Search results for: chips limit temperature
2436 Hard Carbon Derived From Dextrose as High-Performance Anode Material for Sodium-Ion Batteries
Authors: Rupan Das Chakraborty, Surendra K. Martha
Abstract:
Hard carbons (HCs) are extensively used as anode materials for sodium-ion batteries due to their availability, low cost, and ease of synthesis. It possesses the ability to store Na ion between stacked sp2 carbon layers and micropores. In this work, hard carbons are synthesized from different concentrations (0.5M to 5M) of dextrose solutions by hydrothermal synthesis followed by high-temperature calcination at 1100 ⁰C in an inert atmosphere. Dextrose has been chosen as a precursor material as it is a eco-friendly and renewable source. Among all hard carbon derived from different concentrations of dextrose solutions, hard carbon derived from 3M dextrose solution delivers superior electrochemical performance compared to other hard carbons. Hard carbon derived from 3M dextrose solution (Dextrose derived Hard Carbon-3M) provides an initial reversible capacity of 257 mAh g-1 with a capacity retention of 83 % at the end of 100 cycles at 30 mA g-1). The carbons obtained from different dextrose concentration show very similar Cyclic Voltammetry and chargedischarging behavior at a scan rate of 0.05 mV s-1 the Cyclic Voltammetry curve indicate that solvent reduction and the solid electrolyte interface (SEI) formation start at E < 1.2 V (vs Na/Na+). Among all 3M dextrose derived electrode indicate as a promising anode material for Sodium-ion batteries (SIBs).Keywords: dextrose derived hard carbon, anode, sodium-ion battery, electrochemical performance
Procedia PDF Downloads 1142435 Application of Rapid Prototyping to Create Additive Prototype Using Computer System
Authors: Meftah O. Bashir, Fatma A. Karkory
Abstract:
Rapid prototyping is a new group of manufacturing processes, which allows fabrication of physical of any complexity using a layer by layer deposition technique directly from a computer system. The rapid prototyping process greatly reduces the time and cost necessary to bring a new product to market. The prototypes made by these systems are used in a range of industrial application including design evaluation, verification, testing, and as patterns for casting processes. These processes employ a variety of materials and mechanisms to build up the layers to build the part. The present work was to build a FDM prototyping machine that could control the X-Y motion and material deposition, to generate two-dimensional and three-dimensional complex shapes. This study focused on the deposition of wax material. This work was to find out the properties of the wax materials used in this work in order to enable better control of the FDM process. This study will look at the integration of a computer controlled electro-mechanical system with the traditional FDM additive prototyping process. The characteristics of the wax were also analysed in order to optimize the model production process. These included wax phase change temperature, wax viscosity and wax droplet shape during processing.Keywords: rapid prototyping, wax, manufacturing processes, shape
Procedia PDF Downloads 4642434 N Doped Multiwall Carbon Nanotubes Growth over a Ni Catalyst Substrate
Authors: Angie Quevedo, Juan Bussi, Nestor Tancredi, Juan Fajardo-Díaz, Florentino López-Urías, Emilio Muñóz-Sandoval
Abstract:
In this work, we study the carbon nanotubes (CNTs) formation by catalytic chemical vapor deposition (CCVD) over a catalyst with 20 % of Ni supported over La₂Zr₂O₇ (Ni20LZO). The high C solubility of Ni made it one of the most used in CNTs synthesis. Nevertheless, Ni presents also sintering and coalescence at high temperature. These troubles can be reduced by choosing a suitable support. We propose La₂Zr₂O₇ as for this matter since the incorporation of Ni by co-precipitation and calcination at 900 °C allows a good dispersion and interaction of the active metal (in the oxidized form, NiO) with this support. The CCVD was performed using 1 g of Ni20LZO at 950 °C during 30 min in Ar:H₂ atmosphere (2.5 L/min). The precursor, benzylamine, was added by a nebulizer-sprayer. X ray diffraction study shows the phase separation of NiO and La₂Zr₂O₇ after the calcination and the reduction to Ni after the synthesis. Raman spectra show D and G bands with a ID/IG ratio of 0.75. Elemental study verifies the incorporation of 1% of N. Thermogravimetric analysis shows the oxidation process start at around 450 °C. Future studies will determine the application potential of the samples.Keywords: N doped carbon nanotubes, catalytic chemical vapor deposition, nickel catalyst, bimetallic oxide
Procedia PDF Downloads 1602433 Linear Parameter-Varying Control for Selective Catalytic Reduction Systems
Authors: Jihoon Lim, Patrick Kirchen, Ryozo Nagamune
Abstract:
This paper proposes a linear parameter-varying (LPV) controller capable of reducing nitrogen oxide (NOx) emissions with low ammonia (NH3) slip downstream of selective catalytic reduction (SCR) systems. SCR systems are widely adopted in diesel engines due to high NOx conversion efficiency. However, the nonlinearity of the SCR system and sensor uncertainty result in a challenging control problem. In order to overcome the control challenges, an LPV controller is proposed based on gain-scheduling parameters, that is, exhaust gas temperature and exhaust gas flow rate. Based on experimentally obtained data under the non-road transient driving cycle (NRTC), the simulations firstly show that the proposed controller yields high NOx conversion efficiency with a desired low NH3 slip. The performance of the proposed LPV controller is then compared with other controllers, including a gain-scheduling PID controller and a sliding mode controller. Additionally, the robustness is also demonstrated using the uncertainties ranging from 10 to 30%. The results show that the proposed controller is robustly stable under uncertainties.Keywords: diesel engine, gain-scheduling control, linear parameter-varying, selective catalytic reduction
Procedia PDF Downloads 1452432 IoT Based Approach to Healthcare System for a Quadriplegic Patient Using EEG
Authors: R. Gautam, P. Sastha Kanagasabai, G. N. Rathna
Abstract:
The proposed healthcare system enables quadriplegic patients, people with severe motor disabilities to send commands to electronic devices and monitor their vitals. The growth of Brain-Computer-Interface (BCI) has led to rapid development in 'assistive systems' for the disabled called 'assistive domotics'. Brain-Computer-Interface is capable of reading the brainwaves of an individual and analyse it to obtain some meaningful data. This processed data can be used to assist people having speech disorders and sometimes people with limited locomotion to communicate. In this Project, Emotiv EPOC Headset is used to obtain the electroencephalogram (EEG). The obtained data is processed to communicate pre-defined commands over the internet to the desired mobile phone user. Other Vital Information like the heartbeat, blood pressure, ECG and body temperature are monitored and uploaded to the server. Data analytics enables physicians to scan databases for a specific illness. The Data is processed in Intel Edison, system on chip (SoC). Patient metrics are displayed via Intel IoT Analytics cloud service.Keywords: brain computer interface, Intel Edison, Emotiv EPOC, IoT analytics, electroencephalogram
Procedia PDF Downloads 1842431 Experimental Study of the Electrical Conductivity and Thermal Conductivity Property of Micro-based Al-Cu-Nb-Mo Alloy
Abstract:
Aluminum based alloys with a certain compositional blend and manufacturing method have been reported to have excellent electrical conductors. In the current investigation, metal powders of Aluminum (Al), Copper (Cu), Niobium (Nb), and Molybdenum (Mo) were weighed in accordance with certain ratios and spread equally by combining the powder particles. The metal particles were mixed using a tube mixer for 12 hours. Before pouring into a 30mm-diameter graphite mold, pre-pressed, and placed into an SPS furnace, the thermal conductivity of the mixed metal powders was evaluated using a portable Thermtest device. Axial pressure of 50 MPa was used at a heating rate of 50 oC/min, and a multi-stage heating procedure with a holding period of 10 min. was used to sinter at temperatures between 300 oC and 480 oC. After being cooled to room temperature, the specimens were unmolded to produce the aluminum, copper, niobium, and molybdenum alloy material. The HPS 2662 Precision Four-point Probe Meter was used to determine the electrical resistivity and the values used to calculate the electrical conductivity of the sintered alloy samples. Finally, the alloy with the highest electrical conductivity and thermal conductivity qualities was the one with the following composition: Al 93.5Cu4Nb1.5Mo1. It also had a density of 3.23 g/cm3. It could be advisable for usage in automobile radiator and electric transmission line components.Keywords: Al-Cu-Nb-Mo, electrical conductivity, alloy, sintering, thermal conductivity
Procedia PDF Downloads 892430 Zeolite-Enhanced Pyrolysis: Transforming Waste Plastics into Hydrogen
Authors: Said Sair, Hanane Ait Ousaleh, Ilyas Belghazi, Othmane Amadine
Abstract:
Plastic waste has become a major environmental issue, driving the need for innovative solutions to convert it into valuable resources. This study explores the catalytic pyrolysis of plastic waste to produce hydrogen, using zeolite catalysts as a key component in the process. Various zeolites, including types X, A, and P, are synthesized and characterized through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) surface area analysis, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). These techniques are employed to assess the structural and chemical properties of the catalysts. Catalytic pyrolysis experiments are performed under different conditions, including variations in temperature, catalyst loading, and reaction time, to optimize hydrogen production. The results demonstrate that the choice of zeolite catalyst significantly impacts plastic waste conversion efficiency into hydrogen. This research contributes to advancing circular economy principles by providing an effective method for plastic waste management and clean energy production, promoting environmental sustainability.Keywords: hydrogen production, plastic waste, zeolite catalysts, catalytic pyrolysis, circular economy, sustainable energy
Procedia PDF Downloads 172429 Structure and Dimensions Of Teacher Professional Identity
Authors: Vilma Zydziunaite, Gitana Balezentiene, Vilma Zydziunaite
Abstract:
Teaching is one of most responsible profession, and it is not only a job of an artisan. This profes-sion needs a developed ability to identify oneself with the chosen teaching profession. Research questions: How teachers characterize their authentic individual professional identity? What factors teachers exclude, which support and limit the professional identity? Aim was to develop the grounded theory (GT) about teacher’s professional identity (TPI). Research methodology is based on Charmaz GT version. Data were collected via semi-structured interviews with the he sample of 12 teachers. Findings. 15 extracted categories revealed that the core of TPI is teacher’s professional calling. Premises of TPI are family support, motives for choos-ing teacher’s profession, teacher’s didactic competence. Context of TPI consists of teacher compli-ance with the profession, purposeful preparation for pedagogical studies, professional growth. The strategy of TPI is based on teacher relationship with school community strengthening. The profes-sional frustration limits the TPI. TPI outcome includes teacher recognition, authority; professional mastership, professionalism, professional satisfaction. Dimensions of TPI GT the past (reaching teacher’s profession), present (teacher’s commitment to professional activity) and future (teacher’s profession reconsideration). Conclusions. The substantive GT describes professional identity as complex, changing and life-long process, which develops together with teacher’s personal identity and is connected to professional activity. The professional decision "to be a teacher" is determined by the interaction of internal (professional vocation, personal characteristics, values, self-image, talents, abilities) and external (family, friends, school community, labor market, working condi-tions) factors. The dimensions of the TPI development includes: the past (the pursuit of the teaching profession), the present (the teacher's commitment to professional activity) and the future (the revi-sion of the teaching profession). A significant connection emerged - as the teacher's professional commitment strengthens (creating a self-image, growing the teacher's professional experience, recognition, professionalism, mastery, satisfaction with pedagogical activity), the dimension of re-thinking the teacher's profession weakens. This proves that professional identity occupies an im-portant place in a teacher's life and it affects his professional success and job satisfaction. Teachers singled out the main factors supporting a teacher's professional identity: their own self-image per-ception, professional vocation, positive personal qualities, internal motivation, teacher recognition, confidence in choosing a teaching profession, job satisfaction, professional knowledge, professional growth, good relations with the school community, pleasant experiences, quality education process, excellent student achievements.Keywords: grounded theory, teacher professional identity, semi-structured interview, school, students, school community, family
Procedia PDF Downloads 732428 A Real Time Monitoring System of the Supply Chain Conditions, Products and Means of Transport
Authors: Dimitris E. Kontaxis, George Litainas, Dimitris P. Ptochos
Abstract:
Real-time monitoring of the supply chain conditions and procedures is a critical element for the optimal coordination and safety of the deliveries, as well as for the minimization of the delivery time and cost. Real-time monitoring requires IoT data streams, which are related to the conditions of the products and the means of transport (e.g., location, temperature/humidity conditions, kinematic state, ambient light conditions, etc.). These streams are generated by battery-based IoT tracking devices, equipped with appropriate sensors, and are transmitted to a cloud-based back-end system. Proper handling and processing of the IoT data streams, using predictive and artificial intelligence algorithms, can provide significant and useful results, which can be exploited by the supply chain stakeholders in order to enhance their financial benefits, as well as the efficiency, security, transparency, coordination, and sustainability of the supply chain procedures. The technology, the features, and the characteristics of a complete, proprietary system, including hardware, firmware, and software tools -developed in the context of a co-funded R&D programme- are addressed and presented in this paper.Keywords: IoT embedded electronics, real-time monitoring, tracking device, sensor platform
Procedia PDF Downloads 1752427 Graphic Procession Unit-Based Parallel Processing for Inverse Computation of Full-Field Material Properties Based on Quantitative Laser Ultrasound Visualization
Authors: Sheng-Po Tseng, Che-Hua Yang
Abstract:
Motivation and Objective: Ultrasonic guided waves become an important tool for nondestructive evaluation of structures and components. Guided waves are used for the purpose of identifying defects or evaluating material properties in a nondestructive way. While guided waves are applied for evaluating material properties, instead of knowing the properties directly, preliminary signals such as time domain signals or frequency domain spectra are first revealed. With the measured ultrasound data, inversion calculation can be further employed to obtain the desired mechanical properties. Methods: This research is development of high speed inversion calculation technique for obtaining full-field mechanical properties from the quantitative laser ultrasound visualization system (QLUVS). The quantitative laser ultrasound visualization system (QLUVS) employs a mirror-controlled scanning pulsed laser to generate guided acoustic waves traveling in a two-dimensional target. Guided waves are detected with a piezoelectric transducer located at a fixed location. With a gyro-scanning of the generation source, the QLUVS has the advantage of fast, full-field, and quantitative inspection. Results and Discussions: This research introduces two important tools to improve the computation efficiency. Firstly, graphic procession unit (GPU) with large amount of cores are introduced. Furthermore, combining the CPU and GPU cores, parallel procession scheme is developed for the inversion of full-field mechanical properties based on the QLUVS data. The newly developed inversion scheme is applied to investigate the computation efficiency for single-layered and double-layered plate-like samples. The computation efficiency is shown to be 80 times faster than unparalleled computation scheme. Conclusions: This research demonstrates a high-speed inversion technique for the characterization of full-field material properties based on quantitative laser ultrasound visualization system. Significant computation efficiency is shown, however not reaching the limit yet. Further improvement can be reached by improving the parallel computation. Utilizing the development of the full-field mechanical property inspection technology, full-field mechanical property measured by non-destructive, high-speed and high-precision measurements can be obtained in qualitative and quantitative results. The developed high speed computation scheme is ready for applications where full-field mechanical properties are needed in a nondestructive and nearly real-time way.Keywords: guided waves, material characterization, nondestructive evaluation, parallel processing
Procedia PDF Downloads 2012426 Effect of Tilt Angle of Herringbone Microstructures on Enhancement of Heat and Mass Transfer
Authors: Nathan Estrada, Fangjun Shu, Yanxing Wang
Abstract:
The heat and mass transfer characteristics of a simple shear flow over a surface covered with staggered herringbone structures are numerically investigated using the lattice Boltzmann method. The focus is on the effect of ridge angle of the structures on the enhancement of heat and mass transfer. In the simulation, the temperature and mass concentration are modeled as a passive scalar released from the moving top wall and absorbed at the structured bottom wall. Reynolds number is fixed at 100. Two Prandtl or Schmidt numbers, 1 and 10, are considered. The results show that the advective scalar transport plays a more important role at larger Schmidt numbers. The fluid travels downward with higher scalar concentration into the grooves at the backward grove tips and travel upward with lower scalar concentration at the forward grove tips. Different tile angles result in different flow advection in wall-normal direction and thus different heat and mass transport efficiencies. The maximum enhancement is achieved at an angle between 15o and 30o. The mechanism of heat and mass transfer is analyzed in detail.Keywords: fluid mechanics, heat and mass transfer, microfluidics, staggered herringbone mixer
Procedia PDF Downloads 1082425 From Primer Generation to Chromosome Identification: A Primer Generation Genotyping Method for Bacterial Identification and Typing
Authors: Wisam H. Benamer, Ehab A. Elfallah, Mohamed A. Elshaari, Farag A. Elshaari
Abstract:
A challenge for laboratories is to provide bacterial identification and antibiotic sensitivity results within a short time. Hence, advancement in the required technology is desirable to improve timing, accuracy and quality. Even with the current advances in methods used for both phenotypic and genotypic identification of bacteria the need is there to develop method(s) that enhance the outcome of bacteriology laboratories in accuracy and time. The hypothesis introduced here is based on the assumption that the chromosome of any bacteria contains unique sequences that can be used for its identification and typing. The outcome of a pilot study designed to test this hypothesis is reported in this manuscript. Methods: The complete chromosome sequences of several bacterial species were downloaded to use as search targets for unique sequences. Visual basic and SQL server (2014) were used to generate a complete set of 18-base long primers, a process started with reverse translation of randomly chosen 6 amino acids to limit the number of the generated primers. In addition, the software used to scan the downloaded chromosomes using the generated primers for similarities was designed, and the resulting hits were classified according to the number of similar chromosomal sequences, i.e., unique or otherwise. Results: All primers that had identical/similar sequences in the selected genome sequence(s) were classified according to the number of hits in the chromosomes search. Those that were identical to a single site on a single bacterial chromosome were referred to as unique. On the other hand, most generated primers sequences were identical to multiple sites on a single or multiple chromosomes. Following scanning, the generated primers were classified based on ability to differentiate between medically important bacterial and the initial results looks promising. Conclusion: A simple strategy that started by generating primers was introduced; the primers were used to screen bacterial genomes for match. Primer(s) that were uniquely identical to specific DNA sequence on a specific bacterial chromosome were selected. The identified unique sequence can be used in different molecular diagnostic techniques, possibly to identify bacteria. In addition, a single primer that can identify multiple sites in a single chromosome can be exploited for region or genome identification. Although genomes sequences draft of isolates of organism DNA enable high throughput primer design using alignment strategy, and this enhances diagnostic performance in comparison to traditional molecular assays. In this method the generated primers can be used to identify an organism before the draft sequence is completed. In addition, the generated primers can be used to build a bank for easy access of the primers that can be used to identify bacteria.Keywords: bacteria chromosome, bacterial identification, sequence, primer generation
Procedia PDF Downloads 1912424 Gasification of Trans-4-Hydroxycinnamic Acid with Ethanol at Elevated Temperatures
Authors: Shyh-Ming Chern, Wei-Ling Lin
Abstract:
Lignin is a major constituent of woody biomass, and exists abundantly in nature. It is the major byproducts from the paper industry and bioethanol production processes. The byproducts are mainly used for low-valued applications. Instead, lignin can be converted into higher-valued gaseous fuel, thereby helping to curtail the ever-growing price of oil and to slow down the trend of global warming. Although biochemical treatment is capable of converting cellulose into liquid ethanol fuel, it cannot be applied to the conversion of lignin. Alternatively, it is possible to convert lignin into gaseous fuel thermochemically. In the present work, trans-4-hydroxycinnamic acid, a model compound for lignin, which closely resembles the basic building blocks of lignin, is gasified in an autoclave with ethanol at elevated temperatures and pressures, that are above the critical point of ethanol. Ethanol, instead of water, is chosen, because ethanol dissolves trans-4-hydroxycinnamic acid easily and helps to convert it into lighter gaseous species relatively well. The major operating parameters for the gasification reaction include temperature (673-873 K), reaction pressure (5-25 MPa) and feed concentration (0.05-0.3 M). Generally, more than 80% of the reactant, including trans-4-hydroxycinnamic acid and ethanol, were converted into gaseous products at an operating condition of 873 K and 5 MPa.Keywords: ethanol, gasification, lignin, supercritical
Procedia PDF Downloads 2382423 Investigating the Thermal Characteristics of Reclaimed Solid Waste from a Landfill Site Using Thermogravimetry
Authors: S. M. Al-Salem, G.A. Leeke, H. J. Karam, R. Al-Enzi, A. T. Al-Dhafeeri, J. Wang
Abstract:
Thermogravimetry has been popularized as a thermal characterization technique since the 1950s. It aims at investigating the weight loss against both reaction time and temperature, whilst being able to characterize the evolved gases from the volatile components of the organic material being tested using an appropriate hyphenated analytical technique. In an effort to characterize and identify the reclaimed waste from an unsanitary landfill site, this approach was initiated. Solid waste (SW) reclaimed from an active landfill site in the State of Kuwait was collected and prepared for characterization in accordance with international protocols. The SW was segregated and its major components were identified after washing and air drying. Shredding and cryomilling was conducted on the plastic solid waste (PSW) component to yield a material that is representative for further testing and characterization. The material was subjected to five heating rates (b) with minimal repeatable weight for high accuracy thermogravimetric analysis (TGA) following the recommendation of the International Confederation for Thermal Analysis and Calorimetry (ICTAC). The TGA yielded thermograms that showed an off-set from typical behavior of commercial grade resin which was attributed to contact of material with soil and thermal/photo-degradation.Keywords: polymer, TGA, pollution, landfill, waste, plastic
Procedia PDF Downloads 1272422 A Novel Bio-ceramic Using Hyperthermia for Bone Cancer Therapy, Ferro-substituted Silicate Calcium Materials
Authors: hassan gheisari
Abstract:
Ferro silicate calcium nano particles are prepared through the sol-gel method using polyvinyl alcohol (PVA) as a chelating agent. The powder, as prepared, is annealed at three different temperatures (900 ºC, 1000 ºC, and 1100 ºC) for 3 h. The XRD patterns of the samples indicate broad peaks, and the full width at half maximum decreased with increasing annealing temperature. FTIR spectra of the samples confirm the presence of metal - oxygen complexes within the structure. The average particle size obtained from PSA curve demonstrates ultrafine particles. SEM micrographs indicate the particles synthesized have spherical morphology. The saturation magnetization (Ms) and remnant magnetization (Mr) of the samples show dependence on particle size and crystallinity of the samples. The highest saturation magnetization is achieved for the sample annealed at 1100 ºC having maximum average particle size. The high saturation magnetization of the samples suggests the present method is suitable for obtaining nano particles magnetic ferro bioceramic, which is desirable for practical applications such as hyperthermia bone cancer therapy.Keywords: hyperthermia, bone cancer, bio ceramic; magnetic materials; sol– gel, silicate calcium
Procedia PDF Downloads 732421 Ferro-Substituted Silicate Calcium Materials, a Novel Bio-Ceramic Using Hyperthermia for Bone Cancer Therapy
Authors: Hassan Gheisari
Abstract:
Ferro silicate calcium nano particles are prepared through the sol-gel method using polyvinyl alcohol (PVA) as a chelating agent. The powder as prepared is annealed at three different temperatures (900 ºC, 1000 ºC and 1100 ºC) for 3 h. The XRD patterns of the samples indicate broad peaks and the full width at half maximum decreased with increasing annealing temperature. FTIR spectra of the samples confirm the presence of metal - oxygen complexes within the structure. The average particle size obtained from PSA curve demonstrates ultrafine particles. SEM micrographs indicate the particles synthesized have spherical morphology. The saturation magnetization (Ms) and remnant magnetization (Mr) of the samples show dependence on particle size and crystallinity of the samples. The highest saturation magnetization is achieved for the sample annealed at 1100 ºC having maximum average particle size. The high saturation magnetization of the samples suggests the present method is suitable for obtaining nano particles magnetic ferro bioceramic which is desirable for practical applications such as hyperthermia bone cancer therapy.Keywords: hyperthermia, bone cancer, bio ceramic, magnetic materials, sol– gel, silicate calcium
Procedia PDF Downloads 3082420 Comparison of Growth and Biomass of Red Alga Cultured on Rope and Net
Authors: Esmaeil Kouhgardi, Saeedeh Dashti, Hakimeh Fekrandish
Abstract:
This research has been conducted to study the method of culture and comparing growth and biomass of Gracilariacorticata cultured on rope and net for 50 days through two treatments (first treatment: culture of alga on net and the second treatment: culture of alga on rope and each treatment was repeated by four cases). During culture period, the water of aquariums was replaced once every two days for 40-50%. Also, 0.3-0.5 grams of Urea fertilizer was added to the culture environment for fertilization. Moreover, some of the environmental factors such as pH, salinity and temperature of the environment were measured on a daily basis. During the culture period, extent of longitudinal growth of the species of both treatments was equal. The said length was reached from 8-10 cm to 10.5-13 cm accordingly. The resulted weight in repetitions of the first treatment was higher than that of the second treatment in such a way as in the first treatment, its weight reached from 10 grams to 21.119 grams and in the second treatment, its weight reached from 10 grams to 17.663 grams. On a whole, it may be stated that that kind of alga being studied has a considerable growth with respect to its volume. The results have revealed that the percentage of daily growth and wet weight at the end of the first treatment was higher than that of the second treatment and it was registered as 0.934, 6.072 and 811.432 in the first treatment and 0.797, 4.990 and 758.071 in the second treatment respectively. This difference is significant (P < 0.05). Growth and biomass of G. corticata through culture on net was more emphasizing on numerous branches due to wider bed. Moreover, higher level of the species in this method was exposed to sunlight and this increased biosynthesis and eventually increases of growth and biomass.Keywords: red alga, growth, biomass, culture, net, rope
Procedia PDF Downloads 4362419 Iranian Refinery Vacuum Residue Upgrading Using Microwave Irradiation: Effects of Catalyst Type and Amount
Authors: Zarrin Nasri
Abstract:
Microwave irradiation is an innovative technology in the petroleum industry. This kind of energy has been considered to convert vacuum residue of oil refineries into useful products. The advantages of microwaves energy are short time, fast heating, high energy efficiency, and precise process control. In this paper, the effects of catalyst type and amount have been investigated on upgrading of vacuum residue using microwave irradiation. The vacuum residue used in this research is from Tehran oil refinery, Iran. Additives include different catalysts, active carbon as sensitizer, and sodium borohydride as a solid hydrogen donor. Various catalysts contain iron, nickel, molybdenum disulfide, iron oxide and copper. The amount of catalysts in two cases of presence and absence of sodium borohydride have been evaluated. The objective parameters include temperature, asphaltene, viscosity, and API. The specifications of vacuum residue are API, 8.79, viscosity, 16391 cSt (60°C), asphaltene, 13.3 wt %. The results show that there is a significant difference between the effects of catalysts. Among the used catalysts, Fe powder is the best catalyst for upgrading vacuum residue using microwave irradiation and resulted in asphaltene reduction, 31.3 %; viscosity reduction, 76.43 %; and 23.43 % in API increase.Keywords: asphaltene, microwave, upgrading, vacuum residue, viscosity
Procedia PDF Downloads 2512418 Surfactant-Free O/W-Emulsion as Drug Delivery System
Authors: M. Kumpugdee-Vollrath, J.-P. Krause, S. Bürk
Abstract:
Most of the drugs used for pharmaceutical purposes are poorly water-soluble drugs. About 40% of all newly discovered drugs are lipophilic and the numbers of lipophilic drugs seem to increase more and more. Drug delivery systems such as nanoparticles, micelles or liposomes are applied to improve their solubility and thus their bioavailability. Besides various techniques of solubilization, oil-in-water emulsions are often used to incorporate lipophilic drugs into the oil phase. To stabilize emulsions surface active substances (surfactants) are generally used. An alternative method to avoid the application of surfactants was of great interest. One possibility is to develop O/W-emulsion without any addition of surface active agents or the so called “surfactant-free emulsion or SFE”. The aim of this study was to develop and characterize SFE as a drug carrier by varying the production conditions. Lidocaine base was used as a model drug. The injection method was developed. Effects of ultrasound as well as of temperature on the properties of the emulsion were studied. Particle sizes and release were determined. The long-term stability up to 30 days was performed. The results showed that the surfactant-free O/W emulsions with pharmaceutical oil as drug carrier can be produced.Keywords: emulsion, lidocaine, Miglyol, size, surfactant, light scattering, release, injection, ultrasound, stability
Procedia PDF Downloads 4862417 Electrical Resistivity of Solid and Liquid Pt: Insight into Electrical Resistivity of ε-Fe
Authors: Innocent C. Ezenwa, Takashi Yoshino
Abstract:
Knowledge of the transport properties of Fe and its alloys at extreme high pressure (P), temperature (T) conditions are essential for understanding the generation and sustainability of the magnetic field of the rocky planets with a metallic core. Since Pt, an unfilled d-band late transition metal with an electronic structure of Xe4f¹⁴5d⁹6s¹, is paramagnetic and remains close-packed structure at ambient conditions and high P-T, it is expected that its transport properties at these conditions would be similar to those of ε-Fe. We investigated the T-dependent electrical resistivity of solid and liquid Pt up to 8 GPa and found it constant along its melting curve both on the liquid and solid sides in agreement with theoretical prediction and experimental results estimated from thermal conductivity measurements. Our results suggest that the T-dependent resistivity of ε-Fe is linear and would not saturate at high P, T conditions. This, in turn, suggests that the thermal conductivity of liquid Fe at Earth’s core conditions may not be as high as previously suggested by models employing saturation resistivity. Hence, thermal convection could have powered the geodynamo before the birth of the inner core. The electrical resistivity and thermal conductivity on the liquid and solid sides of the inner core boundary of the Earth would be significantly different in values.Keywords: electrical resistivity, thermal conductivity, transport properties, geodynamo and geomagnetic field
Procedia PDF Downloads 1412416 Thermo-Physical and Morphological Properties of Pdlcs Films Doped with Tio2 Nanoparticles.
Authors: Salima Bouadjela, Fatima Zohra Abdoune, Lahcene Mechernene
Abstract:
PDLCs are currently considered as promising materials for specific applications such as creation of window blinds controlled by electric field, fog simulators, UV protective glasses, high data storage device etc. We know that the electrical field inside the liquid crystal is low compare with the external electric field [1,2]. An addition of high magnetic and electrical, properties containing compounds to the polymer dispersed liquid crystal (PDLC) will enhance the electrical, optical, and magnetic properties of the PDLC [3,4]. Low Concentration of inorganic nanoparticles TiO2 added to nematic liquid crystals (E7) and also combined with monomers (TPGDA) and cured monomer/LC mixture to elaborate polymer-LC-NP dispersion. The presence of liquid crystal and nanoparticles in TPGDA matrix were conformed and the modified properties of PDLC due to doped nanoparticle were studied and explained by the results of FTIR, POM, UV. Incorporation of nanoparticles modifies the structure of PDLC and thus it makes increase the amount of droplets and decrease in droplet size. we found that the presence of TiO2 nanoparticles leads to a shift the nematic-isotropic transition temperature TNI.Keywords: nanocomposites, PDLC, phases diagram, TiO2
Procedia PDF Downloads 3702415 Corrosion Characterization of Al6061 Hybrid Metal Matrix Composites in Acid Medium
Authors: P. V. Krupakara
Abstract:
This paper deals with the high corrosion resistance developed by the hybrid metal matrix composites when compared with that of matrix alloy. Matrix selected is Al6061. Reinforcements selected are graphite and red mud particulates. The composites are prepared using liquid melt metallurgy technique using vortex method. Metal matrix composites containing 2 percent graphite and 2 percent red mud, 2 percent graphite and 4 percent red mud, 2 percent graphite and 6 percent of red mud are prepared. Bar castings are cut into cylindrical discs of 20mm diameter and 20mm thickness. Corrosion tests were conducted at room temperature (230 °C) using conventional weight loss method according to ASTM G69-80. The corrodents used for the test were hydrochloric acid solution of different concentrations. Specimens were tested for every 24 hours interval up to 96 hours. Four specimens for each condition and time were immersed in corrodent. In each case the corrosion rate decreases with increase in exposure time for matrix and metal matrix composites whatever may be the concentration of hydrochloric acid. This may be due to aluminium, which may induce passivation due to development of non-porous layer. As red mud content increases the composites become corrosion resistant due to insulating nature of ceramic material red mud and less exposure of matrix alloy in those metal matrix composites.Keywords: Al6061, graphite, passivation, red mud, vortex
Procedia PDF Downloads 5402414 Chemical Reaction Method for Growing Uniform Photomechanical Organic Crystlas
Authors: Rabih O. Al-Kaysi, Lingyan Zhu, Muhannah K. Al-Muhannah, Christopher J. Bardeen
Abstract:
(E)-3-(Anthracen-9-yl)acrylic acid (9-AYAA) 1 exhibits a strong photomechanical response in bulk crystals but is challenging to grow in microcrystalline form. High quality microcrystals of this molecule could not be grown using techniques like sublimation, reprecipitation, and the floating drop method. If the tertbutyl ester of 9-AYAA is used as a starting material, however, high quality, size-uniform microwires could be grown via acid catalyzed hydrolysis. 9-AYAA microwires with uniform length and thickness were produced after a suspension of (E)-tert-butyl 3-(anthracen-9-yl)acrylate ester 2 microparticles was tumble-mixed in a mixture of phosphoric acid and sodium dodecyl sulfate at 35 °C. The dependence of the results on temperature, surfactant and precursor concentration, and mixing mode was investigated. This chemical reaction-growth method was extended to grow microplates of 9-anthraldehyde 3 using the corresponding acylal 4 as the starting material. Under 475 nm irradiation, the 9-AYAA microwires undergo a photoinduced coiling–uncoiling transition, while the 9-anthraldehyde microplates undergo a folding–unfolding transition.Keywords: photomechanical, surfactant, organic crystals, uniform
Procedia PDF Downloads 4012413 Intelligent Technology for Real-Time Monitor and Data Analysis of the Aquaculture Toxic Water Concentration
Authors: Chin-Yuan Hsieh, Wei-Chun Lu, Yu-Hong Zeng
Abstract:
The situation of a group of fish die is frequently found due to the fish disease caused by the deterioration of aquaculture water quality. The toxic ammonia is produced by animals as a byproduct of protein. The system is designed by the smart sensor technology and developed by the mathematical model to monitor the water parameters 24 hours a day and predict the relationship among twelve water quality parameters for monitoring the water quality in aquaculture. All data measured are stored in cloud server. In productive ponds, the daytime pH may be high enough to be lethal to the fish. The sudden change of the aquaculture conditions often results in the increase of PH value of water, lack of oxygen dissolving content, water quality deterioration and yield reduction. From the real measurement, the system can send the message to user’s smartphone successfully on the bad conditions of water quality. From the data comparisons between measurement and model simulation in fish aquaculture site, the difference of parameters is less than 2% and the correlation coefficient is at least 98.34%. The solubility rate of oxygen decreases exponentially with the elevation of water temperature. The correlation coefficient is 98.98%.Keywords: aquaculture, sensor, ammonia, dissolved oxygen
Procedia PDF Downloads 2822412 Factors Mitigating against the Use of Alternative to Antibiotics (Phytobiotics) In Poultry Production among Farming Households in Nigeria
Authors: Akinola Helen Olufunke, Soetan Olatunbosun Jonathan, Adeleye Oludamola
Abstract:
Introduction: Antibiotic resistance has grown significantly, which is a major cause for concern. There have not been many significant developments in antibiotics over the past few decades, and practically all of the ones that are currently in use are losing effectiveness against pathogenic germs. Researchers are starting to focus more on the physiologically active compounds found in plants, particularly phytobiotics in poultry production. Consumption of chicken products is among the greatest in the country, but numerous nations, including Nigeria, use excessive amounts of necessary antibiotics in poultry farming, endangering the safety of such goods (through antimicrobial residues). Drug resistance has become a widespread issue as a result of the risky use of antibiotics in the chicken production industry. In order to replace antibiotics, biotic or natural products like phytobiotics (also known as botanicals or phytogenics) have drawn a lot of interest. Phytobiotics or their components are thought to be a relatively recent category of natural herbs that have acquired acceptance and favor among chicken farmers. The addition of several phytobiotic additions to poultry feed has demonstrated its capacity to improve both the broiler and layer populations' productivity. Design: Experimental research design and cross-sectional study was carried out at every 300 purposively selected farming household in the six-geopolitical zone in Nigeria. Data Analysis: A semi-structured questionnaire was administered to each farmer, and quantitative data were analyzed using Statistical Package for Social Science (SPSS) while the Chi-square test was used to analyze factors mitigating the use of Phytobiotics. Result: The result shows that the benefits associated with the use of phytobiotics are contributed to growth promotion in chickens and enhancement of productive performance of broiler and layer, which could be attributed to their antioxidant activity. The result further revealed that factors mitigating the use of phytobiotics were lack of knowledge in the use of phytobiotics, overdose or underdose usage, and seasonal availability of the phytobiotics. Others are the educational level of the farmers, intrinsic motivation, income poultry farming experience, price of phytobiotics based additives feeds, and intensity of extension agents in visiting them. Conclusion: The difficulties associated with using phytobiotics in chicken farms limit their willingness to boost productivity. The study found that most farmers were ignorant, which prevented them from handling this notion and turning their poultry into a viable enterprise while also allowing them to be creative. They believed that packing phytobiotics-based additive feed was expensive, and lastly, the seasonal availability of some phytobiotics. Recommendation: Further research in phytobiotics use in Nigeria should be carried out in order to establish its efficiency, safety, and awareness.Keywords: mitigating, antibiotics, phytobiotics, poultry farming
Procedia PDF Downloads 1702411 Effect of Time of Planting on Powdery Mildew Development on Cucumber
Authors: H. Parameshwar Naik, Shripad Kulkarni
Abstract:
Powdery mildew is a serious disease among the fungal in high humid areas with varied temperature conditions. In recent days disease becomes very severe due to uncertain weather conditions and unique character of the disease is, it produces white mycelia growth on upper and lower leaf surfaces and in severe conditions it leads to defoliation. Results of the experiment revealed that sowing of crop in the I fortnight (FN) of July recorded the minimum mean disease severity (7.96 %) followed by crop sown in II FN of July (13.19 %) as against the crop sown in II FN of August (41.44 %) and I FN of September (33.78 %) and the I fortnight of October (33.77 %). In the first date of sowing infection started at 45 DAS and progressed till 73 DAS and it was up to 14.66 Percent and in second date of sowing disease progressed up to 22.66 percent and in the third date of sowing, it was up to 59.35 percent. Afterward, the disease started earlier and progressed up to 66.15 percent and in sixth and seventh date of sowing disease progressed up to 43.15 percent and 59.85 percent respectively. Disease progress is very fast after 45 days after sowing and highest disease incidence was noticed at 73 DAS irrespective of dates of sowing. From the results of the present study, it is very clear that disease development will be very high if crop sown in between 1st fortnight of August and the 1st fortnight of September.Keywords: cucumber, India, Karnataka, powdery mildew
Procedia PDF Downloads 2612410 A Comparison between the Results of Hormuz Strait Wave Simulations Using WAVEWATCH-III and MIKE21-SW and Satellite Altimetry Observations
Authors: Fatemeh Sadat Sharifi
Abstract:
In the present study, the capabilities of WAVEWATCH-III and MIKE21-SW for predicting the characteristics of wind waves in Hormuz Strait are evaluated. The GFS wind data (Global Forecast System) were derived. The bathymetry of gride with 2 arc-minute resolution, also were extracted from the ETOPO1. WAVEWATCH-III findings illustrate more valid prediction of wave features comparing to the MIKE-21 SW in deep water. Apparently, in shallow area, the MIKE-21 provides more uniformities with altimetry measurements. This may be due to the merits of the unstructured grid which are used in MIKE-21, leading to better representations of the coastal area. The findings on the direction of waves generated by wind in the modeling area indicate that in some regions, despite the increase in wind speed, significant wave height stays nearly unchanged. This is fundamental because of swift changes in wind track over the Strait of Hormuz. After discussing wind-induced waves in the region, the impact of instability of the surface layer on wave growth has been considered. For this purpose, the average monthly mean air temperature has been used. The results in cold months, when the surface layer is unstable, indicates an acceptable increase in the accuracy of prediction of the indicator wave height.Keywords: numerical modeling, WAVEWATCH-III, Strait of Hormuz, MIKE21-SW
Procedia PDF Downloads 2062409 Phylogenetic Analysis of Georgian Populations of Potato Cyst Nematodes Globodera Rostochiensis
Authors: Dali Gaganidze, Ekaterine Abashidze
Abstract:
Potato is one of the main agricultural crops in Georgia. Georgia produces early and late potato varieties in almost all regions. In traditional potato growing regions (Svaneti, Samckhet javaheti and Tsalka), the yield is higher than 30-35 t/ha. Among the plant pests that limit potato production and quality, the potato cyst nematodes (PCN) are harmful around the world. Yield losses caused by PCN are estimated up to 30%. Rout surveys conducted in two geographically distinct regions of Georgia producing potatoes - Samtskhe - Javakheti and Svaneti revealed potato cyst nematode Globodera rostochiensi. The aim of the study was the Phylogenetic analyses of Globodera rostochiensi revealed in Georgia by the amplification and sequencing of 28S gen in the D3 region and intergenic ITS1-15.8S-ITS2 region. Identification of all the samples from the two Globodera populations (Samtskhe - Javakheti and Svaneti), i.e., G. rostochiensis (20 isolates) were confirmed by conventional multiplex PCR with ITS 5 universal and PITSp4, PITSr3 specific primers of the cyst nematodes’ (G. pallida, G. rostochiensis). The size of PCR fragment 434 bp confirms that PCN samples from two populations, Samtskhe- Javakheti and Svaneti, belong to G. rostochiensi . The ITS1–5.8S-ITS2 regions were amplified using prime pairs: rDNA1 ( 5’ -TTGATTACGTCCCTGCCCTTT-3’ and rDNA2( 5’ TTTCACTCGCCGTTACTAAGG-3’), D3 expansion regions were amplified using primer pairs: D3A (5’ GACCCCTCTTGAAACACGGA-3’) and D3B (5’-TCGGAAGGAACCAGCTACTA-3’. PCR products of each region were cleaned up and sequenced using an ABI 3500xL Genetic Analyzer. Obtained sequencing results were analyzed by computer program BLASTN (https://blast.ncbi.nlm.nih.gov/Blast.cg). Phylogenetic analyses to resolve the relationships between the isolates were conducted in MEGA7 using both distance- and character-based methods. Based on analysis of G.rostochiensis isolate`s D3 expansion regions are grouped in three major clades (A, B and C) on the phylogenetic tree. Clade A is divided into three subclades; clade C is divided into two subclades. Isolates from the Samtckhet-javakheti population are in subclade 1 of clade A and isolates in subclade 1 of clade C. Isolates) from Svaneti populations are in subclade 2 of clade A and in clad B. In Clade C, subclade two is presented by three isolates from Svaneti and by one isolate (GL17) from Samckhet-Javakheti. . Based on analysis of G.rostochiensis isolate`s ITS1–5.8S-ITS2 regions are grouped in two main clades, the first contained 20 Georgian isolates of Globodera rostochiensis from Svaneti . The second clade contained 15 isolates of Globodera rostochiensis from Samckhet javakheti. Our investigation showed of high genetic variation of D3 and ITS1–5.8S-ITS2 region of rDNA of the isolates of G. rostochiensis from different geographic origins (Svameti, Samckhet-Javakheti) of Georgia. Acknowledgement: The research has been supported by the Shota Rustaveli National Scientific Foundation of Georgia : Project # FR17_235Keywords: globodera rostochiensi, PCR, phylogenetic tree, sequencing
Procedia PDF Downloads 1942408 Effect of Aging Time on CeO2 Nanoparticle Size Distribution Synthesized via Sol-Gel Method
Authors: Navid Zanganeh, Hafez Balavi, Farbod Sharif, Mahla Zabet, Marzieh Bakhtiary Noodeh
Abstract:
Cerium oxide (CeO2) also known as cerium dioxide or ceria is a pale yellow-white powder with various applications in the industry from wood coating to cosmetics, filtration, fuel cell electrolytes, gas sensors, hybrid solar cells and catalysts. In this research, attempts were made to synthesize and characterization of CeO2 nano-particles via sol-gel method. In addition, the effect of aging time on the size of particles was investigated. For this purpose, the aging times adjusted 48, 56, 64, and 72 min. The obtained particles were characterized by x-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), transmitted electron microscopy (TEM), and Brunauer–Emmett–Teller (BET). As a result, XRD patterns confirmed the formation of CeO2 nanoparticles. SEM and TEM images illustrated the nano-particles with cluster shape, spherical and a nano-size range which was in agreement with XRD results. The finest particles (7.3 nm) was obtained at the optimum condition which was aging time of 48 min, calcination temperature at 400 ⁰C, and cerium concentration of 0.004 mol. Average specific surface area of the particles at optimum condition was measured by BET analysis and recorded as 47.57 m2/g.Keywords: aging time, CeO2 nanoparticles, size distribution, sol-gel
Procedia PDF Downloads 4542407 Thermodynamic Analysis of a Multi-Generation Plant Driven by Pine Sawdust as Primary Fuel
Authors: Behzad Panahirad, UğUr Atikol
Abstract:
The current study is based on a combined heat and power system with multi-objectives, driven by biomass. The system consists of a combustion chamber (CC), a single effect absorption cooling system (SEACS), an air conditioning unit (AC), a reheat steam Rankine cycle (RRC), an organic Rankine cycle (ORC) and an electrolyzer. The purpose of this system is to produce hydrogen, electricity, heat, cooling, and air conditioning. All the simulations had been performed by Engineering Equation Solver (EES) software. Pine sawdust is the selected biofuel for the combustion process. The overall utilization factor (εₑₙ) and exergetic efficiency (ψₑₓ) were calculated to be 2.096 and 24.03% respectively. The performed renewable and environmental impact analysis indicated a sustainability index of 1.316 (SI) and a specific CO2 emission of 353.8 kg/MWh. The parametric study is conducted based on the variation of ambient (sink) temperature, biofuel mass flow rate, and boilers outlet temperatures. The parametric simulation showed that the increase in biofuel mass flow rate has a positive effect on the sustainability of the system.Keywords: biomass, exergy assessment, multi-objective plant, CO₂ emission, irreversibility
Procedia PDF Downloads 169