Search results for: protein energy malnutrition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10482

Search results for: protein energy malnutrition

4332 In Vitro Propagation of Aloe vera and Aloe littoralis Plants: Gamma Radiation, Biochemical and Genetic Changes

Authors: Z. Nourmohammadi, F. Farahani, M. Shaker

Abstract:

Aloe is an important commercial crop available in a wide range of species and varieties in international markets. The applications of this plant have been recorded in the ancient cultures of India, Egypt, Greece, Rome and China. Aloe has been used for centuries and is currently being actively studied for medicinal purposes. Aloe is propagated through lateral buds, which is slow, very expensive and low income practice. Nowadays, it has been cultured by in vitro propagation for rapid multiplication of plants, genetic improvement of crops, obtaining disease-free clones and for progressive valuable germplasm. The present study focused on the influence of different phytohormones on rapid in vitro propagation of Aloe plants. We also investigated the effect of gamma radiation on biochemical characters as well as genetic changes. Shoot tip of 2-3 cm were collected from offshoot of Aloe barbadensis and Aloe littoralis, and were inoculated with MS medium containing various concentrations of BA (0.5, 1, 2 mg/l), IAA (0.5, 1 mg/l). The best treatment for a highest shoot number and bud proliferation was MS medium containing 2 mg/l BAP and 0.5 mg/l IAA in A. barbadensis and A. littoralis. Maximum percentage of proliferated shoot buds (90% and 95%) from a single explant were obtained in MS medium after 4-5 weeks of the second and the first subcultures, respectively. Different genome sizes were also indicated among treatments and subcultures. The mixoploids identified in flow cytometery histograms in different treatments. The effect of gamma radiation on A. littoralis showed that by increasing the dose of gamma radiation, amounts of chlorophyll A, B, carotenoids, total protein content and superoxide dismutase were significantly increased compared to control plants. Genetic variation analysis also revealed significant genetic differences between control and gamma radiation treated regenerated plants by AMOVA test. Higher genetic heterozygocity was observed in radiation treated plants. Our findings may provide useful method for improving of Aloe plant proliferation with increasing of useful material such as antioxidant enzymes.

Keywords: aloe, antioxidant enzyme, micropropagation, gamma radiation, genetic variation

Procedia PDF Downloads 425
4331 Plasma-Assisted Decomposition of Cyclohexane in a Dielectric Barrier Discharge Reactor

Authors: Usman Dahiru, Faisal Saleem, Kui Zhang, Adam Harvey

Abstract:

Volatile organic compounds (VOCs) are atmospheric contaminants predominantly derived from petroleum spills, solvent usage, agricultural processes, automobile, and chemical processing industries, which can be detrimental to the environment and human health. Environmental problems such as the formation of photochemical smog, organic aerosols, and global warming are associated with VOC emissions. Research showed a clear relationship between VOC emissions and cancer. In recent years, stricter emission regulations, especially in industrialized countries, have been put in place around the world to restrict VOC emissions. Non-thermal plasmas (NTPs) are a promising technology for reducing VOC emissions by converting them into less toxic/environmentally friendly species. The dielectric barrier discharge (DBD) plasma is of interest due to its flexibility, moderate capital cost, and ease of operation under ambient conditions. In this study, a dielectric barrier discharge (DBD) reactor has been developed for the decomposition of cyclohexane (as a VOC model compound) using nitrogen, dry, and humidified air carrier gases. The effect of specific input energy (1.2-3.0 kJ/L), residence time (1.2-2.3 s) and concentration (220-520 ppm) were investigated. It was demonstrated that the removal efficiency of cyclohexane increased with increasing plasma power and residence time. The removal of cyclohexane decreased with increasing cyclohexane inlet concentration at fixed plasma power and residence time. The decomposition products included H₂, CO₂, H₂O, lower hydrocarbons (C₁-C₅) and solid residue. The highest removal efficiency (98.2%) was observed at specific input energy of 3.0 kJ/L and a residence time of 2.3 s in humidified air plasma. The effect of humidity was investigated to determine whether it could reduce the formation of solid residue in the DBD reactor. It was observed that the solid residue completely disappeared in humidified air plasma. Furthermore, the presence of OH radicals due to humidification not only increased the removal efficiency of cyclohexane but also improves product selectivity. This work demonstrates that cyclohexane can be converted to smaller molecules by a dielectric barrier discharge (DBD) non-thermal plasma reactor by varying plasma power (SIE), residence time, reactor configuration, and carrier gas.

Keywords: cyclohexane, dielectric barrier discharge reactor, non-thermal plasma, removal efficiency

Procedia PDF Downloads 131
4330 Environmental Performance Improvement of Additive Manufacturing Processes with Part Quality Point of View

Authors: Mazyar Yosofi, Olivier Kerbrat, Pascal Mognol

Abstract:

Life cycle assessment of additive manufacturing processes has evolved significantly since these past years. A lot of existing studies mainly focused on energy consumption. Nowadays, new methodologies of life cycle inventory acquisition came through the literature and help manufacturers to take into account all the input and output flows during the manufacturing step of the life cycle of products. Indeed, the environmental analysis of the phenomena that occur during the manufacturing step of additive manufacturing processes is going to be well known. Now it becomes possible to count and measure accurately all the inventory data during the manufacturing step. Optimization of the environmental performances of processes can now be considered. Environmental performance improvement can be made by varying process parameters. However, a lot of these parameters (such as manufacturing speed, the power of the energy source, quantity of support materials) affect directly the mechanical properties, surface finish and the dimensional accuracy of a functional part. This study aims to improve the environmental performance of an additive manufacturing process without deterioration of the part quality. For that purpose, the authors have developed a generic method that has been applied on multiple parts made by additive manufacturing processes. First, a complete analysis of the process parameters is made in order to identify which parameters affect only the environmental performances of the process. Then, multiple parts are manufactured by varying the identified parameters. The aim of the second step is to find the optimum value of the parameters that decrease significantly the environmental impact of the process and keep the part quality as desired. Finally, a comparison between the part made by initials parameters and changed parameters is made. In this study, the major finding claims by authors is to reduce the environmental impact of an additive manufacturing process while respecting the three quality criterion of parts, mechanical properties, dimensional accuracy and surface roughness. Now that additive manufacturing processes can be seen as mature from a technical point of view, environmental improvement of these processes can be considered while respecting the part properties. The first part of this study presents the methodology applied to multiple academic parts. Then, the validity of the methodology is demonstrated on functional parts.

Keywords: additive manufacturing, environmental impact, environmental improvement, mechanical properties

Procedia PDF Downloads 282
4329 Ingenious Eco-Technology for Transforming Food and Tanneries Waste into a Soil Bio-Conditioner and Fertilizer Product Used for Recovery and Enhancement of the Productive Capacity of the Soil

Authors: Petre Voicu, Mircea Oaida, Radu Vasiu, Catalin Gheorghiu, Aurel Dumitru

Abstract:

The present work deals with the way in which food and tobacco waste can be used in agriculture. As a result of the lack of efficient technologies for their recycling, we are currently faced with the appearance of appreciable quantities of residual organic residues that find their use only very rarely and only after long storage in landfills. The main disadvantages of long storage of organic waste are the unpleasant smell, the high content of pathogenic agents, and the high content in the water. The release of these enormous amounts imperatively demands the finding of solutions to ensure the avoidance of environmental pollution. The measure practiced by us consists of the processing of this waste in special installations, testing in pilot experimental perimeters, and later administration on agricultural lands without harming the quality of the soil, agricultural crops, and the environment. The current crisis of raw materials and energy also raises special problems in the field of organic waste valorization, an activity that takes place with low energy consumption. At the same time, their composition recommends them as useful secondary sources in agriculture. The transformation of food scraps and other residues concentrated organics thus acquires a new orientation, in which these materials are seen as important secondary resources. The utilization of food and tobacco waste in agriculture is also stimulated by the increasing lack of chemical fertilizers and the continuous increase in their price, under the conditions that the soil requires increased amounts of fertilizers in order to obtain high, stable, and profitable production. The need to maintain and increase the humus content of the soil is also taken into account, as an essential factor of its fertility, as a source and reserve of nutrients and microelements, as an important factor in increasing the buffering capacity of the soil, and the more reserved use of chemical fertilizers, improving the structure and permeability for water with positive effects on the quality of agricultural works and preventing the excess and/or deficit of moisture in the soil.

Keywords: ecology, soil, organic waste, fertility

Procedia PDF Downloads 75
4328 Psychological Stress and Accelerated Aging in SCI Patients - A Longitudinal Pilot Feasibility Study

Authors: Simona Capossela, Ramona Schaniel, Singer Franziska, Aquino Fournier Catharine, Daniel Stekhoven, Jivko Stoyanov

Abstract:

A spinal cord injury (SCI) is a traumatic life event that often results in ageing associated health conditions such as muscle mass decline, adipose tissue increase, decline in immune function, frailty, systemic chronic inflammation, and psychological distress and depression. Psychological, oxidative, and metabolic stressors may facilitate accelerated ageing in the SCI population with reduced life expectancy. Research designs using biomarkers of aging and stress are needed to elucidate the role of psychological distress in accelerated aging. The aim of this project is a feasibility pilot study to observe changes in stress biomarkers and correlate them with aging markers in SCI patients during their first rehabilitation (longitudinal cohort study). Biological samples were collected in the SwiSCI (Swiss Spinal Cord Injury Cohort Study) Biobank in Nottwil at 4 weeks±12 days after the injury (T1) and at the end of the first rehabilitation (discharge, T4). The "distress thermometer" is used as a selfassessment tool for psychological distress. Stress biomarkers, as cortisol and protein carbonyl content (PCC), and markers of cellular aging, such as telomere lengths, will be measured. 2 Preliminary results showed that SCI patients (N= 129) are still generally distressed at end of rehabilitation, however we found a statistically significant (p< 0.001) median decrease in distress from 6 (T1) to 5 (T4) during the rehabilitation. In addition, an explorative transcriptomics will be conducted on N=50 SCI patients to compare groups of persons with SCI who have different trajectories of selfreported distress at the beginning and end of the first rehabilitation after the trauma. We identified 4 groups: very high chronic stress (stress thermometer values above 7 at T1 and T4; n=14); transient stress (high to low; n=14), low stress (values below 5 at T1 and T4; n=14), increasing stress (low to high; n=8). The study will attempt to identify and address issues that may occur in relation to the design and conceptualization of future study on stress and aging in the SCI population.

Keywords: stress, aging, spinal cord injury, biomarkers

Procedia PDF Downloads 98
4327 Security Threats on Wireless Sensor Network Protocols

Authors: H. Gorine, M. Ramadan Elmezughi

Abstract:

In this paper, we investigate security issues and challenges facing researchers in wireless sensor networks and countermeasures to resolve them. The broadcast nature of wireless communication makes Wireless Sensor Networks prone to various attacks. Due to resources limitation constraint in terms of limited energy, computation power and memory, security in wireless sensor networks creates different challenges than wired network security. We will discuss several attempts at addressing the issues of security in wireless sensor networks in an attempt to encourage more research into this area.

Keywords: wireless sensor networks, network security, light weight encryption, threats

Procedia PDF Downloads 518
4326 Molecular Characterization of Grain Storage Proteins in Some Hordeum Species

Authors: Manar Makhoul, Buthainah Alsalamah, Salam Lawand, Hassan Azzam

Abstract:

The major storage proteins in endosperm of 33 cultivated and wild barley genotypes (H.vulgare, H. spontaneum, H. bulbosum, H. murinum, H. marinum) were analyzed to demonstrate the variation in the hordein polypeptides encoded by multigene families in grains. The SDS-PAGE revealed 13 and 17 alleles at the Hor1 and the Hor2 loci respectively, with frequencies from 0.83 to 14 and 0.56 to 13.41% respectively, while seven alleles at the Hor3 locus with frequencies from 3.63 to 30.91% were recognized. The phylogenetic analysis indicated to relevance of the polymorphism in hordein patterns as successful tool in identifying the individual genotypes and discriminating the species according to genome type. We also reported in this research complete nucleotide sequence B-hordein genes of seven wild and cultivated barley genotypes. A 152bp upstream sequence of B-hordein promoter contained a TATA box, CATC box, AAAG motif, N-motif and E-motif. In silico analysis of B-Hordein sequences demonstrated that the coding regions were not interrupted by any intron, and included the complete ORF which varied between 882 and 906 bp, and encoded mature proteins with 293-301 residues characterized by high contents of glutamine (29%), and proline (18%). Comparison of the predicted polypeptide sequences with the published ones suggested that all S-rich prolamins genes are descended from common ancestor. The sequence started at N-terminal with a signal peptide, and then followed directly by two domains; a repetitive one based on the repetition of the repeat unit PQQPFPQQ and C-terminal domain. Also, it was found that positions of the eight cysteine residues were highly conserved in all the B-hordein sequences, but Hordeum bulbosum had additional unpaired one. The phylogenetic tree of B-hordein polypeptide separated the genotypes in distinct seven subgroups. In general, the high homology between B-hordeins and LMW glutenin subunits suggests similar bread-making influences for these B-hordeins.

Keywords: hordeum, phylogenetic tree, sequencing, storage protein

Procedia PDF Downloads 259
4325 Study of the Nanostructured Fe₅₀Cr₃₅Ni₁₅ Powder Alloy Developed by Mechanical Alloying

Authors: Salim Triaa, Fella Kali-Ali

Abstract:

Nanostructured Fe₅₀Cr3₃₅Ni₁₅ alloys were prepared from pure elemental powders using high energy mechanical alloying. The mixture powders obtained are characterized by several techniques. X-ray diffraction analysis revelated the formation of the Fe₁Cr₁ compound with BBC structure after one hour of milling. A second compound Fe₃Ni₂ with FCC structure was observed after 12 hours of milling. The size of crystallite determined by Williamson Hall method was about 5.1 nm after 48h of mill. SEM observations confirmed the growth of crushed particles as a function of milling time, while the homogenization of our powders into different constituent elements was verified by the EDX analysis.

Keywords: Fe-Cr-Ni alloy, mechanical alloying, nanostructure, SEM, XRD

Procedia PDF Downloads 169
4324 Principal Component Analysis of Body Weight and Morphometric Traits of New Zealand Rabbits Raised under Semi-Arid Condition in Nigeria

Authors: Emmanuel Abayomi Rotimi

Abstract:

Context: Rabbits production plays important role in increasing animal protein supply in Nigeria. Rabbit production provides a cheap, affordable, and healthy source of meat. The growth of animals involves an increase in body weight, which can change the conformation of various parts of the body. Live weight and linear measurements are indicators of growth rate in rabbits and other farm animals. Aims: This study aimed to define the body dimensions of New Zealand rabbits and also to investigate the morphometric traits variables that contribute to body conformation by the use of principal component analysis (PCA). Methods: Data were obtained from 80 New Zealand rabbits (40 bucks and 40 does) raised in Livestock Teaching and Research Farm, Federal University Dutsinma. Data were taken on body weight (BWT), body length (BL), ear length (EL), tail length (TL), heart girth (HG) and abdominal circumference (AC). Data collected were subjected to multivariate analysis using SPSS 20.0 statistical package. Key results: The descriptive statistics showed that the mean BWT, BL, EL, TL, HG, and AC were 0.91kg, 27.34cm, 10.24cm, 8.35cm, 19.55cm and 21.30cm respectively. Sex showed significant (P<0.05) effect on all the variables examined, with higher values recorded for does. The phenotypic correlation coefficient values (r) between the morphometric traits were all positive and ranged from r = 0.406 (between EL and BL) to r = 0.909 (between AC and HG). HG is the most correlated with BWT (r = 0.786). The principal component analysis with variance maximizing orthogonal rotation was used to extract the components. Two principal components (PCs) from the factor analysis of morphometric traits explained about 80.42% of the total variance. PC1 accounted for 64.46% while PC2 accounted for 15.97% of the total variances. Three variables, representing body conformation, loaded highest in PC1. PC1 had the highest contribution (64.46%) to the total variance, and it is regarded as body conformation traits. Conclusions: This component could be used as selection criteria for improving body weight of rabbits.

Keywords: conformation, multicollinearity, multivariate, rabbits and principal component analysis

Procedia PDF Downloads 124
4323 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System

Authors: Ben Soltane Cheima, Ittansa Yonas Kelbesa

Abstract:

Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.

Keywords: feature extraction, speaker modeling, feature matching, Mel frequency cepstrum coefficient (MFCC), Gaussian mixture model (GMM), vector quantization (VQ), Linde-Buzo-Gray (LBG), expectation maximization (EM), pre-processing, voice activity detection (VAD), short time energy (STE), background noise statistical modeling, closed-set tex-independent speaker identification system (CISI)

Procedia PDF Downloads 306
4322 Establishment and Characterization of a Dentigerous Cyst Cell Line

Authors: Muñiz-Lino Marcos Agustín, Vazquez Borbolla Jessica, Licéaga-Escalera Carlos

Abstract:

The ectomesenchymal tissues involved in tooth development and their remnants are the origin of different odontogenic lesions, including tumors and cysts of the jaws, with a wide range of clinical behaviors. Dentigerous cyst (DC) represents approximately 20% of all cases of odontogenic cysts, and it has been demonstrated that it can develop benign and malignant odontogenic tumors. DC is characterized by bone destruction of the area surrounding the crown of a tooth which has not erupted and it contain is liquid. The treatment of odontogenic tumors and cysts usually are partial or total removal of the jaw, causing important secondary co-morbidities. However, molecules implicated in DC pathogenesis as well in its development to odontogenic tumors remains unknown. A cellular model may be useful to study these molecules, but that model has not been established yet. Here, we reported the establishment of a cell culture derived from a dentigerous cyst. This cell line was named DeCy-1. In spite of its ectomesenchymal morphology, DeCy-1 cells express epithelial markers such as cytokeratins 5, 6, and 8. Furthermore, these cells express the ODAM protein, which is present in odontogenesis and in dental follicle, indicating that DeCy-1 cells derived from odontogenic epithelium. Analysis by electron microscopy of this cell line showed that it has a high vesicular activity, suggesting that DeCy-1 could secrete molecules that may be involved in DC pathogenesis. Thus, secreted proteins were analyzed by PAGE-SDS, where we observed approximately 11 bands. In addition, the capacity of these secretions to degrade proteins was analyzed by gelatin substrate zymography. A degradation band of about 62 kDa was found in these assays. Western blot assays suggested that the matrix metalloproteinase 2 (MMP-2) is responsible of this protease activity. Thus, our results indicate that the establishment of a cell line derived from DC is a useful in vitro model to study the biology of this odontogenic lesion and its participation in the development of odontogenic tumors.

Keywords: dentigerous cyst, MMP20, cancer, cell culture

Procedia PDF Downloads 131
4321 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks

Authors: Tesfaye Mengistu

Abstract:

Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.

Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net

Procedia PDF Downloads 104
4320 Defining a Framework for Holistic Life Cycle Assessment of Building Components by Considering Parameters Such as Circularity, Material Health, Biodiversity, Pollution Control, Cost, Social Impacts, and Uncertainty

Authors: Naomi Grigoryan, Alexandros Loutsioli Daskalakis, Anna Elisse Uy, Yihe Huang, Aude Laurent (Webanck)

Abstract:

In response to the building and construction sectors accounting for a third of all energy demand and emissions, the European Union has placed new laws and regulations in the construction sector that emphasize material circularity, energy efficiency, biodiversity, and social impact. Existing design tools assess sustainability in early-stage design for products or buildings; however, there is no standardized methodology for measuring the circularity performance of building components. Existing assessment methods for building components focus primarily on carbon footprint but lack the comprehensive analysis required to design for circularity. The research conducted in this paper covers the parameters needed to assess sustainability in the design process of architectural products such as doors, windows, and facades. It maps a framework for a tool that assists designers with real-time sustainability metrics. Considering the life cycle of building components such as façades, windows, and doors involves the life cycle stages applied to product design and many of the methods used in the life cycle analysis of buildings. The current industry standards of sustainability assessment for metal building components follow cradle-to-grave life cycle assessment (LCA), track Global Warming Potential (GWP), and document the parameters used for an Environmental Product Declaration (EPD). Developed by the Ellen Macarthur Foundation, the Material Circularity Indicator (MCI) is a methodology utilizing the data from LCA and EPDs to rate circularity, with a "value between 0 and 1 where higher values indicate a higher circularity+". Expanding on the MCI with additional indicators such as the Water Circularity Index (WCI), the Energy Circularity Index (ECI), the Social Circularity Index (SCI), Life Cycle Economic Value (EV), and calculating biodiversity risk and uncertainty, the assessment methodology of an architectural product's impact can be targeted more specifically based on product requirements, performance, and lifespan. Broadening the scope of LCA calculation for products to incorporate aspects of building design allows product designers to account for the disassembly of architectural components. For example, the Material Circularity Indicator for architectural products such as windows and facades is typically low due to the impact of glass, as 70% of glass ends up in landfills due to damage in the disassembly process. The low MCI can be combatted by expanding beyond cradle-to-grave assessment and focusing the design process on disassembly, recycling, and repurposing with the help of real-time assessment tools. Design for Disassembly and Urban Mining has been integrated within the construction field on small scales as project-based exercises, not addressing the entire supply chain of architectural products. By adopting more comprehensive sustainability metrics and incorporating uncertainty calculations, the sustainability assessment of building components can be more accurately assessed with decarbonization and disassembly in mind, addressing the large-scale commercial markets within construction, some of the most significant contributors to climate change.

Keywords: architectural products, early-stage design, life cycle assessment, material circularity indicator

Procedia PDF Downloads 82
4319 Clinical Efficacy of Nivolumab and Ipilimumab Combination Therapy for the Treatment of Advanced Melanoma: A Systematic Review and Meta-Analysis of Clinical Trials

Authors: Zhipeng Yan, Janice Wing-Tung Kwong, Ching-Lung Lai

Abstract:

Background: Advanced melanoma accounts for the majority of skin cancer death due to its poor prognosis. Nivolumab and ipilimumab are monoclonal antibodies targeting programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocytes antigen 4 (CTLA-4). Nivolumab and ipilimumab combination therapy has been proven to be effective for advanced melanoma. This systematic review and meta-analysis are to evaluate its clinical efficacy and adverse events. Method: A systematic search was done on databases (Pubmed, Embase, Medline, Cochrane) on 21 June 2020. Search keywords were nivolumab, ipilimumab, melanoma, and randomised controlled trials. Clinical trials fulfilling the inclusion criteria were selected to evaluate the efficacy of combination therapy in terms of prolongation of progression-free survival (PFS), overall survival (OS), and objective response rate (ORR). The odd ratios and distributions of grade 3 or above adverse events were documented. Subgroup analysis was performed based on PD-L1 expression-status and BRAF-mutation status. Results: Compared with nivolumab monotherapy, the hazard ratios of PFS, OS and odd ratio of ORR in combination therapy were 0.64 (95% CI, 0.48-0.85; p=0.002), 0.84 (95% CI, 0.74-0.95; p=0.007) and 1.76 (95% CI, 1.51-2.06; p < 0.001), respectively. Compared with ipilimumab monotherapy, the hazard ratios of PFS, OS and odd ratio of ORR were 0.46 (95% CI, 0.37-0.57; p < 0.001), 0.54 (95% CI, 0.48-0.61; p < 0.001) and 6.18 (95% CI, 5.19-7.36; p < 0.001), respectively. In combination therapy, the odds ratios of grade 3 or above adverse events were 4.71 (95% CI, 3.57-6.22; p < 0.001) compared with nivolumab monotherapy, and 3.44 (95% CI, 2.49-4.74; p < 0.001) compared with ipilimumab monotherapy, respectively. High PD-L1 expression level and BRAF mutation were associated with better clinical outcomes in patients receiving combination therapy. Conclusion: Combination therapy is effective for the treatment of advanced melanoma. Adverse events were common but manageable. Better clinical outcomes were observed in patients with high PD-L1 expression levels and positive BRAF-mutation.

Keywords: nivolumab, ipilimumab, advanced melanoma, systematic review, meta-analysis

Procedia PDF Downloads 134
4318 Thin Film Thermoelectric Generator with Flexible Phase Change Material-Based Heatsink

Authors: Wu Peiqin

Abstract:

Flexible thermoelectric devices are light and flexible, which can be in close contact with any shape of heat source surfaces to minimize heat loss and achieve efficient energy conversion. Among the wide application fields, energy harvesting via flexible thermoelectric generators can adapt to a variety of curved heat sources (such as human body, circular tubes, and surfaces of different shapes) and can drive low-power electronic devices, exhibiting one of the most promising technologies in self-powered systems. The heat flux along the cross-section of the flexible thin-film generator is limited by the thickness, so the temperature difference decreases during the generation process, and the output power is low. At present, most of the heat flow directions of the thin film thermoelectric generator are along the thin-film plane; however, this method is not suitable for attaching to the human body surface to generate electricity. In order to make the film generator more suitable for thermoelectric generation, it is necessary to apply a flexible heatsink on the air sides with the film to maintain the temperature difference. In this paper, Bismuth telluride thermoelectric paste was deposited on polyimide flexible substrate by a screen printing method, and the flexible thermoelectric film was formed after drying. There are ten pairs of thermoelectric legs. The size of the thermoelectric leg is 20 x 2 x 0.1 mm, and adjacent thermoelectric legs are spaced 2 mm apart. A phase change material-based flexible heatsink was designed and fabricated. The flexible heatsink consists of n-octadecane, polystyrene, and expanded graphite. N-octadecane was used as the thermal storage material, polystyrene as the supporting material, and expanded graphite as the thermally conductive additive. The thickness of the flexible phase change material-based heatsink is 2mm. A thermoelectric performance testing platform was built, and its output performance was tested. The results show that the system can generate an open-circuit output voltage of 3.89 mV at a temperature difference of 10K, which is higher than the generator without a heatsink. Therefore, the flexible heatsink can increase the temperature difference between the two ends of the film and improve the output performance of the flexible film generator. This result promotes the application of the film thermoelectric generator in collecting human heat for power generation.

Keywords: flexible thermoelectric generator, screen printing, PCM, flexible heatsink

Procedia PDF Downloads 96
4317 Passive Aeration of Wastewater: Analytical Model

Authors: Ayman M. El-Zahaby, Ahmed S. El-Gendy

Abstract:

Aeration for wastewater is essential for the proper operation of aerobic treatment units where the wastewater normally has zero dissolved oxygen. This is due to the need of oxygen by the aerobic microorganisms to grow and survive. Typical aeration units for wastewater treatment require electric energy for their operation such as mechanical aerators or diffused aerators. The passive units are units that operate without the need of electric energy such as cascade aerators, spray aerators and tray aerators. In contrary to the cascade aerators and spray aerators, tray aerators require much smaller area foot print for their installation as the treatment stages are arranged vertically. To the extent of the authors knowledge, the design of tray aerators for the aeration purpose has not been presented in the literature. The current research concerns with an analytical study for the design of tray aerators for the purpose of increasing the dissolved oxygen in wastewater treatment systems, including an investigation on different design parameters and their impact on the aeration efficiency. The studied aerator shall act as an intermediate stage between an anaerobic primary treatment unit and an aerobic treatment unit for small scale treatment systems. Different free falling flow regimes were investigated, and the thresholds for transition between regimes were obtained from the literature. The study focused on the jetting flow regime between trays. Starting from the two film theory, an equation that relates the dissolved oxygen concentration effluent from the system was derived as a function of the flow rate, number of trays, tray area, spacing between trays, number and diameter of holes and the water temperature. A MATLab ® model was developed for the derived equation. The expected aeration efficiency under different tray configurations and operating conditions were illustrated through running the model with varying the design parameters. The impact of each parameter was illustrated. The overall system efficiency was found to increase by decreasing the hole diameter. On the other side, increasing the number of trays, tray area, flow rate per hole or tray spacing had positive effect on the system efficiency.

Keywords: aeration, analytical, passive, wastewater

Procedia PDF Downloads 204
4316 Exergy Model for a Solar Water Heater with Flat Plate Collector

Authors: P. Sathyakala, G. Sai Sundara Krishnan

Abstract:

The objective of this paper is to derive an exergy model for a solar water heater with honey comb structure in order to identify the element which has larger irreversibility in the system. This will help us in finding the means to reduce the wasted work potential so that the overall efficiency of the system can be improved by finding the ways to reduce those wastages.

Keywords: exergy, energy balance, entropy balance, work potential, degradation, honey comb, flat plate collector

Procedia PDF Downloads 471
4315 Traditional and New Residential Architecture in the Approach of Sustainability in the Countryside after the Earthquake

Authors: Zeynep Tanriverdi̇

Abstract:

Sustainable architecture is a design approach that provides healthy, comfortable, safe, clean space production as well as utilizes minimum resources for efficient and economical use of natural resources and energy. Traditional houses located in rural areas are sustainable structures built at the design and implementation stage in accordance with the climatic environmental data of the region and also effectively using natural energy resources. The fact that these structures are located in an earthquake geography like Türkiye brings their earthquake resistance to the agenda. Since the construction of these structures, which contain the architectural and technological cultural knowledge of the past, is shaped according to the characteristics of the regions where they are located, their resistance to earthquakes also differs. Analyses in rural areas after the earthquake show that there are light-damaged structures that can survive, severely damaged structures, and completely destroyed structures. In this regard, experts can implement repair, consolidation, and reconstruction applications, respectively. While simple repair interventions are carried out in accordance with the original data in traditional houses that have shown great resistance to earthquakes, reinforcement work blended with new technologies can be applied in damaged structures. In reconstruction work, a wide variety of applications can be seen with the possibilities of modern technologies. In rural areas experiencing earthquakes around the world, there are experimental new housing applications that are renewable, environmentally friendly, and sustainable with modern construction techniques in the light of scientific data. With these new residences, it is aimed to create earthquake-resistant, economical, healthy, and pain-relieving therapy spaces for people whose daily lives have been interrupted by disasters. In this study, the preservation of high earthquake-prone rural areas will be discussed through the knowledge transfer of traditional architecture and also permanent housing practices using new sustainable technologies to improve the area. In this way, it will be possible to keep losses to a minimum with sustainable, reliable applications prepared for the worst aspects of the disaster situation and to establish a link between the knowledge of the past and the new technologies of the future.

Keywords: sustainability, conservation, traditional construction systems and materials, new technologies, earthquake resistance

Procedia PDF Downloads 60
4314 Covid -19 Pandemic and Impact on Public Spaces of Tourism and Hospitality in Dubai- an Exploratory Study from a Design Perspective

Authors: Manju Bala Jassi

Abstract:

The Covid 19 pandemic has badly mauled Dubai’s GDP heavily dependent on hospitality, tourism, entertainment, logistics, property and the retail sectors. In the context of the World Health protocols on social distancing for better maintenance of health and hygiene, the revival of the battered tourism and hospitality sectors has serious lessons for designers- interiors and public places. The tangible and intangible aesthetic elements and design –ambiance, materials, furnishings, colors, lighting and interior with architectural design issues of tourism and hospitality need a rethink to ensure a memorable tourist experience. Designers ought to experiment with sustainable places of tourism and design, develop, build and projects are aesthetic and leave as little negative impacts on the environment and public as possible. In short, they ought to conceive public spaces that makes use of little untouched materials and energy, and creates pollution and waste that are minimal. The spaces can employ healthier and more resource-efficient prototypes of construction, renovation, operation, maintenance, and demolition and thereby mitigate the environment impacts of the construction activities and it is sustainable These measures encompass the hospitality sector that includes hotels and restaurants which has taken the hardest fall from the pandemic. The paper sought to examine building energy efficiency and materials and design employed in public places, green buildings to achieve constructive sustainability and to establish the benefits of utilizing energy efficiency, green materials and sustainable design; to document diverse policy interventions, design and Spatial dimensions of tourism and hospitality sectors; to examine changes in the hospitality, aviation sector especially from a design perspective regarding infrastructure or operational constraints and additional risk-mitigation measures; to dilate on the nature of implications for interior designers and architects to design public places to facilitate sustainable tourism and hospitality while balancing convenient space and their operations' natural surroundings. The qualitative research approach was adopted for the study. The researcher collected and analyzed data in continuous iteration. Secondary data was collected from articles in journals, trade publications, government reports, newspaper/ magazine articles, policy documents etc. In depth interviews were conducted with diverse stakeholders. Preliminary data indicates that designers have started imagining public places of tourism and hospitality against the backdrop of the government push and WHO guidelines. For instance, with regard to health, safety, hygiene and sanitation, Emirates, the Dubai-based airline has augmented health measures at the Dubai International Airport and on board its aircraft. It has leveraged high tech/ Nano-tech, social distancing to encourage least human contact, flexible design layouts to limit the occupancy. The researcher organized the data into thematic categories and found that the Government of Dubai has initiated comprehensive measures in the hospitality, tourism and aviation sectors in compliance with the WHO guidelines.

Keywords: Covid 19, design, Dubai, hospitality, public spaces, tourism

Procedia PDF Downloads 162
4313 Removal of Total Petroleum Hydrocarbons from Contaminated Soils by Electrochemical Method

Authors: D. M. Cocârță, I. A. Istrate, C. Streche, D. M. Dumitru

Abstract:

Soil contamination phenomena are a wide world issue that has received the important attention in the last decades. The main pollutants that have affected soils are especially those resulted from the oil extraction, transport and processing. This paper presents results obtained in the framework of a research project focused on the management of contaminated sites with petroleum products/ REMPET. One of the specific objectives of the REMPET project was to assess the electrochemical treatment (improved with polarity change respect to the typical approach) as a treatment option for the remediation of total petroleum hydrocarbons (TPHs) from contaminated soils. Petroleum hydrocarbon compounds attach to soil components and are difficult to remove and degrade. Electrochemical treatment is a physicochemical treatment that has gained acceptance as an alternative method, for the remediation of organic contaminated soils comparing with the traditional methods as bioremediation and chemical oxidation. This type of treatment need short time and have high removal efficiency, being usually applied in heterogeneous soils with low permeability. During the experimental tests, the following parameters were monitored: pH, redox potential, humidity, current intensity, energy consumption. The electrochemical method was applied in an experimental setup with the next dimensions: 450 mm x 150 mm x 150 mm (L x l x h). The setup length was devised in three electrochemical cells that were connected at two power supplies. The power supplies configuration was provided in such manner that each cell has a cathode and an anode without overlapping. The initial value of TPH concentration in soil was of 1420.28 mg/kgdw. The remediation method has been applied for only 21 days, when it was already noticed an average removal efficiency of 31 %, with better results in the anode area respect to the cathode one (33% respect to 27%). The energy consumption registered after the development of the experiment was 10.6 kWh for exterior power supply and 16.1 kWh for the interior one. Taking into account that at national level, the most used methods for soil remediation are bioremediation (which needs too much time to be implemented and depends on many factors) and thermal desorption (which involves high costs in order to be implemented), the study of electrochemical treatment will give an alternative to these two methods (and their limitations).

Keywords: electrochemical remediation, pollution, total petroleum hydrocarbons, soil contamination

Procedia PDF Downloads 238
4312 Molecular Characterization of Major Isolated Organism Involved in Bovine Subclinical Mastitis

Authors: H. K. Ratre, M. Roy, S. Roy, M. S. Parmar, V. Bhagat

Abstract:

Mastitis is a common problem of dairy industries. Reduction in milk production and an irreparable damage to the udder associated with the disease are common causes of culling of dairy cows. Milk from infected animals is not suitable for drinking and for making different milk products. So, it has a major economic importance in dairy cattle. The aims of this study were to investigate the bacteriological panorama in milk from udder quarters with subclinical mastitis and to carried out for the molecular characterization of the major isolated organisms, from subclinical mastitis-affected cows in and around Durg and Rajnandgaon district of Chhattisgarh. Isolation and identification of bacteria from the milk samples of subclinical mastitis-affected cows were done by standard and routine culture procedures. A total of 78 isolates were obtained from cows and among the various bacteria isolated, Staphylococcus spp. occupied prime position with occurrence rate of 51.282%. However, other bacteria isolated includeStreptococcus spp. (20.512%), Micrococcus spp. (14.102%), E. coli (8.974%), Klebsiela spp. (2.564%), Salmonella spp. (1.282%) and Proteus spp. (1.282%). Staphylococcus spp. was isolated as the major causative agent of subclinical mastitis in the studied area. Molecular characterization of Staphylococus aureusisolates was done for genetic expression of the virulence genes like ‘nuc’ encoding thermonucleaseexoenzyme, coa and spa by PCR amplification of the respective genes in 25 Staphylococcus isolates. In the present study, 15 isolates (77.27%) out of 20 coagulase positive isolates were found to be genotypically positive for ‘nuc’ where as 20 isolates (52.63%) out of 38 CNS expressed the presence of the same virulence gene. In the present study, three Staphylococcus isolates were found to be genotypically positive for coa gene. The Amplification of the coa gene yielded two different products of 627, 710 bp. The amplification of the gene segment encoding the IgG binding region of protein A (spa) revealed a size of 220 and 253bp in twostaphylococcus isolates. The X-region binding of the spa gene produced an amplicon of 315 bp in one Staphylococcal isolates. Staphylococcus aureus was found to be major isolate (51.28%) responsible for causing subclinical mastitis in cows which also showed expression of virulence genesnuc, coa and spa.

Keywords: mastitis, bacteria, characterization, expression, gene

Procedia PDF Downloads 210
4311 Effective Doping Engineering of Na₃V₂(PO₄)₂F₃ as a High-Performance Cathode Material for Sodium-Ion Batteries

Authors: Ramon Alberto Paredes Camacho, Li Lu

Abstract:

Sustainable batteries are possible through the development of cheaper and greener alternatives whose most feasible option is epitomized by Sodium-Ion Batteries (SIB). Na₃V₂(PO₄)₂F₃ (NVPF) an important member of the Na-superionic-conductor (NASICON) materials, has recently been in the spotlight due to its interesting electrochemical properties when used as cathode namely, high specific capacity of 128 mA h g-¹, high energy density of 507 W h Kg-¹, increased working potential at which vanadium redox couples can be activated (with an average value around 3.9 V), and small volume variation of less than 2%. These traits grant NVPF an excellent perspective as a cathode material for the next generation of sodium batteries. Unfortunately, because of its low inherent electrical conductivity and a high energy barrier that impedes the mobilization of all the available Na ions per formula, the overall electrochemical performance suffers substantial degradation, finally obstructing its industrial use. Many approaches have been developed to remediate these issues where nanostructural design, carbon coating, and ion doping are the most effective ones. This investigation is focused on enhancing the electrochemical response of NVPF by doping metal ions in the crystal lattice, substituting vanadium atoms. A facile sol-gel process is employed, with citric acid as the chelator and the carbon source. The optimized conditions circumvent fluorine sublimation, ratifying the material’s purity. One of the reasons behind the large ionic improvement is the attraction of extra Na ions into the crystalline structure due to a charge imbalance produced by the valence of the doped ions (+2), which is lower than the one of vanadium (+3). Superior stability (higher than 90% at a current density of 20C) and capacity retention at an extremely high current density of 50C are demonstrated by our doped NVPF. This material continues to retain high capacity values at low and high temperatures. In addition, full cell NVPF//Hard Carbon shows capacity values and high stability at -20 and 60ºC. Our doping strategy proves to significantly increase the ionic and electronic conductivity of NVPF even at extreme conditions, delivering outstanding electrochemical performance and paving the way for advanced high-potential cathode materials.

Keywords: sodium-ion batteries, cathode materials, NASICON, Na3V2(PO4)2F3, Ion doping

Procedia PDF Downloads 53
4310 Effect of Xenobiotic Bioactive Compounds from Grape Waste on Inflammation and Oxidative Stress in Pigs

Authors: Ionelia Taranu, Gina Cecilia Pistol, Mihai Alexandru Gras, Mihai Laurentiu Palade, Mariana Stancu, Veronica Sanda Chedea

Abstract:

In the last decade bioactive compounds from grape waste are investigated as new therapeutic agents for the inhibition of carcinogenesis and other diseases. The objective of this study was to characterize several bioactive compounds (polyphenols and polyunsaturated fatty acids) of a dried grape pomace (GP) derived from a Romanian winery and further to evaluate their effect on inflammation and oxidative markers in liver of pig used as animal model. The total polyphenol concentration of pomace was 36.2g gallic acid equiv /100g. The pomace was rich in polyphenols from the flavonoids group, the main class being flavanols (epicatechins, catechin, epigallocatechin, procyanidins) and antocyanins (Malvidin 3-O-glucoside). The highest concentration was recorded for epicatechin (51.96g/100g) and procyanidin dimer (22.79g/100g). A high concentration of total polyunsaturated fatty acids (PUFA) especially ω-6 fatty acids (59.82 g/100g fat) was found in grape pomace. 20 crossbred TOPIG hybrid fattening pigs were randomly assigned (n = 10) to two experimental treatments: a normal diet (control group) and a diet included 5% grape pomace (GP group) for 24 days. The GP diet lowered the gene expression and protein concentration of IL-1β, IL-8, TNF-α and IFN-γ cytokines in liver suggesting an anti-inflammatory effect of GP diet. Concentration of hepatic TBARS also decreased, but the total antioxidant capacity (liver TEAC) and activity and gene expression of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) did not differ between the GP and control diet. The results showed that GP diet exerted an anti-inflammatory effect, but the 5% dietary inclusion modulated only partially the oxidative stress.

Keywords: animal model, inflammation, grape waste, immune organs

Procedia PDF Downloads 333
4309 GIS Mapping of Sheep Population and Distribution Pattern in the Derived Savannah of Nigeria

Authors: Sosina Adedayo O., Babyemi Olaniyi J.

Abstract:

The location, population, and distribution pattern of sheep are severe challenges to agribusiness investment and policy formulation in the livestock industry. There is a significant disconnect between farmers' needs and the policy framework towards ameliorating the sheep production constraints. Information on the population, production, and distribution pattern of sheep remains very scanty. A multi-stage sampling technique was used to elicit information from 180 purposively selected respondents from the study area comprised of Oluyole, Ona-ara, Akinyele, Egbeda, Ido and Ibarapa East LGA. The Global Positioning Systems (GPS) of the farmers' location (distribution), and average sheep herd size (Total Livestock Unit, TLU) (population) were recorded, taking the longitude and latitude of the locations in question. The recorded GPS data of the study area were transferred into the ARC-GIS. The ARC-GIS software processed the data using the ARC-GIS model 10.0. Sheep production and distribution (TLU) ranged from 4.1 (Oluyole) to 25.0 (Ibarapa East), with Oluyole, Akinyele, Ona-ara and Egbeda having TLU of 5, 7, 8 and 20, respectively. The herd sizes were classified as less than 8 (smallholders), 9-25 (medium), 26-50 (large), and above 50 (commercial). The majority (45%) of farmers were smallholders. The FR CP (%) ranged from 5.81±0.26 (cassava leaf) to 24.91±0.91 (Amaranthus spinosus), NDF (%) ranged from 22.38±4.43 (Amaranthus spinosus) to 67.96 ± 2.58 (Althemanthe dedentata) while ME ranged from 7.88±0.24 (Althemanthe dedentata) to 10.68±0.18 (cassava leaf). The smallholders’ sheep farmers were the majority, evenly distributed across rural areas due to the availability of abundant feed resources (crop residues, tree crops, shrubs, natural pastures, and feed ingredients) coupled with a large expanse of land in the study area. Most feed resources available were below sheep protein requirement level, hence supplementation is necessary for productivity. Bio-informatics can provide relevant information for sheep production for policy framework and intervention strategies.

Keywords: sheep enterprise, agribusiness investment, policy, bio-informatics, ecological zone

Procedia PDF Downloads 75
4308 Production Structures of Energy Based on Water Force, Its Infrastructure Protection, and Possible Causes of Failure

Authors: Gabriela-Andreea Despescu, Mădălina-Elena Mavrodin, Gheorghe Lăzăroiu, Florin Adrian Grădinaru

Abstract:

The purpose of this paper is to contribute to the enhancement of a hydroelectric plant protection by coordinating protection measures and existing security and introducing new measures under a risk management process. Also, the plan identifies key critical elements of a hydroelectric plant, from its level vulnerabilities and threats it is subjected to in order to achieve the necessary protection measures to reduce the level of risk.

Keywords: critical infrastructure, risk analysis, critical infrastructure protection, vulnerability, risk management, turbine, impact analysis

Procedia PDF Downloads 540
4307 Pinch Analysis of Triple Pressure Reheat Supercritical Combined Cycle Power Plant

Authors: Sui Yan Wong, Keat Ping Yeoh, Chi Wai Hui

Abstract:

In this study, supercritical steam is introduced to Combined Cycle Power Plant (CCPP) in an attempt to further optimize energy recovery. Subcritical steam is commonly used in the CCPP, operating at maximum pressures around 150-160 bar. Supercritical steam is an alternative to increase heat recovery during vaporization period of water. The idea of improvement using supercritical steam is further examined with the use of exergy, pinch analysis and Aspen Plus simulation.

Keywords: exergy, pinch, combined cycle power plant, supercritical steam

Procedia PDF Downloads 135
4306 2D and 3D Breast Cancer Cells Behave Differently to the Applied Free Palbociclib or the Palbociclib-Loaded Nanoparticles

Authors: Maryam Parsian, Pelin Mutlu, Ufuk Gunduz

Abstract:

Two-dimensional cell culture affords simplicity and low cost, but it has serious limitations; lacking cell-cell and cell-matrix interactions that are present in tissues. Cancer cells grown in 3D culture systems have distinct phenotypes of adhesion, growth, migration, invasion as well as profiles of gene and protein expression. These interactions cause the 3D-cultured cells to acquire morphological and cellular characteristics relevant to in vivo tumors. Palbociclib is a chemotherapeutic agent for the treatment of ER-positive and HER-negative metastatic breast cancer. Poly-amidoamine (PAMAM) dendrimer is a well-defined, special three-dimensional structure and has a multivalent surface and internal cavities that can play an essential role in drug delivery systems. In this study, palbociclib is loaded onto the magnetic PAMAM dendrimer. Hanging droplet method was used in order to form 3D spheroids. The possible toxic effects of both free drug and drug loaded nanoparticles were evaluated in 2D and 3D MCF-7, MD-MB-231 and SKBR-3 breast cancer cell culture models by performing MTT cell viability and Alamar Blue assays. MTT analysis was performed with six different doses from 1000 µg/ml to 25 µg/ml. Drug unloaded PAMAM dendrimer did not demonstrate significant toxicity on all breast cancer cell lines. The results showed that 3D spheroids are clearly less sensitive than 2D cell cultures to free palbociclib. Also, palbociclib loaded PAMAM dendrimers showed more toxic effect than free palbociclib in all cell lines at 2D and 3D cultures. The results suggest that the traditional cell culture method (2D) is insufficient for mimicking the actual tumor tissue. The response of the cancer cells to anticancer drugs is different in the 2D and 3D culture conditions. This study showed that breast cancer cells are more resistant to free palbociclib in 3D cultures than in 2D cultures. However, nanoparticle loaded drugs can be more cytotoxic when compared to free drug.

Keywords: 2D and 3D cell culture, breast cancer, palbociclibe, PAMAM magnetic nanoparticles

Procedia PDF Downloads 145
4305 Economic Evaluation of an Advanced Bioethanol Manufacturing Technology Using Maize as a Feedstock in South Africa

Authors: Ayanda Ndokwana, Stanley Fore

Abstract:

Industrial prosperity and rapid expansion of human population in South Africa over the past two decades, have increased the use of conventional fossil fuels such as crude oil, coal and natural gas to meet the country’s energy demands. However, the inevitable depletion of fossil fuel reserves, global volatile oil price and large carbon footprint are some of the crucial reasons the South African Government needs to make a considerable investment in the development of the biofuel industry. In South Africa, this industry is still at the introductory stage with no large scale manufacturing plant that has been commissioned yet. Bioethanol is a potential replacement of gasoline which is a fossil fuel that is used in motor vehicles. Using bioethanol for the transport sector as a source of fuel will help Government to save heavy foreign exchange incurred during importation of oil and create many job opportunities in rural farming. In 2007, the South African Government developed the National Biofuels Industrial Strategy in an effort to make provision for support and attract investment in bioethanol production. However, capital investment in the production of bioethanol on a large scale, depends on the sound economic assessment of the available manufacturing technologies. The aim of this study is to evaluate the profitability of an advanced bioethanol manufacturing technology which uses maize as a feedstock in South Africa. The impact of fiber or bran fractionation in this technology causes it to possess a number of merits such as energy efficiency, low capital expenditure, and profitability compared to a conventional dry-mill bioethanol technology. Quantitative techniques will be used to collect and analyze numerical data from suitable organisations in South Africa. The dependence of three profitability indicators such as the Discounted Payback Period (DPP), Net Present Value (NPV) and Return On Investment (ROI) on plant capacity will be evaluated. Profitability analysis will be done on the following plant capacities: 100 000 ton/year, 150 000 ton/year and 200 000 ton/year. The plant capacity with the shortest Discounted Payback Period, positive Net Present Value and highest Return On Investment implies that a further consideration in terms of capital investment is warranted.

Keywords: bioethanol, economic evaluation, maize, profitability indicators

Procedia PDF Downloads 228
4304 Morphology and Electrical Conductivity of a Non-Symmetrical NiO-SDC/SDC Anode through a Microwave-Assisted Route

Authors: Mohadeseh Seyednezhad, Armin Rajabi, Andanastui Muchtar, Mahendra Rao Somalu

Abstract:

This work investigates the electrical properties of NiO-SDC/SDC anode sintered at about 1200 ○C for 1h through a relatively new approach, namely the microwave method. Nano powders Sm0.2Ce0.8O1.9 (SDC) and NiO were mixed by using a high-energy ball-mill and subsequent co-pressed at three different compaction pressures 200, 300 and 400 MPa. The novelty of this study consists in the effect of compaction pressure on the electrochemical performance of Ni-SDC/SDC anode, with no binder used between layers. The electrical behavior of the prepared anode has been studied by electrochemical impedance spectra (EIS) in controlled atmospheres, operating at high temperatures (600-800 °C).

Keywords: sintering, fuel cell, electrical conductivity, nanostructures, impedance spectroscopy, ceramics

Procedia PDF Downloads 465
4303 A Case-Control Study on Dietary Heme/Nonheme Iron and Colorectal Cancer Risk

Authors: Alvaro L. Ronco

Abstract:

Background and purpose: Although our country is a developing one, it has a typical Western meat-rich dietary style. Based on estimates of heme and nonheme iron contents in representative foods, we carried out the present epidemiologic study, with the aim of accurately analyzing dietary iron and its role on CRC risk. Subjects/methods: Patients (611 CRC incident cases and 2394 controls, all belonging to public hospitals of our capital city) were interviewed through a questionnaire including socio-demographic, reproductive and lifestyle variables, and a food frequency questionnaire of 64 items, which asked about food intake 5 years before the interview. The sample included 1937 men and 1068 women. Controls were matched by sex and age (± 5 years) to cases. Food-derived nutrients were calculated from available databases. Total dietary iron was calculated and classified by heme or nonheme source, following data of specific Dutch and Canadian studies, and additionally adjusted by energy. Odds Ratios (OR) and 95% confidence intervals were calculated through unconditional logistic regression, adjusting for relevant potential confounders (education, body mass index, family history of cancer, energy, infusions, and others). A heme/nonheme (H/NH) ratio was created and the interest variables were categorized into tertiles, for analysis purposes. Results: The following risk estimations correspond to the highest tertiles. Total iron intake showed no association with CRC risk neither among men (OR=0.83, ptrend =.18) nor among women (OR=1.48, ptrend =.09). Heme iron was positively associated among men (OR=1.88, ptrend < .001) and for the overall sample (OR=1.44, ptrend =.002), however, it was not associated among women (OR=0.91, ptrend =.83). Nonheme iron showed an inverse association among men (OR=0.53, ptrend < .001) and the overall sample (OR=0.78, ptrend =.04), but was not associated among women (OR=1.46, ptrend =.14). Regarding H/NH ratio, risks increased only among men (OR=2.12, ptrend < .001) but lacked of association among women (OR=0.81, ptrend =.29). Conclusions. We have observed different types of associations between CRC risk and high dietary heme, nonheme and H/NH iron ratio. Therefore, the source of the available iron might be of importance as a link to colorectal carcinogenesis, perhaps pointing to reconsider the animal/plant proportions of this vital mineral within diet. Nevertheless, the different associations observed for each sex, demand further studies in order to clarify these points.

Keywords: chelation, colorectal cancer, heme, iron, nonheme

Procedia PDF Downloads 164