Search results for: energy performances
3274 A Portable Device for Pulse Wave Velocity Measurements
Authors: Chien-Lin Wang, Cha-Ling Ko, Tainsong Chen
Abstract:
Pulse wave velocity (PWV) of blood flow provides important information of vessel property and blood pressure which can be used to assess cardiovascular disease. However, the above measurements need expensive equipment, such as Doppler ultrasound, MRI, angiography etc. The photoplethysmograph (PPG) signals are commonly utilized to detect blood volume changes. In this study, two infrared (IR) probes are designed and placed at a fixed distance from finger base and fingertip. An analog circuit with automatic gain adjustment is implemented to get the stable original PPG signals from above two IR probes. In order to obtain the time delay precisely between two PPG signals, we obtain the pulse transit time from the second derivative of the original PPG signals. To get a portable, wireless and low power consumption PWV measurement device, the low energy Bluetooth 4.0 (BLE) and the microprocessor (Cortex™-M3) are used in this study. The PWV is highly correlated with blood pressure. This portable device has potential to be used for continuous blood pressure monitoring.Keywords: pulse wave velocity, photoplethysmography, portable device, biomedical engineering
Procedia PDF Downloads 5293273 Friction and Wear Behavior of Zr-Nb Alloy Under Different Conditions
Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry
Abstract:
Zirconium alloys are generally used for designing the core components of nuclear reactors due to their good mechanical and tribological properties. Some core components are subjected to flow-induced vibrations resulting in wear of these components due to their interaction with one another. To simulate these conditions, low amplitude reciprocating wear tests are conducted at room temperature and high temperature (260 degrees Celsius) between Zr-2.5Nb alloy and SS-410. The tests are conducted at a frequency range of 5 Hz to 25 Hz and an amplitude range of 200 µm to 600 µm. Friction and wear responses were recorded and correlated with the change in parameters. Worn surfaces are analysed using scanning electron microscopy (SEM) and optical profilometer. Elemental changes on the worn surfaces were determined using energy dispersive spectroscopy (EDS). The coefficient of friction (COF) increases with increasing temperature and decreases with increasing frequency. Adhesive wear is found to be the dominant wear mechanism which increases at high temperature.Keywords: nuclear reactor, Zr-2.5Nb, SS-410, friction and wear
Procedia PDF Downloads 903272 Effects of School Culture and Curriculum on Gifted Adolescent Moral, Social, and Emotional Development: A Longitudinal Study of Urban Charter Gifted and Talented Programs
Authors: Rebekah Granger Ellis, Pat J. Austin, Marc P. Bonis, Richard B. Speaker, Jr.
Abstract:
Using two psychometric instruments, this study examined social and emotional intelligence and moral judgment levels of more than 300 gifted and talented high school students enrolled in arts-integrated, academic acceleration, and creative arts charter schools in an ethnically diverse large city in the southeastern United States. Gifted and talented individuals possess distinguishable characteristics; these frequently appear as strengths, but often serious problems accompany them. Although many gifted adolescents thrive in their environments, some struggle in their school and community due to emotional intensity, motivation and achievement issues, lack of peers and isolation, identification problems, sensitivity to expectations and feelings, perfectionism, and other difficulties. These gifted students endure and survive in school rather than flourish. Gifted adolescents face special intrapersonal, interpersonal, and environmental problems. Furthermore, they experience greater levels of stress, disaffection, and isolation than non-gifted individuals due to their advanced cognitive abilities. Therefore, it is important to examine the long-term effects of participation in various gifted and talented programs on the socio-affective development of these adolescents. Numerous studies have researched moral, social, and emotional development in the areas of cognitive-developmental, psychoanalytic, and behavioral learning; however, in almost all cases, these three facets have been studied separately leading to many divergent theories. Additionally, various frameworks and models purporting to encourage the different socio-affective branches of development have been debated in curriculum theory, yet research is inconclusive on the effectiveness of these programs. Most often studied is the socio-affective domain, which includes development and regulation of emotions; empathy development; interpersonal relations and social behaviors; personal and gender identity construction; and moral development, thinking, and judgment. Examining development in these domains can provide insight into why some gifted and talented adolescents are not always successful in adulthood despite advanced IQ scores. Particularly whether emotional, social and moral capabilities of gifted and talented individuals are as advanced as their intellectual abilities and how these are related to each other. This mixed methods longitudinal study examined students in urban gifted and talented charter schools for (1) socio-affective development levels and (2) whether a particular environment encourages developmental growth. Research questions guiding the study: (1) How do academically and artistically gifted 10th and 11th grade students perform on psychological scales of social and emotional intelligence and moral judgment? Do they differ from the normative sample? Do gender differences exist among gifted students? (2) Do adolescents who attend distinctive gifted charter schools differ in developmental profiles? Students’ performances on psychometric instruments were compared over time and by program type. Assessing moral judgment (DIT-2) and socio-emotional intelligence (BarOn EQ-I: YV), participants took pre-, mid-, and post-tests during one academic school year. Quantitative differences in growth on these psychological scales (individuals and school-wide) were examined. If a school showed change, qualitative artifacts (culture, curricula, instructional methodology, stakeholder interviews) provided insight for environmental correlation.Keywords: gifted and talented programs, moral judgment, social and emotional intelligence, socio-affective education
Procedia PDF Downloads 1983271 Effect of UV Radiation to Change the Properties of the Composite PA+GF
Authors: Lenka Markovičová, Viera Zatkalíková, Tomasz Garbacz
Abstract:
The development of composite materials and the related design and manufacturing technologies is one of the most important advances in the history of materials. Composites are multifunctional materials having unprecedented mechanical and physical properties that can be tailored to meet the requirements of a particular application. Some composites also exhibit great resistance to high-temperature corrosion, oxidation, and wear. Polymers are widely used indoors and outdoors, therefore they are exposed to a chemical environment which may include atmospheric oxygen, acidic fumes, acidic rain, moisture heat and thermal shock, ultra-violet light, high energy radiation, etc. Different polymers are affected differently by these factors even though the amorphous polymers are more sensitive. Ageing is also important and it is defined as the process of deterioration of engineering materials resulting from the combined effects of atmospheric radiation, heat, oxygen, water, micro-organisms and other atmospheric factors.Keywords: composites with glass fibers, mechanical properties, polyamides, UV degradation
Procedia PDF Downloads 2913270 Investigation Of The Catalyst's Effect On Nickel Sulfide Thin Films
Authors: Randa Slatnia
Abstract:
In this study, the nanostructured stable phase identification elaborated by nickel nitrate hyxahydrate and thiourea compounds. After the preparation of the solution (Stirred mixture with methanol as solvent), a deposition of eight layers of this solution on a glass substrate and annealed at 300 °C for energy applications. The annealed sample was analyzed by X-ray Grazing incidence diffraction (GID) with a Bruker D8 Advance diffractometer using Cu Kα1 radiation at 40 kV and 40 mA (1600 W) and Scanning electron microscopy (Thermo Fisher environmental SEM). The results of XRD-GID analysis for the prepared sample showed the formation of an identified stable phase NiS2 and the XRD-GID pattern of the elaborated sample with eight layers prepared solution and annealed show wide and characteristic peaks of the NiS2 with cubic structure (ICDD card no. PDF 01-078-4702). The morphology of the NiS2 thin films confirmed by XRD-GID analysis was investigated by ESEM showed a surface with a uniform and homogeneous distribution nanostructure.Keywords: nickel sulfide, thin films, XRD, ESEM
Procedia PDF Downloads 893269 Metal-Semiconductor Transition in Ultra-Thin Titanium Oxynitride Films Deposited by ALD
Authors: Farzan Gity, Lida Ansari, Ian M. Povey, Roger E. Nagle, James C. Greer
Abstract:
Titanium nitride (TiN) films have been widely used in variety of fields, due to its unique electrical, chemical, physical and mechanical properties, including low electrical resistivity, chemical stability, and high thermal conductivity. In microelectronic devices, thin continuous TiN films are commonly used as diffusion barrier and metal gate material. However, as the film thickness decreases below a few nanometers, electrical properties of the film alter considerably. In this study, the physical and electrical characteristics of 1.5nm to 22nm thin films deposited by Plasma-Enhanced Atomic Layer Deposition (PE-ALD) using Tetrakis(dimethylamino)titanium(IV), (TDMAT) chemistry and Ar/N2 plasma on 80nm SiO2 capped in-situ by 2nm Al2O3 are investigated. ALD technique allows uniformly-thick films at monolayer level in a highly controlled manner. The chemistry incorporates low level of oxygen into the TiN films forming titanium oxynitride (TiON). Thickness of the films is characterized by Transmission Electron Microscopy (TEM) which confirms the uniformity of the films. Surface morphology of the films is investigated by Atomic Force Microscopy (AFM) indicating sub-nanometer surface roughness. Hall measurements are performed to determine the parameters such as carrier mobility, type and concentration, as well as resistivity. The >5nm-thick films exhibit metallic behavior; however, we have observed that thin film resistivity is modulated significantly by film thickness such that there are more than 5 orders of magnitude increment in the sheet resistance at room temperature when comparing 5nm and 1.5nm films. Scattering effects at interfaces and grain boundaries could play a role in thickness-dependent resistivity in addition to quantum confinement effect that could occur at ultra-thin films: based on our measurements the carrier concentration is decreased from 1.5E22 1/cm3 to 5.5E17 1/cm3, while the mobility is increased from < 0.1 cm2/V.s to ~4 cm2/V.s for the 5nm and 1.5nm films, respectively. Also, measurements at different temperatures indicate that the resistivity is relatively constant for the 5nm film, while for the 1.5nm film more than 2 orders of magnitude reduction has been observed over the range of 220K to 400K. The activation energy of the 2.5nm and 1.5nm films is 30meV and 125meV, respectively, indicating that the TiON ultra-thin films are exhibiting semiconducting behaviour attributing this effect to a metal-semiconductor transition. By the same token, the contact is no longer Ohmic for the thinnest film (i.e., 1.5nm-thick film); hence, a modified lift-off process was developed to selectively deposit thicker films allowing us to perform electrical measurements with low contact resistance on the raised contact regions. Our atomic scale simulations based on molecular dynamic-generated amorphous TiON structures with low oxygen content confirm our experimental observations indicating highly n-type thin films.Keywords: activation energy, ALD, metal-semiconductor transition, resistivity, titanium oxynitride, ultra-thin film
Procedia PDF Downloads 2973268 Enhanced Optical and Electrical Properties of P-Type AgBiS₂ Energy Harvesting Materials as an Absorber of Solar Cell by Copper Doping
Authors: Yasaman Tabari-Saadi, Kaiwen Sun, Jialiang Huang, Martin Green, Xiaojing Hao
Abstract:
Optical and electrical properties of p-type AgBiS₂ absorber material have been improved by copper doping on silver sites. X-Ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis suggest that complete solid solutions of Ag₁₋ₓCuₓBiS₂ thin film have been formed. The carrier concentration of pure AgBiS₂ thin film deposited by the chemical process is 4.5*E+14 cm⁻³, and copper doping leads to the improved carrier concentration despite the semiconductor AgBiS₂ remains p-type semiconductor. Copper doping directly changed the absorption coefficient and increased the optical band gap (~1.5eV), which makes it a promising absorber for thin-film solar cell applications.Keywords: copper doped, AgBiS₂, thin-film solar cell, carrier concentration, p-type semiconductor
Procedia PDF Downloads 1303267 Seismic Response of Braced Steel Frames with Shape Memory Alloy and Mega Bracing Systems
Authors: Mohamed Omar
Abstract:
Steel bracing members are widely used in steel structures to reduce lateral displacement and dissipate energy during earthquake motions. Concentric steel bracing provide an excellent approach for strengthening and stiffening steel buildings. Using these braces the designer can hardly adjust the stiffness together with ductility as needed because of buckling of braces in compression. In this study the use of SMA bracing and steel bracing (Mega) utilized in steel frames are investigated. The effectiveness of these two systems in rehabilitating a mid-rise eight-storey steel frames were examined using time-history nonlinear analysis utilizing Seismo-Struct software. Results show that both systems improve the strength and stiffness of the original structure but due to excellent behavior of SMA in nonlinear phase and under compressive forces this system shows much better performance than the rehabilitation system of Mega bracing.Keywords: finite element analysis, seismic response, shapes memory alloy, steel frame, mega bracing
Procedia PDF Downloads 3293266 Laser Welding of Titanium Alloy Ti64 to Polyamide 6.6: Effects of Welding Parameters on Temperature Profile Evolution
Authors: A. Al-Sayyad, P. Lama, J. Bardon, P. Hirchenhahn, L. Houssiau, P. Plapper
Abstract:
Composite metal–polymer materials, in particular titanium alloy (Ti-6Al-4V) to polyamide (PA6.6), fabricated by laser joining, have gained cogent interest among industries and researchers concerned with aerospace and biomedical applications. This work adopts infrared (IR) thermography technique to investigate effects of laser parameters used in the welding process on the three-dimensional temperature profile at the rear-side of titanium, at the region to be welded with polyamide. Cross sectional analysis of welded joints showed correlations between the morphology of titanium and polyamide at the weld zone with the corresponding temperature profile. In particular, spatial temperature profile was found to be correlated with the laser beam energy density, titanium molten pool width and depth, and polyamide heat affected zone depth.Keywords: laser welding, metals to polymers joining, process monitoring, temperature profile, thermography
Procedia PDF Downloads 1403265 Production and Characterization of Silver Doped Hydroxyapatite Thin Films for Biomedical Applications
Authors: C. L Popa, C.S. Ciobanu, S. L. Iconaru, P. Chapon, A. Costescu, P. Le Coustumer, D. Predoi
Abstract:
In this paper, the preparation and characterization of silver doped hydroxyapatite thin films and their antimicrobial activity characterized is reported. The resultant Ag: HAp films coated on commercially pure Si disks substrates were systematically characterized by Scanning Electron Microscopy (SEM) coupled with X-ray Energy Dispersive Spectroscopy detector (X-EDS), Glow Discharge Optical Emission Spectroscopy (GDOES) and Fourier Transform Infrared spectroscopy (FT-IR). GDOES measurements show that a substantial Ag content has been deposited in the films. The X-EDS and GDOES spectra revealed the presence of a material composed mainly of phosphate, calcium, oxygen, hydrogen and silver. The antimicrobial efficiency of Ag:HAp thin films against Escherichia coli and Staphylococcus aureus bacteria was demonstrated. Ag:HAp thin films could lead to a decrease of infections especially in the case of bone and dental implants by surface modification of implantable medical devices.Keywords: silver, hydroxyapatite, thin films, GDOES, SEM, FTIR, antimicrobial effect
Procedia PDF Downloads 4313264 Optimization of Tilt Angle for Solar Collectors: A Case Study for Bursa, Turkey
Authors: N. Arslanoglu
Abstract:
This paper deals with the optimum tilt angle for the solar collector in order to collect the maximum solar radiation. The optimum angle for tilted surfaces varying from 0◦ to 90◦ in steps of 1◦ was computed. In present study, a theoretical model is used to predict the global solar radiation on a tilted surface and to obtain the optimum tilt angle for a solar collector in Bursa, Turkey. Global solar energy radiation on the solar collector surface with an optimum tilt angle is calculated for specific periods. It is determined that the optimum slope angle varies between 0◦ (June) and 59◦ (December) throughout the year. In winter (December, January, and February) the tilt should be 55◦, in spring (March, April, and May) 19.6◦, in summer (June, July, and August) 5.6◦, and in autumn (September, October, and November) 44.3◦. The yearly average of this value was obtained to be 31.1◦ and this would be the optimum fixed slope throughout the year.Keywords: Bursa, global solar radiation, optimum tilt angle, tilted surface
Procedia PDF Downloads 2623263 The Application of Bayesian Heuristic for Scheduling in Real-Time Private Clouds
Authors: Sahar Sohrabi
Abstract:
The emergence of Cloud data centers has revolutionized the IT industry. Private Clouds in specific provide Cloud services for certain group of customers/businesses. In a real-time private Cloud each task that is given to the system has a deadline that desirably should not be violated. Scheduling tasks in a real-time private CLoud determine the way available resources in the system are shared among incoming tasks. The aim of the scheduling policy is to optimize the system outcome which for a real-time private Cloud can include: energy consumption, deadline violation, execution time and the number of host switches. Different scheduling policies can be used for scheduling. Each lead to a sub-optimal outcome in a certain settings of the system. A Bayesian Scheduling strategy is proposed for scheduling to further improve the system outcome. The Bayesian strategy showed to outperform all selected policies. It also has the flexibility in dealing with complex pattern of incoming task and has the ability to adapt.Keywords: cloud computing, scheduling, real-time private cloud, bayesian
Procedia PDF Downloads 3623262 Contracting Strategies to Foster Industrial Symbiosis Implementation
Authors: Robin Molinier
Abstract:
Industrial symbiosis (I.S) deals with the exchange of waste materials, fatal energy and utilities as resources for production. While it brings environmental benefits from resource conservation its economic profitability is one of the main barriers to its implementation. I.S involves several actors with their own objectives and resources so that each actor must be satisfied by ex-ante arrangements to commit toward investments and transactions. Regarding I.S Transaction cost economics helps to identify hybrid forms of governance for transactions governance due to I.S projects specificities induced by the need for customization (asset specificity, non-homogeneity). Thus we propose a framework to analyze the best contractual practices tailored to address I.S specific risks that we identified as threefold (load profiles and quality mismatch, value fluctuations). Schemes from cooperative game theory and contracting management are integrated to analyze value flows between actors. Contractual guidelines are then proposed to address the identified risks and to split the value for a set of I.S archetypes drawn from actual experiences.Keywords: contracts, economics, industrial symbiosis, risks
Procedia PDF Downloads 2123261 A Comprehensive Study on CO₂ Capture and Storage: Advances in Technology and Environmental Impact Mitigation
Authors: Oussama Fertaq
Abstract:
This paper investigates the latest advancements in CO₂ capture and storage (CCS) technologies, which are vital for addressing the growing challenge of climate change. The study focuses on multiple techniques for CO₂ capture, including chemical absorption, membrane separation, and adsorption, analyzing their efficiency, scalability, and environmental impact. The research further explores geological storage options such as deep saline aquifers and depleted oil fields, providing insights into the challenges and opportunities presented by each method. This paper emphasizes the importance of integrating CCS with existing industrial processes to reduce greenhouse gas emissions effectively. It also discusses the economic and policy frameworks required to promote wider adoption of CCS technologies. The findings of this study offer a comprehensive view of the potential of CCS in achieving global climate goals, particularly in hard-to-abate sectors such as energy and manufacturing.Keywords: CO₂ capture, carbon storage, climate change mitigation, carbon sequestration, environmental sustainability
Procedia PDF Downloads 203260 Proecological Antioxidants for Stabilisation of Polymeric Composites
Authors: A. Masek, M. Zaborski
Abstract:
Electrochemical oxidation of dodecyl gallate (lauryl gallate), the main monomer flavanol found in green tea, was investigated on platinum electrodes using cyclic voltammetry (CV) and differential pulse (DPV) methods. The rate constant, electron transfer coefficient and diffusion coefficients were determined for dodecyl gallate electrochemical oxidation. The oxidation mechanism proceeds in sequential steps related to the hydroxyl groups in the aromatic ring of dodecyl gallate. Confirmed antioxidant activity of lauryl gallate verified its use in polymers as an environment-friendly stabiliser to improve the resistance to aging of the elastomeric materials. Based on the energy change of the deformation, cross-linking density and time of the oxygen induction with the TG method, we confirmed the high antioxidant activity of lauryl gallate in polymers. Moreover, the research on biodegradation confirmed the environment-friendly influence of the antioxidant by increasing the susceptibility of the elastomeric materials to disintegration by mildew mushrooms.Keywords: polymers, flavonoids, stabilization, ageing
Procedia PDF Downloads 3833259 Stator Short-Circuits Fault Diagnosis in Induction Motors
Authors: K. Yahia, M. Sahraoui, A. Guettaf
Abstract:
This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental results, show the effectiveness of the used method.Keywords: induction motors (IMs), inter-turn short-circuits diagnosis, discrete wavelet transform (DWT), Current Park’s Vector Modulus (CPVM)
Procedia PDF Downloads 4643258 Combined Machine That Fertilizes Evenly under Plowing on Slopes and Planning an Experiment
Authors: Qurbanov Huseyn Nuraddin
Abstract:
The results of scientific research on a machine that pours an equal amount of mineral fertilizer under the soil to increase the productivity of grain in mountain farming and obtain quality grain are substantiated. The average yield of the crop depends on the nature of the distribution of fertilizers in the soil. Therefore, the study of effective energy-saving methods for the application of mineral fertilizers is the actual task of modern agriculture. Depending on the type and variety of plants in mountain farming, there is an optimal norm of mineral fertilizers. Applying an equal amount of fertilizer to the soil is one of the conditions that increase the efficiency of the field. One of the main agro-technical indicators of the work of mineral fertilizing machines is to ensure equal distribution of mineral fertilizers in the field. Taking into account the above-mentioned issues, a combined plough has been improved in our laboratory.Keywords: combined plough, mineral fertilizers, sprinkle fluently, fertilizer rate, cereals
Procedia PDF Downloads 763257 Utilization of Juncus acutus as Alternative Feed Resource in Ruminants
Authors: Nurcan Cetinkaya
Abstract:
The aim of this paper is to bring about the utilization of Juncus acutus as an alternative roughage resource in ruminant nutrition. In Turkey, JA is prevailing plant of the natural grassland in Kizilirmak Delta, Samsun. Crude nutrient values such as crude protein (CP), ether extract (EE), organic matter (OM), neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin(ADL) including antioxidant activity, total phenolic and flavonoid compounds, total organic matter digestibility (OMD) and metabolisable energy (ME) values of Juncus acutus stem, seed, and also its mixture with maize silage were estimated. and published. Furthermore, the effects of JA over rumen cellulolitic bacteria were studied. The obtained results from different studies conducted on JA by our team show that Juncus acutus may be a new roughage source in ruminant nutrition.Keywords: antioxidant activity, cellulolytic bacteria, Juncus acutus, organic matter digestibility
Procedia PDF Downloads 2853256 Synthesis, Spectral Characterization and Photocatalytic Applications of Graphene Oxide Nanocomposite with Copper Doped Zinc Oxide
Authors: Humaira Khan, Mohsin Javed, Sammia Shahid
Abstract:
The reinforced photocatalytic activity of graphene oxide (GO) along with composites of ZnO nanoparticles and copper-doped ZnO nanoparticles were studied by synthesizing ZnO and copper- doped ZnO nanoparticles by co-precipitation method. Zinc acetate and copper acetate were used as precursors, whereas graphene oxide was prepared from pre-oxidized graphite in the presence of H2O2.The supernatant was collected carefully and showed high-quality single-layer characterized by FTIR (Fourier Transform Infrared Spectroscopy), TEM (Transmission Electron Microscopy), SEM (Scanning Electron Microscopy), XRD (X-ray Diffraction Analysis), EDS (Energy Dispersive Spectrometry). The degradation of methylene blue as standard pollutant under UV-Visible irradiation gave results for photocatalytic activity of dopants. It could be concluded that shrinking of optical band caused by composites of Cu-dopped nanoparticles with GO enhances the photocatalytic activity.Keywords: degradation, graphene oxide, photocatalysis, ZnO nanoparticles and copper-doped ZnO nanoparticles
Procedia PDF Downloads 2123255 Investigating Trophic Relationships in Moroccan Marine Ecosystems: A Study of the Mediterranean and Atlantic Using Ecopath
Authors: Salma Aboussalam, Karima Khalil, Khalid Elkalay
Abstract:
An Ecopath model was employed to investigate the trophic structure, function, and current state of the Moroccan Mediterranean Sea ecosystem. The model incorporated 31 functional groups, including 21 fish species, 7 invertebrates, 2 primary producers, and a detritus group. The trophic interactions among these groups were analyzed, revealing an average trophic transfer efficiency of 23%. The results indicated that the ecosystem produced more energy than it consumed, with high respiration and consumption rates. Indicators of stability and development were low for the Finn cycle index (13.97), system omnivory index (0.18), and average Finn path length (3.09), indicating a disturbed ecosystem with a linear trophic structure. Keystone species were identified through the use of the keystone index and mixed trophic impact analysis, with demersal invertebrates, zooplankton, and cephalopods found to have a significant impact on other groups.Keywords: Ecopath, food web, trophic flux, Moroccan Mediterranean Sea
Procedia PDF Downloads 1083254 Photo-Reflective Mulches For Saving Water in Agriculture
Authors: P. Mormile, M. Rippa, G. Bonanomi, F. Scala, Changrong Yan, L. Petti
Abstract:
Photo-reflective films represent, in the panorama of agricultural films, a valid support for Spring and Summer cultivations, both in open field and under greenhouse. In fact, thanks to the high reflectivity of these films, thermal aggression, that causes serious problems to plants when traditional black mulch films are used, is avoided. Yellow or silver colored photo-reflective films protect plants from damages, assure the mulching effect, give a valid support to Integrated Pest Management and, according to recent trials, greatly contribute in saving water. This further advantage is determined by the high water condensation under the mulch film and this gives rise to reduction of irrigation. Water saving means also energy saving for electric system of water circulation. Trials performed at different geographic and ambient context confirm that the use of photo-reflective mulch films during the hot season allows to save water up to 30%.Keywords: photo-selective mulches, saving water, water circulation, irrigation
Procedia PDF Downloads 5193253 Chronic Exposure of Mercury on Amino Acid Level in Freshwater Fish Clarias batrachus (Linn.)
Authors: Mary Josephine Rani
Abstract:
Virtually all metals are toxic to aquatic organisms because of the devastating effect of these metals on humans; heavy metals are one of the most toxic forms of aquatic pollution. Metal concentrations in aquatic organisms appear to be of several magnitudes higher than concentrations present in the ecosystem. Mercury is one of the most toxic heavy metals in the environment. The principal sources of contamination in wastewater are chloralkali plants, battery factories, mercury switches, and medical wastes. Elevated levels of mercury in aquatic organisms specially fish represent both an ecological and human concern. Amino acid levels were estimated in five tissues (gills, liver, kidney, brain and muscle) of Clariasbatrachus after 28 days of chronic exposure to mercury. Free amino acids serve as precursor for energy production under stress and for the synthesis of required proteins to face the metal challenge.Keywords: amino acids, fish, mercury, toxicity
Procedia PDF Downloads 3613252 Micro-Texture Effect on Fracture Location in Carbon Steel during Forming
Authors: Sarra Khelifi, Youcef Guerabli, Ahcene Boumaiza
Abstract:
Advances in techniques for measuring individual crystallographic orientations have made it possible to investigate the role of local crystallography during the plastic deformation of materials. In this study, the change in crystallographic orientation distribution during deformation by deep drawing in carbon steel has been investigated in order to understand their role in propagation and arrest of crack. The results show that the change of grain orientation from initial recrystallization texture components of {111}<112> to deformation orientation {111}<110> incites the initiation and propagation of cracks in the region of {111}<112> small grains. Moreover, the misorientation profile and local orientation are analyzed in detail to discuss the change from {111}<112> to {111}<110>. The deformation of the grain with {111}<110> orientation is discussed in terms of stops of the crack in carbon steel during drawing. The SEM-EBSD technique was used to reveal the change of orientation; XRD was performed for the characterization of the global evolution of texture for deformed samples.Keywords: fracture, heterogeneity, misorientation profile, stored energy
Procedia PDF Downloads 2043251 Implicit Eulerian Fluid-Structure Interaction Method for the Modeling of Highly Deformable Elastic Membranes
Authors: Aymen Laadhari, Gábor Székely
Abstract:
This paper is concerned with the development of a fully implicit and purely Eulerian fluid-structure interaction method tailored for the modeling of the large deformations of elastic membranes in a surrounding Newtonian fluid. We consider a simplified model for the mechanical properties of the membrane, in which the surface strain energy depends on the membrane stretching. The fully Eulerian description is based on the advection of a modified surface tension tensor, and the deformations of the membrane are tracked using a level set strategy. The resulting nonlinear problem is solved by a Newton-Raphson method, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the presented method. We show that stability is maintained for significantly larger time steps.Keywords: finite element method, implicit, level set, membrane, Newton method
Procedia PDF Downloads 3103250 Development of Web-Based Remote Desktop to Provide Adaptive User Interfaces in Cloud Platform
Authors: Shuen-Tai Wang, Hsi-Ya Chang
Abstract:
Cloud virtualization technologies are becoming more and more prevalent, cloud users usually encounter the problem of how to access to the virtualized remote desktops easily over the web without requiring the installation of special clients. To resolve this issue, we took advantage of the HTML5 technology and developed web-based remote desktop. It permits users to access the terminal which running in our cloud platform from anywhere. We implemented a sketch of web interface following the cloud computing concept that seeks to enable collaboration and communication among users for high performance computing. Given the development of remote desktop virtualization, it allows to shift the user’s desktop from the traditional PC environment to the cloud platform, which is stored on a remote virtual machine rather than locally. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. This is also made possible by the low administrative costs as well as relatively inexpensive end-user terminals and reduced energy expenses.Keywords: virtualization, remote desktop, HTML5, cloud computing
Procedia PDF Downloads 3433249 One Step Synthesis of Molybdenum Carbide Nanoparticles for Efficient Hydrogen Evolution Reaction
Authors: Sanjay Upadhyay, Om Prakash Pandey
Abstract:
Hydrogen has been promoted as an alternative source of energy, which is renewable, cost-effective, and nature-friendly. Hydrogen evolution reaction (HER) can be used for mass production of hydrogen at a very low cost through electrochemical water splitting. An active and efficient electrocatalyst is required to perform this reaction. Till date, platinum (Pt) is a stable and efficient electrocatalyst towards HER. But its high cost and low abundance hiders its large scale uses. Molybdenum carbide having a similar electronic structure to platinum can be a great alternative to costly platinum. In this study, pure phase molybdenum carbide (Mo₂C) has been synthesized in a single step. Synthesis temperature and holding time have been optimized to obtain pure phases of Mo₂C. The surface, structural and morphological properties of as-synthesized compounds have been studied. The HER activity of as-synthesized compounds has been explored in detail.Keywords: capacitance, hydrogen fuel, molybdenum carbide, nanoparticles
Procedia PDF Downloads 2083248 An Assessment of Electrical Activities of Students' Brains toward Teacher’s Specific Emotions
Authors: Hakan Aydogan, Fatih Bozkurt, Huseyin Coskun
Abstract:
In this study, the signal of brain electrical activities of the sixteen students selected from the Department of Electrical and Energy at Usak University have been recorded during a lecturer performed happiness emotions for the first group and anger emotions for the second group in different time while the groups were in the classroom separately. The attention and meditation data extracted from the recorded signals have been analyzed and evaluated toward the teacher’s specific emotion states simultaneously. Attention levels of students who are under influence of happiness emotions of the lecturer have a positive trend and attention levels of students who are under influence of anger emotions of the lecturer have a negative trend. The meditation or mental relaxation levels of students who are under influence of happiness emotions of the lecturer are 34.3% higher comparing with the mental relaxation levels of students who are under influence of anger emotions of the lecturer.Keywords: brainwave, attention, meditation, education
Procedia PDF Downloads 4263247 Review and Evaluation of Viscose Damper on Structural Responses
Authors: Ehsan Sadie
Abstract:
Developments in the field of damping technology and advances in the area of dampers in equipping many structures have been the result of efforts and testing by researchers in this field. In this paper, a sample of a two-story building is simulated with the help of SAP2000 software, and the effect of a viscous damper on the performance of the structure is explained. The effect of dampers on the response of the structure is investigated. This response involves the horizontal displacement of floors. In this case, the structure is modeled once without a damper and again with a damper. In this regard, the results are presented in the form of tables and graphs. Since the seismic behavior of the structure is studied, the responses show the appropriate effect of viscous dampers in reducing the displacement of floors, and also the energy dissipation in the structure with dampers compared to structures without dampers is significant. Therefore, it is economical to use viscous dampers in areas that have a higher relative earthquake risk.Keywords: bending frame, displacement criterion, dynamic response spectra, earthquake, non-linear history spectrum, SAP2000 software, structural response, viscous damper
Procedia PDF Downloads 1193246 Preliminary Investigation into the Potentials of Mixed Blend of Acha (Digitaria exiles), Aya (Cyperus esculenta) and Defatted Water Melon Seed (Citrullis lanatus) Flour as a Weaning Formula
Authors: O. G. Onuoha, O. G. Akagu
Abstract:
The potentials of acha (Digitaria exiles), aya (Cyperus esculentus) and defatted water melon seed (Citrullis lanatus) as a weaning formula was investigated using the following blends for acha, aya and defatted water melon seed respectively in percentage proportion to obtain the weaning formulae; WS1(20:50:30); WS2(30:40:30); WS3(40:30:30); WS4(50:20:30). The result of the chemical analysis showed that; the sample WS1 had the highest value (15.6%) for protein while sample WS4 had the least value (14.1%). The fat content sample WS4 having the highest value (30.8%) while sample WS1 had the least value (27.3%). The ash content sample WS4 had the highest value (3.22%) while sample WS1 had the least value (2.63%). The carbohydrate content showed that sample WS1 having the highest value (50.5%) while sample WS4 had the least value (46.58%). While sample WS4 had the highest energy value (528.32 Kcal) and sample WS2 had the least value (515.06 Kcal). However, all the sample results fell within the dietary daily reference intake for infants between 0-3 years and required only local technology in its production.Keywords: weaning formula, acha, aya, deffted water melon seed
Procedia PDF Downloads 2793245 Nanoporous Activated Carbons for Fuel Cells and Supercapacitors
Authors: A. Volperts, G. Dobele, A. Zhurinsh, I. Kruusenberg, A. Plavniece, J. Locs
Abstract:
Nowadays energy consumption constantly increases and development of effective and cheap electrochemical sources of power, such as fuel cells and electrochemical capacitors, is topical. Due to their high specific power, charge and discharge rates, working lifetime supercapacitor based energy accumulation systems are more and more extensively being used in mobile and stationary devices. Lignocellulosic materials are widely used as precursors and account for around 45% of the total raw materials used for the manufacture of activated carbon which is the most suitable material for supercapacitors. First part of our research is devoted to study of influence of main stages of wood thermochemical activation parameters on activated carbons porous structure formation. It was found that the main factors governing the properties of carbon materials are specific surface area, volume and pore size distribution, particles dispersity, ash content and oxygen containing groups content. Influence of activated carbons attributes on capacitance and working properties of supercapacitor are demonstrated. The correlation between activated carbons porous structure indices and electrochemical specifications of supercapacitors with electrodes made from these materials has been determined. It is shown that if synthesized activated carbons are used in supercapacitors then high specific capacitances can be reached – more than 380 F/g in 4.9M sulfuric acid based electrolytes and more than 170 F/g in 1 M tetraethylammonium tetrafluoroborate in acetonitrile electrolyte. Power specifications and minimal price of H₂-O₂ fuel cells are limited by the expensive platinum-based catalysts. The main direction in development of non-platinum catalysts for the oxygen reduction is the study of cheap porous carbonaceous materials which can be obtained by the pyrolysis of polymers including renewable biomass. It is known that nitrogen atoms in carbon materials to a high degree determine properties of the doped activated carbons, such as high electrochemical stability, hardness, electric resistance, etc. The lack of sufficient knowledge on the doping of the carbon materials calls for the ongoing researches of properties and structure of modified carbon matrix. In the second part of this study, highly porous activated carbons were synthesized using alkali thermochemical activation from wood, cellulose and cellulose production residues – craft lignin and sewage sludge. Activated carbon samples were doped with dicyandiamide and melamine for the application as fuel cell cathodes. Conditions of nitrogen introduction (solvent, treatment temperature) and its content in the carbonaceous material, as well as porous structure characteristics, such as specific surface and pore size distribution, were studied. It was found that efficiency of doping reaction depends on the elemental oxygen content in the activated carbon. Relationships between nitrogen content, porous structure characteristics and electrodes electrochemical properties are demonstrated.Keywords: activated carbons, low-temperature fuel cells, nitrogen doping, porous structure, supercapacitors
Procedia PDF Downloads 123