Search results for: Mo grain refiner
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 810

Search results for: Mo grain refiner

210 An Investigation into Mechanical Properties of Laser Fabricated 308LSi Stainless Steel Walls by Wire Feedstock

Authors: Taiwo Ebenezer Abioye, Alexis Medrano-Tellez, Peter Kayode Farayibi, Peter Kayode Oke,

Abstract:

Laser metal deposition by wire feedstock has been established as a process which can provide a high material deposition rate with good quality. Sound mechanical properties of the deposited parts are the pre-requisites for the real applications of this process. This paper investigates the laser metal deposition of 308LSi stainless steel wire within a process window. Single tracks and multiple layer thin-walls of 308LSi stainless steel wire were deposited on 304 stainless steel substrate. The grain structures of the built walls were examined using optical microscopy. The mechanical properties of the built walls including the micro-hardness and tensile properties along the transverse and longitudinal directions were investigated using Vickers hardness tester and tensile test machine. Long columnar grains were found growing in the wall building direction (transverse) and nucleation were observed at the boundary between two deposited layers due to remelting of the previously deposited layers. The results showed that the hardness values of the deposited walls (ranging between 194 HV and 167 HV) decreased from the track-substrate interface to the top of the wall. The ultimate tensile strength (UTS) of the wall (518 ± 7 MPa) showed dependence on wall building directions.

Keywords: laser metal deposition, ultimate tensile strength, hardness, wall, microstructure

Procedia PDF Downloads 379
209 Effect of Taper Pin Ratio on Microstructure and Mechanical Property of Friction Stir Welded AZ31 Magnesium Alloy

Authors: N. H. Othman, N. Udin, M. Ishak, L. H. Shah

Abstract:

This study focuses on the effect of pin taper tool ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 6 mm were friction stir welded by using the conventional milling machine. The shoulder diameter used in this experiment is fixed at 18 mm. The taper pin ratio used are varied at 6:6, 6:5, 6:4, 6:3, 6:2 and 6:1. The rotational speeds that were used in this study were 500 rpm, 1000 rpm and 1500 rpm, respectively. The welding speeds used are 150 mm/min, 200 mm/min and 250 mm/min. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. Tool pin diameter ratio 6/1 causes low heat input to the material because of small contact surface between tool surface and stirred materials compared to other tool pin diameter ratio. The grain size of stir zone increased with increasing of ratio of rotational speed to transverse speed due to higher heat input. It is observed that worm hole is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Welded specimens using taper pin ratio 6:1 shows higher tensile strength compared to other taper pin ratio up to 204 MPa. Moreover, specimens using taper pin ratio 6:1 showed better tensile strength with 500 rpm of rotational speed and 150mm/min welding speed.

Keywords: friction stir welding, magnesium AZ31, cylindrical taper tool, taper pin ratio

Procedia PDF Downloads 260
208 Influence of Sr(BO2)2 Doping on Superconducting Properties of (Bi,Pb)-2223 Phase

Authors: N. G. Margiani, I. G. Kvartskhava, G. A. Mumladze, Z. A. Adamia

Abstract:

Chemical doping with different elements and compounds at various amounts represents the most suitable approach to improve the superconducting properties of bismuth-based superconductors for technological applications. In this paper, the influence of partial substitution of Sr(BO2)2 for SrO on the phase formation kinetics and transport properties of (Bi,Pb)-2223 HTS has been studied for the first time. Samples with nominal composition Bi1.7Pb0.3Sr2-xCa2Cu3Oy[Sr(BO2)2]x, x=0, 0.0375, 0.075, 0.15, 0.25, were prepared by the standard solid state processing. The appropriate mixtures were calcined at 845 oC for 40 h. The resulting materials were pressed into pellets and annealed at 837 oC for 30 h in air. Superconducting properties of undoped (reference) and Sr(BO2)2-doped (Bi,Pb)-2223 compounds were investigated through X-ray diffraction (XRD), resistivity (ρ) and transport critical current density (Jc) measurements. The surface morphology changes in the prepared samples were examined by scanning electron microscope (SEM). XRD and Jc studies have shown that the low level Sr(BO2)2 doping (x=0.0375-0.075) to the Sr-site promotes the formation of high-Tc phase and leads to the enhancement of current carrying capacity in (Bi,Pb)-2223 HTS. The doped sample with x=0.0375 has the best performance compared to other prepared samples. The estimated volume fraction of (Bi,Pb)-2223 phase increases from ~25 % for reference specimen to ~70 % for x=0.0375. Moreover, strong increase in the self-field Jc value was observed for this dopant amount (Jc=340 A/cm2), compared to an undoped sample (Jc=110 A/cm2). Pronounced enhancement of superconducting properties of (Bi,Pb)-2223 superconductor can be attributed to the acceleration of high-Tc phase formation as well as the improvement of inter-grain connectivity by small amounts of Sr(BO2)2 dopant.

Keywords: bismuth-based superconductor, critical current density, phase formation, Sr(BO₂)₂ doping

Procedia PDF Downloads 215
207 Influence of the Molar Concentration and Substrate Temperature on Fluorine-Doped Zinc Oxide Thin Films Chemically Sprayed

Authors: J. Ramirez, A. Maldonado, M. de la L. Olvera

Abstract:

The effect of both the molar concentration of the starting solution and the substrate temperature on the electrical, morphological, structural and optical properties of chemically sprayed fluorine-doped zinc oxide (ZnO:F) thin films deposited on glass substrates, is analyzed in this work. All the starting solutions employed were aged for ten days before the deposition. The results show that as the molar concentration increases, a decrease in the electrical resistivity values is obtained, reaching the minimum in films deposited from a 0.4 M solution at 500°C. A further increase in the molar concentration leads to a very slight increase in the resistivity. On the other hand, as the substrate temperature is increased, the resistivity decreases and a tendency towards to minimum value is evidenced; taking the molar concentration as parameter, minimum values are reached at 500°C. The attain of ZnO:F thin films, with a resistivity as low as 7.8×10-3 Ώcm (sheet resistance of 130 Ώ/☐ and film thickness of 600 nm) measured in as-deposited films is reported here for the first time. The concurrent effect of the high molar concentration of the starting solution, the substrate temperature values used, and the ageing of the starting solution, which might cause polymerization of the zinc ions with the fluorine species, enhance the electrical properties. The structure of the films is polycrystalline, with a (002) preferential growth. Molar concentration rules the surface morphology as at low concentration an hexagonal and porous structure is developed changing to a uniform compact and small grain size surface in the films deposited with the high molar concentrations.

Keywords: zinc oxide, chemical spray, thin films, TCO

Procedia PDF Downloads 479
206 Performance and Processing Evaluation of Solid Oxide Cells by Co-Sintering of GDC Buffer Layer and LSCF Air Electrode

Authors: Hyun-Jong Choi, Minjun Kwak, Doo-Won Seo, Sang-Kuk Woo, Sun-Dong Kim

Abstract:

Solid Oxide Cell(SOC) systems can contribute to the transition to the hydrogen society by utilized as a power and hydrogen generator by the electrochemical reaction with high efficiency at high operation temperature (>750 ℃). La1-xSrxCo1-yFeyO3, which is an air electrode, is occurred stability degradations due to reaction and delamination with yittria stabilized zirconia(YSZ) electrolyte in a water electrolysis mode. To complement this phenomenon SOCs need gadolinium doped ceria(GDC) buffer layer between electrolyte and air electrode. However, GDC buffer layer requires a high sintering temperature and it causes a reaction with YSZ electrolyte. This study carried out low temperature sintering of GDC layer by applying Cu-oxide as a sintering aid. The effect of a copper additive as a sintering aid to lower the sintering temperature for the construction of solid oxide fuel cells (SOFCs) was investigated. GDC buffer layer with 0.25-10 mol% CuO sintering aid was prepared by reacting GDC power and copper nitrate solution followed by heating at 600 ℃. The sintering of CuO-added GDC powder was optimized by investigating linear shrinkage, microstructure, grain size, ionic conductivity, and activation energy of CuO-GDC electrolytes at temperatures ranging from 1100 to 1400 ℃. The sintering temperature of the CuO-GDC electrolyte decreases from 1400 ℃ to 1100 ℃ by adding the CuO sintering aid. The ionic conductivity of the CuO-GDC electrolyte shows a maximum value at 0.5 mol% of CuO. However, the addition of CuO has no significant effects on the activation energy of GDC electrolyte. GDC-LSCF layers were co-sintering at 1050 and 1100 ℃ and button cell tests were carried out at 750 ℃.

Keywords: Co-Sintering, GDC-LSCF, Sintering Aid, solid Oxide Cells

Procedia PDF Downloads 226
205 Use of Chlorophyll Meters to Assess In-Season Wheat Nitrogen Fertilizer Requirements in the Southern San Joaquin Valley

Authors: Brian Marsh

Abstract:

Nitrogen fertilizer is the most used and often the most mismanaged nutrient input. Nitrogen management has tremendous implications on crop productivity, quality and environmental stewardship. Sufficient nitrogen is needed to optimum yield and quality. Soil and in-season plant tissue testing for nitrogen status are a time consuming and expensive process. Real time sensing of plant nitrogen status can be a useful tool in managing nitrogen inputs. The objectives of this project were to assess the reliability of remotely sensed non-destructive plant nitrogen measurements compared to wet chemistry data from sampled plant tissue, develop in-season nitrogen recommendations based on remotely sensed data for improved nitrogen use efficiency and assess the potential for determining yield and quality from remotely sensed data. Very good correlations were observed between early-season remotely sensed crop nitrogen status and plant nitrogen concentrations and subsequent in-season fertilizer recommendations. The transmittance/absorbance type meters gave the most accurate readings. Early in-season fertilizer recommendation would be to apply 40 kg nitrogen per hectare plus 16 kg nitrogen per hectare for each unit difference measured with the SPAD meter between the crop and reference area or 25 kg plus 13 kg per hectare for each unit difference measured with the CCM 200. Once the crop was sufficiently fertilized meter readings became inconclusive and were of no benefit for determining nitrogen status, silage yield and quality and grain yield and protein.

Keywords: wheat, nitrogen fertilization, chlorophyll meter

Procedia PDF Downloads 368
204 Reactive Oxygen Species-Mediated Photoaging Pathways of Ultrafine Plastic Particles under UV Irradiation

Authors: Jiajun Duan, Yang Li, Jianan Gao, Runzi Cao, Enxiang Shang, Wen Zhang

Abstract:

Reactive oxygen species (ROS) generation is considered as an important photoaging mechanism of microplastics (MPs) and nanoplastics (NPs). To elucidate the ROS-induced MP/NP aging processes in water under UV365 irradiation, we examined the effects of surface coatings, polymer types, and grain sizes on ROS generation and photoaging intermediates. Bare polystyrene (PS) NPs generated hydroxyl radicals (•OH) and singlet oxygen (¹O₂), while coated PS NPs (carboxyl-modified PS (PS-COOH), amino-modified PS (PS-NH₂)) and PS MPs generated fewer ROS due to coating scavenging or size effects. Polypropylene, polyethylene, polyvinyl chloride, polyethylene terephthalate, and polycarbonate MPs only generated •OH. For aromatic polymers, •OH addition preferentially occurred at benzene rings to form monohydroxy polymers. Excess •OH resulted in H abstraction, C-C scission, and phenyl ring opening to generate aliphatic ketones, esters, aldehydes, and aromatic ketones. For coated PS NPs, •OH preferentially attacked the surface coatings to result in decarboxylation and deamination reactions. For aliphatic polymers, •OH attack resulted in the formation of carbonyl groups from peracid, aldehyde, or ketone via H abstraction and C-C scission. Moreover, ¹O₂ might participate in phenyl ring opening for PS NPs and coating degradation for coated PS NPs. This study facilitates understanding the ROS-induced weathering process of NPs/MPs in water under UV irradiation.

Keywords: microplastics, nanoplastics, photoaging, reactive oxygen species, surface coating

Procedia PDF Downloads 136
203 Eco-Friendly Approach in the Management of Stored Sorghum Insect Pests in Small-Scale Farmers’ Storage Structures of Northern Nigeria

Authors: Mohammed Suleiman, Ibrahim Sani, Samaila Abubakar, Kabir Abdullahi Bindawa

Abstract:

Farmers’ storage structures in Pauwa village of Katsina State, Northern Nigeria, were simulated and incorporated with the application of leaf powders of Euphorbia balsamifera Aiton, Lawsonia inermis L., Mitracarpus hirtus (L.) DC. and Senna obtusifolia L. to search for more eco-friendly methods of managing insect pests of stored sorghum. The four most commonly grown sorghum varieties in the study area, namely “Farar Kaura” (FK), “Jar Kaura” (JK), “Yar Gidan Daudu” (YGD), and ICSV400 in threshed forms were used for the study. The four varieties (2.50 kg each) were packed in small polypropylene bags, mixed with the leaf powders at the concentration of 5% (w/w) of the plants, and kept in small stores of the aforementioned village for 12 weeks. Insect pests recovered after 12 weeks were Sitophilus zeamais, Rhyzopertha dominica, Tribolium castaneum, Cryptolestes ferrugineus, and Oryzaephilus surinamensis. There were significantly fewer insect pests in treated sorghum than in untreated types (p < 0.05). More weight losses were recorded in untreated grains than in those treated with the botanical powders. In terms of varieties, grain weight losses were in the order FK > JK > YGD > ICSV400. The botanicals also showed significant (p < 0.05) protectant ability against the weevils with their performance as E. balsamifera > L. inermis > M. hirtus > S. obtusifolia.

Keywords: botanical powders, infestations, insect pests, management, sorghum varieties, storage structures, weight losses

Procedia PDF Downloads 68
202 Triose Phosphate Utilisation at the (Sub)Foliar Scale Is Modulated by Whole-plant Source-sink Ratios and Nitrogen Budgets in Rice

Authors: Zhenxiang Zhou

Abstract:

The triose phosphate utilisation (TPU) limitation to leaf photosynthesis is a biochemical process concerning the sub-foliar carbon sink-source (im)balance, in which photorespiration-associated amino acids exports provide an additional outlet for carbon and increases leaf photosynthetic rate. However, whether this process is regulated by whole-plant sink-source relations and nitrogen budgets remains unclear. We address this question by model analyses of gas-exchange data measured on leaves at three growth stages of rice plants grown at two-nitrogen levels, where three means (leaf-colour modification, adaxial vs abaxial measurements, and panicle pruning) were explored to alter source-sink ratios. Higher specific leaf nitrogen (SLN) resulted in higher rates of TPU and also led to the TPU limitation occurring at a lower intercellular CO2 concentration. Photorespiratory nitrogen assimilation was greater in higher-nitrogen leaves but became smaller in cases associated with yellower-leaf modification, abaxial measurement, or panicle pruning. The feedback inhibition of panicle pruning on rates of TPU was not always observed because panicle pruning blocked nitrogen remobilisation from leaves to grains, and the increased SLN masked the feedback inhibition. The (sub)foliar TPU limitation can be modulated by whole-plant source-sink ratios and nitrogen budgets during rice grain filling, suggesting a close link between sub-foliar and whole-plant sink limitations.

Keywords: triose phosphate utilization, sink limitation, panicle pruning, oryza sativa

Procedia PDF Downloads 53
201 Increasing Soybean (Glycine Max L) Drought Resistance with Osmolit Sorbitol

Authors: Aminah Muchdar

Abstract:

Efforts to increase soybean production have been pursued for years in Indonesia through the process of intensification and extensification. Increased production through intensification of increasing grain yield per hectare, among others includes the improvement of cultivation system such as the use of cultivars that have superior resistance to drought. Increased soybean production has been through the expansion of planting areas utilizing available idle dry land. However, one of the constraints faced in dryland agriculture was the limited water supply due to low intensity of rainfall that leads to low crop production. In order to ensure that soybeans are cultivated on dry land remains capable of high production, it is necessary to physiologically engineer the soybean with open stomata. The study was conducted in the greenhouse of Balai Penelitian Tanaman Serealia (BALITSEREAL) Maros, Sulawesi, Indonesia with a completely randomized block design h factorial pattern. The first factor was the water stress stadia while the second was the amount of sorbitol osmolit concentration application. Results indicated that there was an interaction between the plant height growth and number of leaves between the water clamping time and concentration of the osmolit sorbitol. The vegetative stage especially during flowering and pod formation was inhibited when the water was clamped, but by spraying osmolit sorbitol, soybean growth in terms of its height and number of leaves was enhanced. This study implies that the application of osmolit sorbitol may enhance the drought resistance of soybean growth. Future research suggested that more work should be done on the application of osmolit sorbital to other agriculture crops to increase their drought resistance in the drylands.

Keywords: DROUGHT, engineered physiology, osmolit sorbitol, soybean

Procedia PDF Downloads 187
200 The Effect of Grading Characteristics on the Shear Strength and Mechanical Behavior of Granular Classes of Sand-Silt

Authors: Youssouf Benmeriem

Abstract:

Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic and earthquake loading conditions. The proposed research investigated the effect of grading characteristics on the shear strength and mechanical behavior of granular classes of sands mixed with silt in loose and dense states (Dr = 15% and 90%). The laboratory investigation aimed at understanding the extent or degree at which shear strength of sand-silt mixture soil is affected by its gradation under static loading conditions. For the purpose of clarifying and evaluating the shear strength characteristics of sandy soils, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations. The soil samples were tested under different normal stresses (100, 200 and 300 kPa). The results from this laboratory investigation were used to develop insight into the shear strength response of sand and sand-silt mixtures under monotonic loading conditions. The analysis of the obtained data revealed that the grading characteristics (D10, D50, Cu, ESR, and MGSR) have significant influence on the shear strength response. It was found that shear strength can be correlated to the grading characteristics for the sand-silt mixture. The effective size ratio (ESR) and mean grain size ratio (MGSR) appear as pertinent parameters to predict the shear strength response of the sand-silt mixtures for soil gradation under study.

Keywords: grading characteristics, granular classes of sands, mechanical behavior, sand-silt, shear strength

Procedia PDF Downloads 359
199 Physical Property Characterization of Adult Dairy Nutritional Products for Powder Reconstitution

Authors: Wei Wang, Martin Chen

Abstract:

The reconstitution behaviours of nutritional products could impact user experience. Reconstitution issues such as lump formation and white flecks sticking to bottles surfaces could be very unappealing for the consumers in milk preparation. The controlling steps in dissolving instant milk powders include wetting, swelling, sinking, dispersing, and dissolution as in the literature. Each stage happens simultaneously with the others during milk preparation, and it is challenging to isolate and measure each step individually. This study characterized three adult nutritional products for different properties including particle size, density, dispersibility, stickiness, and capillary wetting to understand the relationship between powder physical properties and their reconstitution behaviours. From the results, the formation of clumps can be caused by different factors limiting the critical steps of powder reconstitution. It can be caused by small particle size distribution, light particle density limiting powder wetting, or the rapid swelling and dissolving of particle surface materials to impede water penetration in the capillary channels formed by powder agglomerates. For the grain or white flecks formation in milk preparation, it was believed to be controlled by dissolution speed of the particles after dispersion into water. By understanding those relationship between fundamental powder structure and their user experience in reconstitution, this information provides us new and multiple perspectives on how to improve the powder characteristics in the commercial manufacturing.

Keywords: characterization, dairy nutritional powder, physical property, reconstitution

Procedia PDF Downloads 83
198 Evaluation of Raw Diatomaceous Earth and Plant Powders in the Control of Callosobruchus subinnotatus (Pic.) on Stored Bambara Groundnut (Vigna subterranea (L.) (Verdc.) Seeds

Authors: Ibrahim Nasiru Dole, Audu Abdullahi, Dike Michiel Chidozie, Lawal Mansur

Abstract:

Bambara groundnut is an important grain legume and the seeds in storage suffer infestation by Callosobruchus subinnotatus. Laboratory study was conducted to evaluate the efficacy of raw diatomaceous earth (RDE) and plant powders (Jatropha curcas (L.), Eucalyptus camaldulensis (Dehnh.) and Melia azedarach (L.) against C. subinnotatus infesting stored bambara groundnut seeds. Rearing of the insects and the experiments were conducted in Agricultural Biology Laboratory of the Usmanu Danfodiyo University, Sokoto - Nigeria under ambient conditions (29-33oC and a relative humidity of 44-56%). Four treatments at three levels: RDE at 0.5, 1.0 and 1.5 g while plant powders at 0.5, 1.0 and 2.0 g, standard/check (2.0 g of Actellic dust), and a control. These were separately admixed with 100 g of sterilized seeds in glass jars. Each jar was later infested with thirty, 1-2-days old C. subinnotatus of mixed sexes. Adult mortality was assessed 24, 48, 72 and 96 hours, F1 and F2 progenies, seed damage, weight loss and viability were also assessed after 90 days. Eighty-nine (89%) percent adult mortality was recorded in the highest dose of RDE after 96 hours of exposure. These treatments significantly (P < 0.05) suppressed F1 and F2 progenies emergence in relation to the control. The control suffered significantly (P < 0.05) higher seed damage (51.0 %) and weight loss (40.8%) thereby recording lower seed germination. Therefore, RDE and plant powders could be used against C. subinnotatus on stored bambara groundnut seeds.

Keywords: bambara, callosobruchus subinnotatus, plant powders, raw diatomaceous earth,

Procedia PDF Downloads 397
197 Effect of Pollution and Ethylene-Diurea on Bean Plants Grown in KSA

Authors: Abdel Rahman A. Alzandi

Abstract:

The primary objectives of this investigation were to examine the interactive effects of three air quality treatments, ethylene-diurea (EDU) and two irrigation conditions on physiological characteristics of kidney beans (Phaseolus vulgaris L.) during its whole growth. These plants were grown in 12-open top chambers (OTC's). Ethylene-diurea (EDU) was used as a factor to evaluate O3 pollution impact on plant growth. The air quality treatments consisted of charcoal filtered (CF) air, nonfiltered (NF) air and ambient air (AA) were irrigated and non- irrigated. Leaf samples were collected from upper canopy positions six times (pre- EDU addition, week after four EDU's addition, at the time of harvesting). Maximal differences in leaf carbohydrate, N contents, pigments and total lipids were observed in response to moisture conditions in presence and absence of EDU applications. Significant reduction were noted for air quality treatments regarding carbohydrate and pigment fractions but not for all cases of leaf N and lipid contents under O3 effects only. Minimal differences were found for first EDU application while maximal ones were recorded at 200 mg l-1 of treatments. The EDU treatments stimulated carbohydrate and pigment contents at the upper canopy position with higher levels for both NF and AA compared to untreated conditions. The NF and AA treatments caused lower total carbohydrate and pigment contents in the canopy position before harvesting of EDU applications. The stimulation in leaf carbohydrates by the EDU treatment, compared to the non-treated EDU of AA and NF treatments, provides a rational explanation for the counteracting effects of EDU against moderate exposures to O3 regarding grain yields in C3 plants.

Keywords: leaf contents, moisture relations, EDU additions, global climate change, kidney bean

Procedia PDF Downloads 325
196 Electrochemical Synthesis of ZnTe and Cu-ZnTe Thin Films for Low Resistive Ohmic Back Contact for CdS/CdTe Solar Cells

Authors: Shivaji M. Sonawane, N. B. Chaure

Abstract:

ZnTe is direct band gap, the P-type semiconductor with the high absorption coefficient of the order of 104cm-1 is suitable for solar cell development. It can be used as a low resistive ohmic contact to CdS/CdTe or tandem solar cell application. ZnTe and Cu-ZnTe thin film have been electrochemically synthesized on to fluorine-doped tin oxide coated glass substrates using three electrode systems containing Ag/AgCl, graphite and FTO as reference, counter and working electrode respectively were used to deposit the thin films. The aqueous electrolytic solution consist of 0.5M TeO2, 0.2M ZnSO4, and 0.1M Na3C6H5O7:2H2O, 0.1MC6H8O7:H2O and 0.1mMCuSO4 with PH 2.5 at room temperature was used. The reaction mechanism is studied in the cyclic voltammetry to identify the deposition potentials of ZnTe and Cu-ZnTe.The potential was optimized in the range -0,9 to -1,1 V. Vs Ag/AgCl reference electrode. The effect of deposition potential on the structural properties was studied by using X-ray diffraction. The X-ray diffraction result reveled cubic crystal structure of ZnTe with preferential (111) orientation with cubic structure. The surface morphology and film composition were analyzed by means of Scanning electron microscopy (SEM) and Energy Dispersive Analysis of X- Rays (EDAX). The optical absorption measurement has been analyzed for the band gap determination of deposited layers about 2.26 eV by UV-Visible spectroscopy. The drastic change in resistivity has been observed due to incorporation of copper probably due to the diffusion of Cu into grain boundaries.

Keywords: ohmic back contact, zinc telluride, electrodeposition, photovoltaic devices

Procedia PDF Downloads 199
195 Shallow Water Lidar System in Measuring Erosion Rate of Coarse-Grained Materials

Authors: Ghada S. Ellithy, John. W. Murphy, Maureen K. Corcoran

Abstract:

Erosion rate of soils during a levee or dam overtopping event is a major component in risk assessment evaluation of breach time and downstream consequences. The mechanism and evolution of dam or levee breach caused by overtopping erosion is a complicated process and difficult to measure during overflow due to accessibility and quickly changing conditions. In this paper, the results of a flume erosion tests are presented and discussed. The tests are conducted on a coarse-grained material with a median grain size D50 of 5 mm in a 1-m (3-ft) wide flume under varying flow rates. Each test is performed by compacting the soil mix r to its near optimum moisture and dry density as determined from standard Proctor test in a box embedded in the flume floor. The box measures 0.45 m wide x 1.2 m long x 0.25 m deep. The material is tested several times at varying hydraulic loading to determine the erosion rate after equal time intervals. The water depth, velocity are measured at each hydraulic loading, and the acting bed shear is calculated. A shallow water lidar (SWL) system was utilized to record the progress of soil erodibility and water depth along the scanned profiles of the tested box. SWL is a non-contact system that transmits laser pulses from above the water and records the time-delay between top and bottom reflections. Results from the SWL scans are compared with before and after manual measurements to determine the erosion rate of the soil mix and other erosion parameters.

Keywords: coarse-grained materials, erosion rate, LIDAR system, soil erosion

Procedia PDF Downloads 93
194 Improvement in Drought Stress Tolerance in Wheat by Arbuscular Mycorrhizal Fungi

Authors: Seema Sangwan, Ekta Narwal, Kannepalli Annapurna

Abstract:

The aim of this study was to determine the effect of arbuscular mycorrhizal fungi (AMF) inoculation on drought stress tolerance in 3 genotypes of wheat subjected to moderate water stress, i.e. HD 3043 (drought tolerant), HD 2987 (drought tolerant), and HD 2967 (drought sensitive). Various growth parameters were studied, e.g. total dry weight, total shoot and root length, root volume, root surface area, grain weight and number, leaf area, chlorophyll content in leaves, relative water content, number of spores and percent colonisation of roots by arbuscular mycorrhizal fungi. Total dry weight, root surface area and chlorophyll content were found to be significantly high in AMF inoculated plants as compared to the non-mycorrhizal ones and also higher in drought-tolerant varieties of wheat as compared to the sensitive variety HD 2967, in moderate water stress treatments. Leakage of electrolytes was lower in case of AMF inoculated stressed plants. Under continuous water stress, leaf water content and leaf area were significantly increased in AMF inoculated plants as compared to un-inoculated stressed plants. Overall, the increased colonisation of roots of wheat by AMF in inoculated plants weather drought tolerant or sensitive could have a beneficial effect in alleviating the harmful effects of water stress in wheat and delaying its senescence.

Keywords: Arbuscular mycorrhizal fungi, wheat, drought, stress

Procedia PDF Downloads 164
193 Influence of Sulphur and Boron on Growth, Quality Parameters and Productivity of Soybean (Glycine Max (L.) Merrill)

Authors: Shital Bangar, G. B. Khandagale

Abstract:

The experimentation was carried out to study the influence of sulphur and boron on growth parameters and productivity of soybean in kharif season of 2009-2010 at Experimental Farm, Department of Agricultural Botany, Marathwada Agricultural University, Parbhani (M.S.). The object was to evaluate the impact of sulphur and boron on growth, development, grain yield and physiological aspects of soybean variety MAUS-81. Nine treatments consisted of three levels of sulphur i.e. 20, 30 and 40 Kg/ha as well as three levels boron i.e.10, 15 and 20 kg boron/ha and the combinations of these two mineral elements i.e. Sulphur @30 kg/ha + Borax @15 kg/ha and Sulphur @40 kg/ha + Borax @ 20 kg/ha with one control treatment in Randomized Block Design (RBD) with three replications. The effect of sulphur and boron on various growth parameters of soybean like relative growth rate (RGR) and net assimilation rate (NAR) were remained statistically on par with each other. However, the application of higher dose of Sulphur @40 kg/ha + Borax @ 20 kg/ha enhanced significantly all the growth parameters. Application of the nutrients increased the dry matter accumulation of the crop plant and hence, other growth indices like RGR and NAR also increased significantly. RGR and NAR values were recorded highest at the initial crop growth stages and decline thereafter. The application of sulphur @40 kg/ha + Borax @ 20 kg/ha recorded significantly higher content of chlorophyll ‘a’ than rest of the treatments and chlorophyll ‘b’ observed higher in boron @15 kg/ha as well as boron@20 kg/ha, whereas total chlorophyll content was maximum in sulphur @40 kg/ha. Oil content was not influenced significantly due to above fertilization. The highest seed yield and total biological yield were obtained with combination of Sulphur @40 kg/ha + Borax @ 20 kg/ha, single sulphur and boron application also showed a significant effect on seed and biological yield.

Keywords: boron, growth, productivity, quality, soybean and sulphur

Procedia PDF Downloads 380
192 Comparative Study of Tensile Properties of Cast and Hot Forged Alumina Nanoparticle Reinforced Composites

Authors: S. Ghanaraja, Subrata Ray, S. K. Nath

Abstract:

Particle reinforced Metal Matrix Composite (MMC) succeeds in synergizing the metallic matrix with ceramic particle reinforcements to result in improved strength, particularly at elevated temperatures, but adversely it affects the ductility of the matrix because of agglomeration and porosity. The present study investigates the outcome of tensile properties in a cast and hot forged composite reinforced simultaneously with coarse and fine particles. Nano-sized alumina particles have been generated by milling mixture of aluminum and manganese dioxide powders. Milled particles after drying are added to molten metal and the resulting slurry is cast. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably. Delay in debonding of coarser particles to higher stress is due to reduced mismatch in extension caused by increased strain hardening in presence of the nanoparticles. However, higher addition of powder mix beyond a limit results in deterioration of mechanical properties, possibly due to clustering of nanoparticles. The porosity in cast composite generally increases with the increasing addition of powder mix as observed during process and on forging it has got reduced. The base alloy and nanocomposites show improvement in flow stress which could be attributed to lowering of porosity and grain refinement as a consequence of forging.

Keywords: aluminium, alumina, nano-particle reinforced composites, porosity

Procedia PDF Downloads 223
191 The Relationship between Lithological and Geomechanical Properties of Carbonate Rocks. Case study: Arab-D Reservoir Outcrop Carbonate, Central Saudi Arabia

Authors: Ammar Juma Abdlmutalib, Osman Abdullatif

Abstract:

Upper Jurrasic Arab-D Reservoir is considered as the largest oil reservoir in Saudi Arabia. The equivalent outcrop is exposed near Riyadh. The study investigates the relationships between lithofacies properties changes and geomechanical properties of Arab-D Reservoir in the outcrop scale. The methods used included integrated field observations and laboratory measurements. Schmidt Hammer Rebound Hardness, Point Load Index tests were carried out to estimate the strength of the samples, ultrasonic wave velocity test also was applied to measure P-wave, S-wave, and dynamic Poisson's ratio. Thin sections have been analyzed and described. The results show that there is a variation in geomechanical properties between the Arab-D member and Upper Jubaila Formation at outcrop scale, the change in texture or grain size has no or little effect on these properties. This is because of the clear effect of diagenesis which changes the strength of the samples. The result also shows the negative or inverse correlation between porosity and geomechanical properties. As for the strength, dolomitic mudstone and wackestone within Upper Jubaila Formation has higher Schmidt hammer values, wavy rippled sandy grainstone which is rich in quarts has the greater point load index values. While laminated mudstone and breccias, facies has lower strength. This emphasizes the role of mineral content in the geomechanical properties of Arab-D reservoir lithofacies.

Keywords: geomechanical properties, Arab-D reservoir, lithofacies changes, Poisson's ratio, diageneis

Procedia PDF Downloads 375
190 The Role of Phase Morphology on the Corrosion Fatigue Mechanism in Marine Steel

Authors: Victor Igwemezie, Ali Mehmanparast

Abstract:

The correct knowledge of corrosion fatigue mechanism in marine steel is very important. This is because it enables the design, selection, and use of steels for offshore applications. It also supports realistic corrosion fatigue life prediction of marine structures. A study has been conducted to increase the understanding of corrosion fatigue mechanism in marine steels. The materials investigated are normalized and advanced S355 Thermomechanical control process (TMCP) steels commonly used in the design of offshore wind turbine support structures. The experimental study was carried out by conducting corrosion fatigue tests under conditions pertinent to offshore wind turbine operations, using the state of the art facilities. A careful microstructural study of the crack growth path was conducted using metallurgical optical microscope (OM), scanning electron microscope (SEM) and Energy Dispersive X-Ray Spectroscopy (EDX). The test was conducted on three subgrades of S355 steel: S355J2+N, S355G8+M and S355G10+M and the data compared with similar studies in the literature. The result shows that the ferrite-pearlite morphology primarily controls the corrosion-fatigue crack growth path in marine steels. A corrosion fatigue mechanism which relies on the hydrogen embrittlement of the grain boundaries and pearlite phase is used to explain the crack propagation behaviour. The crack growth trend in the Paris region of the da/dN vs. ΔK curve is used to explain the dependency of the corrosion-fatigue crack growth rate on the ferrite-pearlite morphology.

Keywords: corrosion-fatigue mechanism, fatigue crack growth rate, ferritic-pearlitic steel, microstructure, phase morphology

Procedia PDF Downloads 134
189 Investigating the Viability of Small-Scale Rapid Alloy Prototyping of Interstitial Free Steels

Authors: Talal S. Abdullah, Shahin Mehraban, Geraint Lodwig, Nicholas P. Lavery

Abstract:

The defining property of Interstitial Free (IF) steels is formability, comprehensively measured using the Lankford coefficient (r-value) on uniaxial tensile test data. The contributing factors supporting this feature are grain size, orientation, and elemental additions. The processes that effectively modulate these factors are the casting procedure, hot rolling, and heat treatment. An existing methodology is well-practised in the steel Industry; however, large-scale production and experimentation consume significant proportions of time, money, and material. Introducing small-scale rapid alloy prototyping (RAP) as an alternative process would considerably reduce the drawbacks relative to standard practices. The aim is to finetune the existing fundamental procedures implemented in the industrial plant to adapt to the RAP route. IF material is remelted in the 80-gram coil induction melting (CIM) glovebox. To birth small grains, maximum deformation must be induced onto the cast material during the hot rolling process. The rolled strip must then satisfy the polycrystalline behaviour of the bulk material by displaying a resemblance in microstructure, hardness, and formability to that of the literature and actual plant steel. A successful outcome of this work is that small-scale RAP can achieve target compositions with similar microstructures and statistically consistent mechanical properties which complements and accelerates the development of novel steel grades.

Keywords: rapid alloy prototyping, plastic anisotropy, interstitial free, miniaturised tensile testing, formability

Procedia PDF Downloads 82
188 Co-Disposal of Coal Ash with Mine Tailings in Surface Paste Disposal Practices: A Gold Mining Case Study

Authors: M. L. Dinis, M. C. Vila, A. Fiúza, A. Futuro, C. Nunes

Abstract:

The present paper describes the study of paste tailings prepared in laboratory using gold tailings, produced in a Finnish gold mine with the incorporation of coal ash. Natural leaching tests were conducted with the original materials (tailings, fly and bottom ashes) and also with paste mixtures that were prepared with different percentages of tailings and ashes. After leaching, the solid wastes were physically and chemically characterized and the results were compared to those selected as blank – the unleached samples. The tailings and the coal ash, as well as the prepared mixtures, were characterized, in addition to the textural parameters, by the following measurements: grain size distribution, chemical composition and pH. Mixtures were also tested in order to characterize their mechanical behavior by measuring the flexural strength, the compressive strength and the consistency. The original tailing samples presented an alkaline pH because during their processing they were previously submitted to pressure oxidation with destruction of the sulfides. Therefore, it was not possible to ascertain the effect of the coal ashes in the acid mine drainage. However, it was possible to verify that the paste reactivity was affected mostly by the bottom ash and that the tailings blended with bottom ash present lower mechanical strength than when blended with a combination of fly and bottom ash. Surface paste disposal offer an attractive alternative to traditional methods in addition to the environmental benefits of incorporating large-volume wastes (e.g. bottom ash). However, a comprehensive characterization of the paste mixtures is crucial to optimize paste design in order to enhance engineer and environmental properties.

Keywords: coal ash, mine tailings, paste blends, surface disposal

Procedia PDF Downloads 270
187 Multiaxial Fatigue Analysis of a High Performance Nickel-Based Superalloy

Authors: P. Selva, B. Lorraina, J. Alexis, A. Seror, A. Longuet, C. Mary, F. Denard

Abstract:

Over the past four decades, the fatigue behavior of nickel-based alloys has been widely studied. However, in recent years, significant advances in the fabrication process leading to grain size reduction have been made in order to improve fatigue properties of aircraft turbine discs. Indeed, a change in particle size affects the initiation mode of fatigue cracks as well as the fatigue life of the material. The present study aims to investigate the fatigue behavior of a newly developed nickel-based superalloy under biaxial-planar loading. Low Cycle Fatigue (LCF) tests are performed at different stress ratios so as to study the influence of the multiaxial stress state on the fatigue life of the material. Full-field displacement and strain measurements as well as crack initiation detection are obtained using Digital Image Correlation (DIC) techniques. The aim of this presentation is first to provide an in-depth description of both the experimental set-up and protocol: the multiaxial testing machine, the specific design of the cruciform specimen and performances of the DIC code are introduced. Second, results for sixteen specimens related to different load ratios are presented. Crack detection, strain amplitude and number of cycles to crack initiation vs. triaxial stress ratio for each loading case are given. Third, from fractographic investigations by scanning electron microscopy it is found that the mechanism of fatigue crack initiation does not depend on the triaxial stress ratio and that most fatigue cracks initiate from subsurface carbides.

Keywords: cruciform specimen, multiaxial fatigue, nickel-based superalloy

Procedia PDF Downloads 267
186 Design and Evaluation of a Fully-Automated Fluidized Bed Dryer for Complete Drying of Paddy

Authors: R. J. Pontawe, R. C. Martinez, N. T. Asuncion, R. V. Villacorte

Abstract:

Drying of high moisture paddy remains a major problem in the Philippines, especially during inclement weather condition. To alleviate the problem, mechanical dryers were used like a flat bed and recirculating batch-type dryers. However, drying to 14% (wet basis) final moisture content is long which takes 10-12 hours and tedious which is not the ideal for handling high moisture paddy. Fully-automated pilot-scale fluidized bed drying system with 500 kilograms per hour capacity was evaluated using a high moisture paddy. The developed fluidized bed dryer was evaluated using four drying temperatures and two variations in fluidization time at a constant airflow, static pressure and tempering period. Complete drying of paddy with ≥28% (w.b.) initial MC was attained after 2 passes of fluidized-bed drying at 2 minutes exposure to 70 °C drying temperature and 4.9 m/s superficial air velocity, followed by 60 min ambient air tempering period (30 min without ventilation and 30 min with air ventilation) for a total drying time of 2.07 h. Around 82% from normal mechanical drying time was saved at 70 °C drying temperature. The drying cost was calculated to be P0.63 per kilogram of wet paddy. Specific heat energy consumption was only 2.84 MJ/kg of water removed. The Head Rice Yield recovery of the dried paddy passed the Philippine Agricultural Engineering Standards. Sensory evaluation showed that the color and taste of the samples dried in the fluidized bed dryer were comparable to air dried paddy. The optimum drying parameters of using fluidized bed dryer is 70 oC drying temperature at 2 min fluidization time, 4.9 m/s superficial air velocity, 10.16 cm grain depth and 60 min ambient air tempering period.

Keywords: drying, fluidized bed dryer, head rice yield, paddy

Procedia PDF Downloads 297
185 BiFeO3-CoFe2O4-PbTiO3 Composites: Structural, Multiferroic and Optical Characteristics

Authors: Nidhi Adhlakha, K. L. Yadav

Abstract:

Three phase magnetoelectric (ME) composites (1-x)(0.7BiFeO3-0.3CoFe2O4)-xPbTiO3 (or equivalently written as (1-x)(0.7BFO-0.3CFO)-xPT) with x variations 0, 0.30, 0.35, 0.40, 0.45 and 1.0 were synthesized using hybrid processing route. The effects of PT addition on structural, multiferroic and optical properties have been subsequently investigated. A detailed Rietveld refinement analysis of X-ray diffraction patterns has been performed, which confirms the presence of structural phases of individual constituents in the composites. Field emission scanning electron microscopy (FESEM) images are taken for microstructural analysis and grain size determination. Transmission electron microscopy (TEM) analysis of 0.3CFO-0.7BFO reveals the average particle size to be lying in the window of 8-10 nm. The temperature dependent dielectric constant at various frequencies (1 kHz, 10 kHz, 50 kHz, 100 kHz and 500 kHz) has been studied and the dielectric study reveals that the increase of dielectric constant and decrease of average dielectric loss of composites with incorporation of PT content. The room temperature ferromagnetic behavior of composites is confirmed through the observation of Magnetization vs. Magnetic field (M-H) hysteresis loops. The variation of magnetization with temperature indicates the presence of spin glass behavior in composites. Magnetoelectric coupling is evidenced in the composites through the observation of the dependence of the dielectric constant on the magnetic field, and magnetodielectric response of 2.05 % is observed for 45 mol% addition of PT content. The fractional change of magnetic field induced dielectric constant can also be expressed as ∆ε_r~γM^2 and the value of γ is found to be ~1.08×10-2 (emu/g)-2 for composite with x=0.40. Fourier transformed infrared (FTIR) spectroscopy of samples is carried out to analyze various bonds formation in the composites.

Keywords: composite, X-ray diffraction, dielectric properties, optical properties

Procedia PDF Downloads 285
184 Optical Properties of Nanocrystalline Europium-Yttrium Titanate EuYTi2O7

Authors: J. Mrazek, R. Skala, S. Bysakh, Ivan Kasik

Abstract:

Lanthanide-doped yttrium titanium oxides, which crystallize in a pyrochlore structure with general formula (RExY1-x)2Ti2O7 (RE=rare earth element), have been extensively investigated in recent years for their interesting physical and chemical properties. Despite that the pure pyrochlore structure does not present luminescence ability, the presence of yttrium ions in the pyrochlore structure significantly improves the luminescence properties of the RE. Moreover, the luminescence properties of pyrochlores strongly depend on the size of formed nanocrystals. In this contribution, we present a versatile sol-gel synthesis of nanocrystalline EuYTi2O7pyrochlore. The nanocrystalline powders and thin films were prepared by the condensation of titanium(IV)butoxide with europium(III) chloride followed by the calcination. The introduced method leads to the formation of the highly-homogenous nanocrystalline EuYTi2O7 with tailored grain size ranging from 20 nm to 200 nm. The morphology and the structure of the formed nanocrystals are linked to the luminescence properties of Eu3+ ions incorporated into the pyrochlore lattice. The results of XRD and HRTEM analysis show that the Eu3+ and Y3+ ions are regularly distributed inside the lattice. The lifetime of Eu3+ ions in calcinated powders is regularly decreasing from 140 us to 68 us and the refractive index of prepared thin films regularly increases from 2.0 to 2.45 according to the calcination temperature. The shape of the luminescence spectra and the decrease of the lifetime correspond with the crystallinity of prepared powders. The results present fundamental information about the effect of the size of the nanocrystals to their luminescence properties. The promising application of prepared nanocrystals in the field of lasers and planar optical amplifiers is widely discussed in the contribution.

Keywords: europium, luminescence, nanocrystals, sol-gel

Procedia PDF Downloads 232
183 Energy Budgeting, Carbon and Water Footprints Under Conventional and Conservation Tillage Practices of Rice-Wheat Double Cropping System

Authors: Ahmad Latif Virk, Naeem Ahmad, Muhammad Ishaq Asif Rehmani

Abstract:

Amid the present environmental crises, developing environment-resilient and cost-effective conservation agriculture strategies to feed the world's ever-growing population is pertinent. Therefore, a field study was conducted to test the hypothesis that residue retention under no-till (NTR) would enhance energy productivity (EP) and energy use efficiency (EUE) while offsetting the carbon footprints (CF), water footprints (WF) and greenhouse gases emissions (GHGs) in rice (Oryza sativa L.)-wheat (Triticum aestivum L.) double cropping system. Two tillage systems viz., conventional tillage (CT) and conservation tillage (no-till; NT), with or without residue retention, were combined into four treatments as CT0 (puddled rice, conventional wheat - residue); CTR (puddled rice, conventional wheat + residue); NT0 (direct rice seeding, zero-tilled wheat - residue); NTR (direct rice seeding, zero-tilled wheat + residue) were evaluated. Overall, results showed that the NT system had 34.2% lower energy consumption, 1.2 times more EP than CT system. Moreover, NTR had 19.8% higher EUE than CT0. The overall system grain yield ranged from 7.8 to 9.3 Mg ha−1 under NT0 and CTR, respectively. The NTR had 56.6% and 17.9% lesser CF and WF, respectively, than CT0. The net GHGs emissions (CO2-eq kg ha−1) under CT0 were the highest, while NTR had the lowest emissions. The NTR enhanced carbon sequestration in soil that can offset half of the system's CO2 emissions. The findings of this study might help develop a suitable strategy for resource/energy conservation and higher productivity while offsetting GHGs emissions in the Indo-Gangetic Plains.

Keywords: residue, yield, indirect emissions, energy use efficiency, carbon sequestration

Procedia PDF Downloads 59
182 Effect of Chilling on Soundness, Micro Hardness, Ultimate Tensile Strength, and Corrosion Behavior of Nickel Alloy-Fused Silica Metal Matrix Composite

Authors: G. Purushotham, Joel Hemanth

Abstract:

An investigation has been carried out to fabricate and evaluate the strength and soundness of chilled composites consisting of nickel matrix and fused silica particles (size 40–150 μm) in the matrix. The dispersoid added ranged from 3 to 12 wt. % in steps of 3%. The resulting composites cast in moulds containing metallic and non-metallic chill blocks (MS, SiC, and Cu) were tested for their microstructure and mechanical properties. The main objective of the present research is to obtain fine grain Ni/SiO2 chilled sound composite having very good mechanical properties. Results of the investigation reveal the following: (1) Strength of the composite developed is highly dependent on the location of the casting from where the test specimens are taken and also on the dispersoid content of the composite. (2) Chill thickness and chill material, however, does significantly affect the strength and soundness of the composite. (3) Soundness of the composite developed is highly dependent on the chilling rate as well as the dispersoid content. An introduction of chilling and increase in the dispersoid content of the material both result in an increase in the ultimate tensile strength (UTS) of the material. The temperature gradient developed during solidification and volumetric heat capacity (VHC) of the chill used is the important parameters controlling the soundness of the composite. (4) Thermal properties of the end chills are used to determine the magnitude of the temperature gradient developed along the length of the casting solidifying under the influence of chills.

Keywords: metal matrix composite, mechanical properties, corrosion behavior, nickel alloy, fused silica, chills

Procedia PDF Downloads 375
181 The Future of Food and Agriculture in India: Trends and Challenges

Authors: Vishwambhar Prasad Sati

Abstract:

India’s economy is agriculture dominated. About 70% of the total population depends on practicing agriculture. Out of an estimated 140.3 million ha net cultivated area, 79.44 million ha (57%) is rain-fed, contributing 44% of the total food grain production. Meanwhile, India ranks second and shares 11.3% of the arable land of the world. It means that India has a high potential to harness agricultural resources for present and future food security. However, about 21.9% of people are living below the poverty line, and similarly, a large number of people are deprived or insecure about food. This situation is most critical in rural areas, where about 70% population lives. The study examines the present status, future trends, and challenges of food and agriculture in India. Time series data of the last three decades was gathered from secondary sources on area, production, and yield of crops; irrigated area; production of major crops; area, production, and yield of crops in the major food-producing states of India; food storage and poverty. The data were analyzed using descriptive statistics, correlation methods, and a regression model. State-level data on area, production, and yield of crops and irrigation facilities were indexed into levels, and the potentials of food production in the major food-producing states were observed. It was noted that the progressive growth rate of food production is higher than the population, which means that food is enough to feed the population; however, it is not accessible to all optimally because of wastage, leakage, lack of food storage, and proper distribution of food. If food is stored and distributed properly, there would not be any food shortage in India, the study revealed.

Keywords: agriculture, food production, population growth, poverty, future trends

Procedia PDF Downloads 74