster Resilience Scorecard to measure and improve their communities’ disaster resilience. Findings: Communities need to strengthen their disaster resilience through better communication, cross-community cooperation, maximizing opportunities to compare their plans, actions and reactions with those reported in research publications, and aligning their community disaster management with reported best practice internationally while acknowledging the need to adapt such practice to local contexts. Research implications: There is a need for a Malaysia-wide, simple-to-use, standardized disaster resilience scorecard to improve the quality, quantity and capability of healthcare and emergency services’ preparedness, and to facilitate urgent reallocation of aid. Value: This study is the first of its kind in Malaysia. The resulting community disaster resilience guideline based on participants’ feedback about the Kelantan floods and scorecard self-testing has the potential for further adaptation to suit contexts across Malaysia, as well as demonstrating how the scorecard can be adapted for international use.Keywords: community disaster resilience, CDR Scorecard, participatory action research, flooding, Malaysia
Procedia PDF Downloads 3361217 Behavioral and Electroantennographic Responses of the Tea Shot Hole Borer, Euwallacea fornicatus, Eichhoff (Scolytidae: Coleoptera) to Volatiles Compounds of Montanoa bipinnatifida (Compositae: Asteraceae) and Development of a Kairomone Trap
Authors: Sachin Paul James, Selvasundaram Rajagopal, Muraleedharan Nair, Babu Azariah
Abstract:
The shot hole borer (SHB), Euwallacea fornicatus (= Xyleborus fornicatus) (Scolytidae: Coleoptera) is one of the major pests of tea in southern India and Sri Lanka. The partially dried cut stem of a jungle plant, Montanoa bipinnatifida (C.Koch) (Compositae: Asteraceae) reported to attract shot hole borer beetles in the field. Collection, isolation, identification and quantification of the emitted volatiles from the partially dried cut stems of M. bipinnatifida using dynamic head space and GC-MS revealed the presence of seven compounds viz. α- pinene, β- phellandrene, β - pinene, D- limonene, trans-caryophyllene, iso- caryophyllene and germacrene– D. Behavioural bioassays using electroantennogram (EAG) and wind tunnel proved that, among these identified compounds only α - pinene, trans-caryophyllene, β – phellandrene and germacrene-D evoked significant behavioral response and maximum response was obtained to a specific blend of these four compounds @ 10:1:0.1:3. Field trapping experiments of this blend conducted in the SHB infested field using multiple funnel traps further proved the efficiency of the blend with a mean trap catch of 176.7 ± 13.1 beetles. Mass trapping studies in the field helped to develop a kairomone trap for the management of SHB in the tea fields of southern India.Keywords: electroantennogram, kairomone trap, Montanoa bipinnatifida, tea shot hole borer
Procedia PDF Downloads 2231216 Image Reconstruction Method Based on L0 Norm
Authors: Jianhong Xiang, Hao Xiang, Linyu Wang
Abstract:
Compressed sensing (CS) has a wide range of applications in sparse signal reconstruction. Aiming at the problems of low recovery accuracy and long reconstruction time of existing reconstruction algorithms in medical imaging, this paper proposes a corrected smoothing L0 algorithm based on compressed sensing (CSL0). First, an approximate hyperbolic tangent function (AHTF) that is more similar to the L0 norm is proposed to approximate the L0 norm. Secondly, in view of the "sawtooth phenomenon" in the steepest descent method and the problem of sensitivity to the initial value selection in the modified Newton method, the use of the steepest descent method and the modified Newton method are jointly optimized to improve the reconstruction accuracy. Finally, the CSL0 algorithm is simulated on various images. The results show that the algorithm proposed in this paper improves the reconstruction accuracy of the test image by 0-0. 98dB.Keywords: smoothed L0, compressed sensing, image processing, sparse reconstruction
Procedia PDF Downloads 1181215 Data-Centric Anomaly Detection with Diffusion Models
Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu
Abstract:
Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.Keywords: diffusion models, anomaly detection, data-centric, generative AI
Procedia PDF Downloads 841214 A t-SNE and UMAP Based Neural Network Image Classification Algorithm
Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang
Abstract:
Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.Keywords: t-SNE, UMAP, fashion MNIST, neural networks
Procedia PDF Downloads 1991213 Strength Parameters and the Rate Process Theory Applied to Compacted Fadama Soils
Authors: Samuel Akinlabi Ola, Emeka Segun Nnochiri, Stephen Kayode Aderomose, Paul Ayesemhe Edoh
Abstract:
Fadama soils of Northern Nigeria are generally a problem soil for highway and geotechnical engineers. There has been no consistent conclusion on the effect of the strain rate on the shear strength of soils, thus necessitating the need to clarify this issue with various types of soil. Consolidated undrained tests with pore pressure measurements were conducted at optimum moisture content and maximum dry density using standard proctor compaction. Back pressures were applied to saturate the soil. The shear strength parameters were determined. Analyzing the results and model studies using the Rate Process Theory, functional relationships between the deviator stress and strain rate were determined and expressed mathematically as deviator stress = β0+ β1 log(strain rate) at each cell pressure where β0 and β1 are constants. Also, functional relationships between the pore pressure coefficient Āf and the time to failure were determined and expressed mathematically as pore pressure coefficient, Āf = ψ0+ѱ1log (time to failure) where ψ0 and ѱ1 are constants. For cell pressure between 69 – 310 kN/m2 (10 - 45psi) the constants found for Fadama soil in this study are ψ0=0.17 and ѱ1=0.18. The study also shows the dependence of the angle of friction (ø’) on the rate of strain as it increases from 22o to 25o for an increase in the rate of strain from 0.08%/min to 1.0%/min. Conclusively, the study also shows that within the strain rate utilized in the research, the deviator strength increased with the strain rate while the excess pore water pressure decreased with an increase in the rate of strain.Keywords: deviator stress, Fadama soils, pore pressure coefficient, rate process
Procedia PDF Downloads 781212 Statistical Analysis of Cables in Long-Span Cable-Stayed Bridges
Authors: Ceshi Sun, Yueyu Zhao, Yaobing Zhao, Zhiqiang Wang, Jian Peng, Pengxin Guo
Abstract:
With the rapid development of transportation, there are more than 100 cable-stayed bridges with main span larger than 300 m in China. In order to ascertain the statistical relationships among the design parameters of stay cables and their distribution characteristics, 1500 cables were selected from 25 practical long-span cable-stayed bridges. A new relationship between the first order frequency and the length of cable was found by conducting the curve fitting. Then, based on this relationship other interesting relationships were deduced. Several probability density functions (PDFs) were used to investigate the distributions of the parameters of first order frequency, stress level and the Irvine parameter. It was found that these parameters obey the Lognormal distribution, the Weibull distribution and the generalized Pareto distribution, respectively. Scatter diagrams of the three parameters were plotted and their 95% confidence intervals were also investigated.Keywords: cable, cable-stayed bridge, long-span, statistical analysis
Procedia PDF Downloads 6351211 Deposition and Properties of PEO Coatings on Zinc-Aluminum Alloys
Authors: Linlin Wang, Guangdong Bian, Jifeng Shen, Jingzhu Zeng
Abstract:
Zinc-aluminum alloys have been applied as alternatives to bronze, aluminum alloys, and cast iron due to their distinguishing features such as high as-cast strength, excellent bearing properties, as well as low energy requirements for melting. In this study, oxide coatings were produced on ZA27 zinc-aluminum alloy by a plasma electrolytic oxidation (PEO) method. Three coatings were deposited by using three various electrolytes, i.e. silicate, aluminate and aluminate/borate composite solutions. The current density is set at 0.1A/cm2, deposition time is 40 mins for all the deposition processes. The surface morphology and phase structure of the three coatings were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Pin-on-disc sliding wear tests were conducted to test the tribological properties of coatings. The results indicated that the coating produced using the aluminate/borate composite electrolyte had the highest deposition rate and best wear resistance among the three coatings.Keywords: oxide coating, PEO, tribological properties, ZA27
Procedia PDF Downloads 4951210 The Micro-Activated Organic Regeneration in Rural Construction: A Case Study of Yangdun Village in Deqing County, Zhejiang Province
Authors: Chengyuan Zhu, Zhu Wang
Abstract:
With the strategy of Rural Rejuvenation proposed in China, the rural has become the focus of all works today. In addition to the support of industry and policy, the rural planning and construction which is the space dependence of Rural Rejuvenation are also very crucial. Based on an analysis of the case of Yangdun Village in Deqing County, this paper summarizes village existing resources and construction status quo. It tries to illuminate the micro-activated organic renewal strategies and methods, based on ecological landscape, history context, industry development and living life requirements. It takes advantage of industrial linkage and then asks for the coordination of both spatial and industrial planning, the revival and remodeling of the rural image can be achieved through shaping the of architectural and landscape nodes as well as the activation of street space.Keywords: rural construction, rural human settlements, micro-activation, organic renewal
Procedia PDF Downloads 2311209 Electromagnetic Interference Shielding Effectiveness of a Corrugated Rectangular Waveguide for a Microwave Conveyor-Belt Drier
Authors: Sang-Hyeon Bae, Sung-Yeon Kim, Min-Gyo Jeong, Ji-Hong Kim, Wang-Sang Lee
Abstract:
Traditional heating methods such as electric ovens or steam heating are slow and not very efficient. For continuously heating the objects, a microwave conveyor-belt drier is widely used in the industrial microwave heating systems. However, there is a problem in which electromagnetic wave leaks toward outside of the heating cavity through the insertion opening. To achieve the prevention of the leakage of microwaves and improved heating characteristics, the corrugated rectangular waveguide at the entrance and exit openings of a microwave conveyor-belt drier is proposed and its electromagnetic interference (EMI) shielding effectiveness is analyzed and verified. The corrugated waveguides in the proposed microwave heating system achieve at least 20 dB shielding effectiveness while ensuring a sufficient height of the openings.Keywords: corrugated, electromagnetic wave, microwave conveyor-belt drier, rectangular waveguide, shielding effectiveness
Procedia PDF Downloads 5181208 The Performance of Typical Kinds of Coating of Printed Circuit Board under Accelerated Degradation Test
Authors: Xiaohui Wang, Liwei Sun, Guilin Zhang
Abstract:
Printed circuit board (PCB) is the carrier of electronic components. Its coating is the first barrier for protecting itself. If the coating is damaged, the performance of printed circuit board will decrease rapidly until failure. Therefore, the coating plays an important role in the entire printed circuit board. There are common four kinds of coating of printed circuit board that the material of the coatings are paryleneC, acrylic, polyurethane, silicone. In this paper, we designed an accelerated degradation test of humid and heat for these four kinds of coating. And chose insulation resistance, moisture absorption and surface morphology as its test indexes. By comparing the change of insulation resistance of the coating before and after the test, we estimate failure time of these coatings based on the degradation of insulation resistance. Based on the above, we estimate the service life of the four kinds of PCB.Keywords: printed circuit board, life assessment, insulation resistance, coating material
Procedia PDF Downloads 5351207 Modeling of Crack Propagation Path in Concrete with Coarse Trapezoidal Aggregates by Boundary Element Method
Authors: Chong Wang, Alexandre Urbano Hoffmann
Abstract:
Interaction between a crack and a trapezoidal aggregate in a single edge notched concrete beam is simulated using boundary element method with an automatic crack extension program. The stress intensity factors of the growing crack are obtained from the J-integral. Three crack extension paths: deflecting around the particulate, growing along the interface and penetrating into the particulate are achieved in terms of the mismatch state of mechanical characteristics of matrix and the particulate. The toughening is also given by the ratio of stress intensity factors. The results reveal that as stress shielding occurs, toughening is obtained when the crack is approaching to a stiff and strong aggregate weakly bonded to a relatively soft matrix. The present work intends to help for the design of aggregate reinforced concretes.Keywords: aggregate concrete, boundary element method, two-phase composite, crack extension path, crack/particulate interaction
Procedia PDF Downloads 4271206 Sparse Signal Restoration Algorithm Based on Piecewise Adaptive Backtracking Orthogonal Least Squares
Authors: Linyu Wang, Jiahui Ma, Jianhong Xiang, Hanyu Jiang
Abstract:
the traditional greedy compressed sensing algorithm needs to know the signal sparsity when recovering the signal, but the signal sparsity in the practical application can not be obtained as a priori information, and the recovery accuracy is low, which does not meet the needs of practical application. To solve this problem, this paper puts forward Piecewise adaptive backtracking orthogonal least squares algorithm. The algorithm is divided into two stages. In the first stage, the sparsity pre-estimation strategy is adopted, which can quickly approach the real sparsity and reduce time consumption. In the second stage iteration, the correction strategy and adaptive step size are used to accurately estimate the sparsity, and the backtracking idea is introduced to improve the accuracy of signal recovery. Through experimental simulation, the algorithm can accurately recover the estimated signal with fewer iterations when the sparsity is unknown.Keywords: compressed sensing, greedy algorithm, least square method, adaptive reconstruction
Procedia PDF Downloads 1511205 Eco-Friendly Control of Bacterial Speck on Solanum lycopersicum by Azadirachta indica Extract
Authors: Navodit Goel, Prabir K. Paul
Abstract:
Tomato (Solanum lycopersicum) is attacked by Pseudomonas syringae pv. tomato causing speck lesions on the leaves leading to severe economic casualty. In the present study, aqueous fruit extracts of Azadirachta indica (neem) were sprayed on a single node of tomato plants grown under controlled contamination-free conditions. The treatment of plants was performed with neem fruit extract either alone or along with the pathogen. The parameters of observation were activities of polyphenol oxidase (PPO) and lysozyme, and isoform analysis of PPO; both at the treated leaves as well as untreated leaves away from the site of extract application. Polyphenol oxidase initiates phenylpropanoid pathway resulting in the synthesis of quinines from cytoplasmic phenols and production of reactive oxygen species toxic to broad spectrum microbes. Lysozyme is responsible for the breakdown of bacterial cell wall. The results indicate the upregulation of PPO and lysozyme activities in both the treated and untreated leaves along with de novo expression of newer PPO isoenzymes (which were absent in control samples). The appearance of additional PPO isoenzymes in bioelicitor-treated plants indicates that either the isoenzymes were expressed after bioelicitor application or the already expressed but inactive isoenzymes were activated by it. Lysozyme activity was significantly increased in the plants when treated with the bioelicitor or the pathogen alone. However, no new isoenzymes of lysozyme were expressed upon application of the extract. Induction of resistance by neem fruit extract could be a potent weapon in eco-friendly plant protection strategies.Keywords: Azadirachta indica, lysozyme, polyphenol oxidase, Solanum lycopersicum
Procedia PDF Downloads 2891204 Positive Bias and Length Bias in Deep Neural Networks for Premises Selection
Authors: Jiaqi Huang, Yuheng Wang
Abstract:
Premises selection, the task of selecting a set of axioms for proving a given conjecture, is a major bottleneck in automated theorem proving. An array of deep-learning-based methods has been established for premises selection, but a perfect performance remains challenging. Our study examines the inaccuracy of deep neural networks in premises selection. Through training network models using encoded conjecture and axiom pairs from the Mizar Mathematical Library, two potential biases are found: the network models classify more premises as necessary than unnecessary, referred to as the ‘positive bias’, and the network models perform better in proving conjectures that paired with more axioms, referred to as ‘length bias’. The ‘positive bias’ and ‘length bias’ discovered could inform the limitation of existing deep neural networks.Keywords: automated theorem proving, premises selection, deep learning, interpreting deep learning
Procedia PDF Downloads 1841203 Research on the Detection Method of Helmet Wearing in Construction Site Based on Deep Learning
Authors: Afaq Ahmad, Yifei Wang, Muhammad Kashif
Abstract:
This paper addresses the rising safety accidents in China's construction industry by focusing on detecting safety helmet usage among workers using deep learning techniques. It enhances existing datasets through the collection of construction site images and merges them with public datasets to create a diverse sample library. An improved Cascade R-CNN algorithm is developed, incorporating a Swin Transformer for better feature extraction, ROI Align for detecting small and occluded targets, and Gaussian weighted Soft-NMS to reduce redundant detections. The model, trained on the "My-SHWD" dataset, achieved a mean Average Precision of 92.66%, showcasing strong performance. Additionally, a helmet detection system was designed for testing images, videos, and live feeds, demonstrating reliability and stability in practical applications.Keywords: deep learning, safety helmet-wearing detection, cascade R-CNN, swin transformer
Procedia PDF Downloads 51202 Phase II Monitoring of First-Order Autocorrelated General Linear Profiles
Authors: Yihua Wang, Yunru Lai
Abstract:
Statistical process control has been successfully applied in a variety of industries. In some applications, the quality of a process or product is better characterized and summarized by a functional relationship between a response variable and one or more explanatory variables. A collection of this type of data is called a profile. Profile monitoring is used to understand and check the stability of this relationship or curve over time. The independent assumption for the error term is commonly used in the existing profile monitoring studies. However, in many applications, the profile data show correlations over time. Therefore, we focus on a general linear regression model with a first-order autocorrelation between profiles in this study. We propose an exponentially weighted moving average charting scheme to monitor this type of profile. The simulation study shows that our proposed methods outperform the existing schemes based on the average run length criterion.Keywords: autocorrelation, EWMA control chart, general linear regression model, profile monitoring
Procedia PDF Downloads 4601201 Mg and MgN₃ Cluster in Diamond: Quantum Mechanical Studies
Authors: T. S. Almutairi, Paul May, Neil Allan
Abstract:
The geometrical, electronic and magnetic properties of the neutral Mg center and MgN₃ cluster in diamond have been studied theoretically in detail by means of an HSE06 Hamiltonian that includes a fraction of the exact exchange term; this is important for a satisfactory picture of the electronic states of open-shell systems. Another batch of the calculations by GGA functionals have also been included for comparison, and these support the results from HSE06. The local perturbations in the lattice by introduced Mg defect are restricted in the first and second shell of atoms before eliminated. The formation energy calculated with HSE06 and GGA of single Mg agrees with the previous result. We found the triplet state with C₃ᵥ is the ground state of Mg center with energy lower than the singlet with C₂ᵥ by ~ 0.1 eV. The recent experimental ZPL (557.4 nm) of Mg center in diamond has been discussed in the view of present work. The analysis of the band-structure of the MgN₃ cluster confirms that the MgN₃ defect introduces a shallow donor level in the gap lying within the conduction band edge. This observation is supported by the EMM that produces n-type levels shallower than the P donor level. The formation energy of MgN₂ calculated from a 2NV defect (~ 3.6 eV) is a promising value from which to engineer MgN₃ defects inside the diamond. Ion-implantation followed by heating to about 1200-1600°C might induce migration of N related defects to the localized Mg center. Temperature control is needed for this process to restore the damage and ensure the mobilities of V and N, which demands a more precise experimental study.Keywords: empirical marker method, generalised gradient approximation, Heyd–Scuseria–Ernzerhof screened hybrid functional, zero phono line
Procedia PDF Downloads 116