Search results for: overall thermal energy
4810 Effect of Cryogenic Treatment on Various Mechanical and Metallurgical Properties of Different Material: A Review
Authors: Prashant Dhiman, Viranshu Kumar, Pradeep Joshi
Abstract:
Lot of research is going on to study the effect of cryogenic treatment on materials. Cryogenic treatment is a heat treatment process which is used widely to enhance the mechanical and metallurgical properties of various materials whether the material is ferrous or non ferrous. In almost all ferrous metals, it is found that retained austenite is converted into martensite. Generally deep cryogenic treatment is done using liquid nitrogen having temperature of -195 ℃. The austenite is unstable at this stage and converts into martensite. In non ferrous materials there presents a microcavity and under the action of stress it becomes crack. When this crack propagates, fracture takes place. As the metal contract under low temperature, by doing cryogenic treatment these microcavities will be filled hence increases the soundness of the material. Properties which are enhanced by cryogenic treatment of both ferrous and non ferrous materials are hardness, tensile strength, wear rate, electrical and thermal conductivity, and others. Also there is decrease in residual stress. A large number of manufacturing process (EDM, CNC etc.) are using cryogenic treatment on different tools or workpiece to reduce their wear. In this Review paper the use of cryogenic heat treatment in different manufacturing has been shown along with their advantages.Keywords: cyrogenic treatment, EDM (Electrical Discharge Machining), CNC (Computer Numeric Control), Mechanical and Metallurgical Properties
Procedia PDF Downloads 4414809 Microbial Electrochemical Remediation System: Integrating Wastewater Treatment with Simultaneous Power Generation
Authors: Monika Sogani, Zainab Syed, Adrian C. Fisher
Abstract:
Pollution of estrogenic compounds has caught the attention of researchers as the slight increase of estrogens in the water bodies has a significant impact on the aquatic system. They belong to a class of endocrine disrupting compounds (EDCs) and are able to mimic hormones or interfere with the action of endogenous hormones. The microbial electrochemical remediation system (MERS) is employed here for exploiting an electrophototrophic bacterium for evaluating the capacity of biodegradation of ethinylestradiol hormone (EE2) under anaerobic conditions with power generation. MERS using electro-phototrophic bacterium offers a tailored solution of wastewater treatment in a developing country like India which has a huge solar potential. It is a clean energy generating technology as they require only sunlight, water, nutrients, and carbon dioxide to operate. Its main feature that makes it superior over other technologies is that the main fuel for this MERS is sunlight which is indefinitely present. When grown in light with organic compounds, these photosynthetic bacteria generate ATP by cyclic photophosphorylation and use carbon compounds to make cell biomass (photoheterotrophic growth). These cells showed EE2 degradation and were able to generate hydrogen as part of the process of nitrogen fixation. The two designs of MERS were studied, and a maximum of 88.45% decrease in EE2 was seen in a total period of 14 days in the better design. This research provides a better insight into microbial electricity generation and self-sustaining wastewater treatment facilities. Such new models of waste treatment aiming waste to energy generation needs to be followed and implemented for building a resource efficient and sustainable economy.Keywords: endocrine disrupting compounds, ethinylestradiol, microbial electrochemical remediation systems, wastewater treatment
Procedia PDF Downloads 1254808 Computational Fluid Dynamics (CFD) Calculations of the Wind Turbine with an Adjustable Working Surface
Authors: Zdzislaw Kaminski, Zbigniew Czyz, Krzysztof Skiba
Abstract:
This paper discusses the CFD simulation of a flow around a rotor of a Vertical Axis Wind Turbine. Numerical simulation, unlike experiments, enables us to validate project assumptions when it is designed and avoid a costly preparation of a model or a prototype for a bench test. CFD simulation enables us to compare characteristics of aerodynamic forces acting on rotor working surfaces and define operational parameters like torque or power generated by a turbine assembly. This research focused on the rotor with the blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on adjusting angular aperture α of the top and bottom parts of the blades mounted on an axis. If this angular aperture α increases, the working surface which absorbs wind kinetic energy also increases. The operation of turbines is characterized by parameters like the angular aperture of blades, power, torque, speed for a given wind speed. These parameters have an impact on the efficiency of assemblies. The distribution of forces acting on the working surfaces in our turbine changes according to the angular velocity of the rotor. Moreover, the resultant force from the force acting on an advancing blade and retreating blade should be as high as possible. This paper is part of the research to improve an efficiency of a rotor assembly. Therefore, using simulation, the courses of the above parameters were studied in three full rotations individually for each of the blades for three angular apertures of blade working surfaces, i.e. 30 °, 60 °, 90 °, at three wind speeds, i.e. 4 m / s, 6 m / s, 8 m / s and rotor speeds ranging from 100 to 500 rpm. Finally, there were created the characteristics of torque coefficients and power as a function of time for each blade separately and for the entire rotor. Accordingly, the correlation between the turbine rotor power as a function of wind speed for varied values of rotor rotational speed. By processing this data, the correlation between the power of the turbine rotor and its rotational speed for each of the angular aperture of the working surfaces was specified. Finally, the optimal values, i.e. of the highest output power for given wind speeds were read. The research results in receiving the basic characteristics of turbine rotor power as a function of wind speed for the three angular apertures of the blades. Given the nature of rotor operation, the growth in the output turbine can be estimated if angular aperture of the blades increases. The controlled adjustment of angle α enables a smooth adjustment of power generated by a turbine rotor. If wind speed is significant, this type of adjustment enables this output power to remain at the same level (by reducing angle α) with no risk of damaging a construction. This work has been financed by the Polish Ministry of Science and Higher Education.Keywords: computational fluid dynamics, numerical analysis, renewable energy, wind turbine
Procedia PDF Downloads 2194807 Effect of Nano-Alumina on the Mechanical Properties of Cold Recycled Asphalt
Authors: Shahab Hasani Nasab, Aran Aeini, Navid Kermanshahi
Abstract:
In order to reduce road building costs and reduce environmental damage, recycled materials can be used instead of mineral materials in the production of asphalt mixtures. Today, in most parts of the world, cold recycled asphalt with bitumen emulsion, has acceptable results. However, Cold Recycled Asphalt have some deficiency such as stripping, thermal cracking, and rutting. This requires the addition of additives to reduce this deficiency of recycled pavement with emulsified asphalt. In this research, nano-alumina and emulsified asphalt were used to modify the properties of recycled asphalt mixtures according to the technical specifications and the operation of cold recycling. Marshall test methods, dynamic creep test, and resiliency modulus test has been used to obtain the nano-alumina’s effects on asphalt mixture properties. The results show that the addition of nano-alumina would reduce the Marshall stability in samples but increases the rutting resistance. The resiliency modulus increases significantly with this additive.Keywords: cold asphalt, cold recycling, nano-alumina, dynamic creep, bitumen emulsion
Procedia PDF Downloads 1694806 Ionic Liquid Membranes for CO2 Separation
Authors: Zuzana Sedláková, Magda Kárászová, Jiří Vejražka, Lenka Morávková, Pavel Izák
Abstract:
Membrane separations are mentioned frequently as a possibility for CO2 capture. Selectivity of ionic liquid membranes is strongly determined by different solubility of separated gases in ionic liquids. The solubility of separated gases usually varies over an order of magnitude, differently from diffusivity of gases in ionic liquids, which is usually of the same order of magnitude for different gases. The present work evaluates the selection of an appropriate ionic liquid for the selective membrane preparation based on the gas solubility in an ionic liquid. The current state of the art of CO2 capture patents and technologies based on the membrane separations was considered. An overview is given of the discussed transport mechanisms. Ionic liquids seem to be promising candidates thanks to their tunable properties, wide liquid range, reasonable thermal stability, and negligible vapor pressure. However, the uses of supported liquid membranes are limited by their relatively short lifetime from the industrial point of view. On the other hand, ionic liquids could overcome these problems due to their negligible vapor pressure and their tunable properties by adequate selection of the cation and anion.Keywords: biogas upgrading, carbon dioxide separation, ionic liquid membrane, transport properties
Procedia PDF Downloads 4344805 Full Fat Soybean Meal as a Substitute for Soybean Meal in Broiler Rations
Authors: R. M. K. S. Chandana, A. P. D. G. Pathirana, N. Priyankarage, W. A. D. Nayananjalie, S. S. P. Silva
Abstract:
Full fat soybean meal (FFSBM) has been used in many parts of the world together with solvent-extracted soybean meal (SBM) in livestock feeds. Although some local FFSBM is available, their use has not been assessed experimentally. This study was carried out to evaluate the use of local extruded FFSBM in broiler rations. Four treatment diets were formulated by incorporating locally produced FFSBM (0, 10, 20, and 30%) as a replacement for soybean meal (SBM) in a two-phase (starter and finisher) feeding program. Two hundred Hubbard F 15 day old broiler chicks were randomly assigned into four treatments with five replicates per each. Bodyweight gain (BWG), feed intakes (FI), and feed conversion ratio (FCR) were calculated for a period of 42 days. Nutrient utilization in the form of dry matter (DM), energy, nitrogen, and fat retention were estimated by the total collection method in three weeks old broilers. At the end of the experiment, carcass weight was measured, and the dressing percentage was calculated. Data were analyzed using one way analysis of variance (ANOVA) in SAS. There was no significant effect of FFSBM on feed intakes of chicks fed different diets (p > 0.05). Birds fed the control diet, and FF10 (10% FFSBM diet) gained significantly more than that of birds fed FF20 or FF30 diets (p > 0.05). In the finisher period, control birds gained more than all the other treatment birds. FCR was poorer in bird fed higher levels of FFSBM compared to the control or FF10 birds during their early life, but that was not evident in the latter part of the experiment. Treatments did not alter (p > 0.05) the retention of DM and nitrogen, but energy utilization was lowest (p < 0.05) in birds fed with 0% FFSBM, and the highest fat digestibility was observed in birds fed with 30% FFSBM diets. Thus, it can be concluded that FFSBM can be used as a substitute for SBM in broiler rations and could be incorporated up to 10% of the diet safely with no adverse effects on broiler performances.Keywords: body weight, broiler, digestibility, full fat soybean meal, soybean meal
Procedia PDF Downloads 1544804 Conceptual Understanding for the Adoption of Energy Assessment Methods in the United Arab Emirates Built Environment
Authors: Amna I. Shibeika, Batoul Y. Hittini, Tasneem B. Abd Bakri
Abstract:
Regulation and integration of public policy, economy, insurance industry, education, and construction stakeholders are the main contributors to achieve sustainable development. Building environmental assessment methods were introduced in the field to address issues such as global warming and conservation of natural resources. In the UAE, Estidama framework with its associated Pearl Building Rating System (PBRS) has been introduced in 2010 to address and spread sustainability practices within the country’s fast-growing built environment. Based on literature review of relevant studies investigating different project characteristics that influence sustainability outcomes, this paper presents a conceptual framework for understanding the adoption of PBRS in UAE projects. The framework also draws on Diffusion of Innovations theory to address the questions of how the assessment method is chosen in the first place and what is the impact of PBRS on the multi-disciplinary design and construction processes. The study highlights the mandatory nature of the adoption of PBRS for government buildings as well as imbedding Estidama principles within Abu Dhabi building codes as key factors for raising awareness about sustainable practices. Moreover, several project-related elements are addressed to understand their relationship with the adoption process, including project team collaboration; communication and coordination; levels of commitment and engagement; and the involvement of key actors as sustainability champions. This conceptualization of the adoption of PBRS in UAE projects contributes to the growing literature on the adoption of energy assessment tools and addresses the UAE vision is to be at the forefront of innovative sustainable development by 2021.Keywords: adoption, building assessment, design management, innovation, sustainability
Procedia PDF Downloads 1534803 Carbonation and Mechanical Performance of Reactive Magnesia Based Formulations
Authors: Cise Unluer
Abstract:
Reactive MgO hydrates to form brucite (Mg(OH)2, magnesium hydroxide), which can then react with CO2 and additional water to form a range of strength providing hydrated magnesium carbonates (HMCs) within cement-based formulations. The presented work focuses on the use of reactive MgO in a range of concrete mixes, where it carbonates by absorbing CO2 and gains strength accordingly. The main goal involves maximizing the amount of CO2 absorbed within construction products, thereby reducing the overall environmental impact of the designed formulations. Microstructural analyses including scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetry/differential thermal analysis (TG/DTA) are used in addition to porosity, permeability and unconfined compressive strength (UCS) testing to understand the performance mechanisms. XRD Reference Intensity Ratio (RIR), acid digestion and TG/DTA are utilized to quantify the amount of CO2 sequestered, with the goal of achieving 100% carbonation through careful mix design, leading to a range of carbon neutral products with high strengths. As a result, samples stronger than those containing Portland cement (PC) were produced, revealing the link between the mechanical performance and microstructural development of the developed formulations with the amount of CO2 sequestered.Keywords: carbonation, compressive strength, reactive MgO cement, sustainability
Procedia PDF Downloads 1844802 Incorporating Circular Economy into Passive Design Strategies in Tropical Nigeria
Authors: Noah G. Akhimien, Eshrar Latif
Abstract:
The natural environment is in need for an urgent rescue due to dilapidation and recession of resources. Passive design strategies have proven to be one of the effective ways to reduce CO2 emissions and to improve building performance. On the other hand, there is a huge drop in material availability due to poor recycling culture. Consequently, building waste pose environmental hazard due to unrecycled building materials from construction and deconstruction. Buildings are seen to be material banks for a circular economy, therefore incorporating circular economy into passive housing will not only safe guide the climate but also improve resource efficiency. The study focuses on incorporating a circular economy in passive design strategies for an affordable energy and resource efficient residential building in Nigeria. Carbon dioxide (CO2) concentration is still on the increase as buildings are responsible for a significant amount of this emission globally. Therefore, prompt measures need to be taken to combat the effect of global warming and associated threats. Nigeria is rapidly growing in human population, resources on the other hand have receded greatly, and there is an abrupt need for recycling even in the built environment. It is necessary that Nigeria responds to these challenges effectively and efficiently considering building resource and energy. Passive design strategies were assessed using simulations to obtain qualitative and quantitative data which were inferred to case studies as it relates to the Nigeria climate. Building materials were analysed using the ReSOLVE model in order to explore possible recycling phase. This provided relevant information and strategies to illustrate the possibility of circular economy in passive buildings. The study offers an alternative approach, as it is the general principle for the reworking of an economy on ecological lines in passive housing and by closing material loops in circular economy.Keywords: building, circular, efficiency, environment, sustainability
Procedia PDF Downloads 2584801 Periodical System of Isotopes
Authors: Andriy Magula
Abstract:
With the help of a special algorithm being the principle of multilevel periodicity, the periodic change of properties at the nuclear level of chemical elements was discovered and the variant for the periodic system of isotopes was presented. The periodic change in the properties of isotopes, as well as the vertical symmetry of subgroups, was checked for consistency in accordance with the following ten types of experimental data: mass ratio of fission fragments; quadrupole moment values; magnetic moment; lifetime of radioactive isotopes; neutron scattering; thermal neutron radiative capture cross-sections (n, γ); α-particle yield cross-sections (n, α); isotope abundance on Earth, in the Solar system and other stellar systems; features of ore formation and stellar evolution. For all ten cases, the correspondences for the proposed periodic structure of the nucleus were obtained. The system was formed in the usual 2D table, similar to the periodic system of elements, and the mass series of isotopes was divided into 8 periods and 4 types of ‘nuclear’ orbitals: sn, dn, pn, fn. The origin of ‘magic’ numbers as a set of filled charge shells of the nucleus was explained. Due to the isotope system, the periodic structure is shown at a new level of the universe, and the prospects of its practical use are opened up.Keywords: periodic system, isotope, period, subgroup, “nuclear” orbital, nuclear reaction
Procedia PDF Downloads 234800 Influence of High Hydrostatic Pressure Application (HHP) and Osmotic Dehydration (DO) as a Pretreatment to Hot –Air Drying of Abalone (Haliotis Rufescens) Cubes
Authors: Teresa Roco, Mario Perez Won, Roberto Lemus-Mondaca, Sebastian Pizarro
Abstract:
This research presents the simultaneous application of high hydrostatic pressure application (HHP) and osmotic dehydration (DO) as a pretreatment to hot –air drying of abalone cubes. The drying time was reduced to 6 hours at 60ºC as compared to the abalone drying by only a 15% NaCl osmotic pretreatment and at an atmospheric pressure that took 10 hours to dry at the same temperature. This was due to the salt and HHP saturation since osmotic pressure increases as water loss increases, thus needing a more reduced time in a convective drying, so water effective diffusion in drying plays an important role in this research. Different working conditions as pressure (350-550 MPa), pressure time ( 5-10 min), salt concentration, NaCl 15% and drying temperature (40-60ºC) will be optimized according to kinetic parameters of each mathematical model (Table 1). The models used for drying experimental curves were those corresponding to Weibull, Logarithmic and Midilli-Kucuk, but the latest one was the best fitted to the experimental data (Figure 1). The values for water effective diffusivity varied from 4.54 – to 9.95x10-9 m2/s for the 8 curves (DO+HHP) whereas the control samples (neither DO nor HHP) varied among 4.35 and 5.60x10-9 m2/s, for 40 and 60°C, respectively and as to drying by osmotic pretreatment at 15% NaCl from 3.804 to 4.36x10-9 m2/s at the same temperatures. Finally as to energy and efficiency consumption values for drying process (control and pretreated samples) it was found that they would be within a range of 777-1815 KJ/Kg and 8.22–19.20% respectively. Therefore, a knowledge concerning the drying kinetic as well as the consumption energy, in addition to knowledge about the quality of abalones subjected to an osmotic pretreatment (DO) and a high hydrostatic pressure (HHP) are extremely important to an industrial level so that the drying process can be successful at different pretreatment conditions and/or variable processes.Keywords: abalone, convective drying, high pressure hydrostatic, pretreatments, diffusion coefficient
Procedia PDF Downloads 6724799 DFT Insights into CO₂ Capture Mechanisms and Kinetics in Diamine-Appended Grafted Mg₂ (dobpdc) Metal- Organic Frameworks
Authors: Mao-Sheng Su, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Climate change is widely recognized as a global crisis, with anthropogenic CO₂ emissions from fossil fuel combustion and industrial processes being major contributors. To address this challenge, carbon capture and sequestration (CCS) technology has emerged as a key strategy for selectively capturing CO₂ from flue gas streams. Among the various solid adsorbents, metal–organic frameworks (MOFs) are notable for their extensive surface area and controllable pore chemistry. The porous MOF structure is comprised of metal ions or clusters coordinated to organic linker compounds. In particular, the pore parameters of MOFs are readily tunable, making them promising materials for CO₂ capture applications. Among these, amine-functionalized MOFs have demonstrated exceptional CO₂ capture abilities because their high uptake capacity and selectivity. In this study, we have investigated the CO₂ capture abilities and adsorption mechanisms of the diamine-appended framework N-Ethylethylenediamine-Mg₂(4,4’-dioxidobiphenyl-3,3’-dicarboxylate) (e-2-Mg₂(dobpdc)) using density functional theory (DFT) calculations. Previous studies have suggested that CO₂ can be captured via both outer- and inner-amine binding sites. Our findings reveal that CO₂ adsorption at the outer amine site is kinetically more favorable compared to the inner amine site, with a lower energy barrier of 1.34 eV for CO₂ physisorption to chemisorption compared to the inner amine, which has an activation barrier of 1.60 eV. Furthermore, we find that CO₂ adsorption is significantly enhanced in an alkaline environment, as deprotonation of the diamine molecule reduces the energy barrier to 0.24 eV. This theoretical study provides detailed insights into CO₂ adsorption in diamine-appended e-2-Mg₂(dobpdc) MOF, offering a deeper understanding of CO₂ capture mechanisms and valuable information for the advancement of effective CO₂ sequestration technologies.Keywords: DFT, MOFs, CO₂ capture, catalyst
Procedia PDF Downloads 484798 Evaluation on Mechanical Stabilities of Clay-Sand Mixtures Used as Engineered Barrier for Radioactive Waste Disposal
Authors: Ahmet E. Osmanlioglu
Abstract:
In this study, natural bentonite was used as natural clay material and samples were taken from the Kalecik district in Ankara. In this research, bentonite is the subject of an analysis from standpoint of assessing the basic properties of engineered barriers with respect to the buffer material. Bentonite and sand mixtures were prepared for tests. Some of clay minerals give relatively higher hydraulic conductivity and lower swelling pressure. Generally, hydraulic conductivity of these type clays is lower than <10-12 m/s. The hydraulic properties of clay-sand mixtures are evaluated to design engineered barrier specifications. Hydraulic conductivities of bentonite-sand mixture were found in the range of 1.2x10-10 to 9.3x10-10 m/s. Optimum B/S mixture ratio was determined as 35% in terms of hydraulic conductivity and mechanical stability. At the second stage of this study, all samples were compacted into cylindrical shape molds (diameter: 50 mm and length: 120 mm). The strength properties of compacted mixtures were better than the compacted bentonite. In addition, the larger content of the quartz sand in the mixture has the greater thermal conductivity.Keywords: engineered barriers, mechanical stability, clay, nuclear waste disposal
Procedia PDF Downloads 3884797 Influence of Drying Method in Parts of Alumina Obtained for Rapid Prototyping and Uniaxial Dry Pressing
Authors: N. O. Muniz, F. A. Vechietti, L. Treccani, K. Rezwan, Luis Alberto dos Santos
Abstract:
Developing new technologies in the manufacture of biomaterials is a major challenge for researchers in the tissue engineering area. Many in vitro and in vivo studies have revealed the significance of the porous structure of the biomaterials on the promotion of bone ingrowth. The use of Rapid Prototyping in the manufacture of ceramics in the biomedical area has increased in recent years and few studies are conducted on obtaining alumina pieces. The aim of this work was the study of alumina pieces obtained by 3D printing and uniaxial dry pressing (DP) in order to evaluate porosity achieved by this two different techniques. Also, the influence of the powder drying process was determined. The row alumina powders were drying by freeze drying and oven. Apparent porosity, apparent density, retraction after thermal treatment were evaluated. The porosity values obtained by DP, regardless of method of drying powders, were much lower than those obtained by RP as expected. And for the prototyped samples, the method of powder drying significantly influenced porosities, reached 48% for drying oven versus 65% for freeze-drying. Therefore, the method of 3D printing, using different powder drying, allows a better control over the porosity.Keywords: rapid prototyping, freeze-drying, porosity, alumina
Procedia PDF Downloads 4734796 The Effect of Interfacial Chemistry on Mechanical Properties of Epoxy Composites Containing Poly (Ether Ether Ketone) Grafted Multiwall Carbon Nanotubes
Authors: Prajakta Katti, Suryasarathi Bose, S. Kumar
Abstract:
In this work, carboxyl functionalized multiwall carbon nanotubes (a-MWNTs) covalently grafted with hydroxylated functionalized poly (ether ether ketone), HPEEK, which is miscible with the pre-polymer (epoxy) through the esterification reaction. The functionalized MWNTs were systematically characterized using spectroscopic techniques. The epoxy composites containing a-MWNTs and HPEEK grafted multiwall carbon nanotubes (HPEEK-g-MWNTs) were formulated using mechanical stirring coupled with a bath sonicator to improve the dispersion property of the nanoparticles and were subsequently cured at 80 ̊C and post cured at 180 ̊C. With the addition of 0.5 wt% of HPEEK-g-MWNTs, an impressive 44% enhancement in the storage modulus, 22% increase in tensile strength and 38% increase in fracture toughness was observed with respect to neat epoxy. In addition to these mechanical properties, the epoxy composites displayed significant enhancement in the hardness without reducing thermal stability. These improved properties were attributed to the tailored interface between HPEEK-MWNTs and epoxy matrix.Keywords: epoxy, MWNTs, HPEEK-g-MWNTs, tensile properties, nanoindentation, fracture toughness
Procedia PDF Downloads 3104795 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach
Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal
Abstract:
Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol
Procedia PDF Downloads 1124794 Climate Adaptability of Vernacular Courtyards in Jiangnan Area, Southeast China
Authors: Yu Bingqing
Abstract:
Research on the meteorological observation data of conventional meteorological stations in Jiangnan area from 2001 to 2020 and digital elevation DEM, the "golden section" comfort index calculation method was used to refine the spatial estimation of climate comfort in Jiangnan area under undulating terrain on the Gis platform, and its spatiotemporal distribution characteristics in the region were analyzed. The results can provide reference for the development and utilization of climate resources in Jiangnan area.The results show that: ① there is a significant spatial difference between winter and summer climate comfort from low latitude to high latitude. ②There is a significant trend of decreasing climate comfort from low altitude to high altitude in winter, but the opposite is true in summer. ③There is a trend of decreasing climate comfort from offshore to inland in winter, but the difference is not significant in summer. The climate comfort level in the natural lake area is higher in summer than in the surrounding areas, but not in winter. ⑤ In winter and summer, altitude has the greatest influence on the difference in comfort level.Keywords: vernacular courtyards, thermal environment, depth-to-height ratio, climate adaptability,Southeast China
Procedia PDF Downloads 634793 Efficacy of TiO₂ in the Removal of an Acid Dye by Photo Catalytic Degradation
Authors: Laila Mahtout, Kerami Ahmed, Rabhi Souhila
Abstract:
The objective of this work is to reduce the impact on the environment of an acid dye (Black Eriochrome T) using catalytic photo-degradation in the presence of the semiconductor powder (TiO₂) previously characterized. A series of tests have been carried out in order to demonstrate the influence of certain parameters on the degree of dye degradation by titanium dioxide in the presence of UV rays, such as contact time, the powder mass and the pH of the solution. X-ray diffraction analysis of the powder showed that the anatase structure is predominant and the rutile phase is presented by peaks of low intensity. The various chemical groups which characterize the presence of the bands corresponding to the anatase and rutile form and other chemical functions have been detected by the Fourier Transform Infrared spectroscopy. The photo degradation of the NET by TiO₂ is very interesting because it gives encouraging results. The study of photo-degradation at different concentrations of the dye showed that the lower concentrations give better removal rates. The degree of degradation of the dye increases with increasing pH; it reaches the maximum value at pH = 9. The ideal mass of TiO₂ which gives the high removal rate is 1.2 g/l. Thermal treatment of TiO₂ with the addition of CuO with contents of 5%, 10%, and 15% respectively gives better results of degradation of the NET dye. The high percentage of elimination is observed at a CuO content of 15%.Keywords: acid dye, ultraviolet rays, degradation, photocatalyse
Procedia PDF Downloads 1994792 Efficient Chiller Plant Control Using Modern Reinforcement Learning
Authors: Jingwei Du
Abstract:
The need of optimizing air conditioning systems for existing buildings calls for control methods designed with energy-efficiency as a primary goal. The majority of current control methods boil down to two categories: empirical and model-based. To be effective, the former heavily relies on engineering expertise and the latter requires extensive historical data. Reinforcement Learning (RL), on the other hand, is a model-free approach that explores the environment to obtain an optimal control strategy often referred to as “policy”. This research adopts Proximal Policy Optimization (PPO) to improve chiller plant control, and enable the RL agent to collaborate with experienced engineers. It exploits the fact that while the industry lacks historical data, abundant operational data is available and allows the agent to learn and evolve safely under human supervision. Thanks to the development of language models, renewed interest in RL has led to modern, online, policy-based RL algorithms such as the PPO. This research took inspiration from “alignment”, a process that utilizes human feedback to finetune the pretrained model in case of unsafe content. The methodology can be summarized into three steps. First, an initial policy model is generated based on minimal prior knowledge. Next, the prepared PPO agent is deployed so feedback from both critic model and human experts can be collected for future finetuning. Finally, the agent learns and adapts itself to the specific chiller plant, updates the policy model and is ready for the next iteration. Besides the proposed approach, this study also used traditional RL methods to optimize the same simulated chiller plants for comparison, and it turns out that the proposed method is safe and effective at the same time and needs less to no historical data to start up.Keywords: chiller plant, control methods, energy efficiency, proximal policy optimization, reinforcement learning
Procedia PDF Downloads 344791 Rapid Degradation of High-Concentration Methylene Blue in the Combined System of Plasma-Enhanced Photocatalysis Using TiO₂-Carbon
Authors: Teguh Endah Saraswati, Kusumandari Kusumandari, Candra Purnawan, Annisa Dinan Ghaisani, Aufara Mahayum
Abstract:
The present study aims to investigate the degradation of methylene blue (MB) using TiO₂-carbon (TiO₂-C) photocatalyst combined with dielectric discharge (DBD) plasma. The carbon materials used in the photocatalyst were activated carbon and graphite. The thin layer of TiO₂-C photocatalyst was prepared by ball milling method which was then deposited on the plastic sheet. The characteristic of TiO₂-C thin layer was analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) spectroscopy, and UV-Vis diffuse reflectance spectrophotometer. The XRD diffractogram patterns of TiO₂-G thin layer in various weight compositions of 50:1, 50:3, and 50:5 show the 2θ peaks found around 25° and 27° are the main characteristic of TiO₂ and carbon. SEM analysis shows spherical and regular morphology of the photocatalyst. Analysis using UV-Vis diffuse reflectance shows TiO₂-C has narrower band gap energy. The DBD plasma reactor was generated using two electrodes of Cu tape connected with stainless steel mesh and Fe wire separated by a glass dielectric insulator, supplied by a high voltage 5 kV with an air flow rate of 1 L/min. The optimization of the weight composition of TiO₂-C thin layer was studied based on the highest reduction of the MB concentration achieved, examined by UV-Vis spectrophotometer. The changes in pH values and color of MB indicated the success of MB degradation. Moreover, the degradation efficiency of MB was also studied in various higher concentrations of 50, 100, 200, 300 ppm treated for 0, 2, 4, 6, 8, 10 min. The degradation efficiency of MB treated in combination system of photocatalysis and DBD plasma reached more than 99% in 6 min, in which the greater concentration of methylene blue dye, the lower degradation rate of methylene blue dye would be achieved.Keywords: activated carbon, DBD plasma, graphite, methylene blue, photocatalysis
Procedia PDF Downloads 1284790 Larger Diameter 22 MM-PDC Cutter Greatly Improves Drilling Efficiency of PDC Bit
Authors: Fangyuan Shao, Wei Liu, Deli Gao
Abstract:
With the increasing speed of oil and gas exploration, development and production at home and abroad, the demand for drilling speed up technology is becoming more and more critical to reduce the development cost. Highly efficient and personalized PDC bit is important equipment in the bottom hole assembly (BHA). Therefore, improving the rock-breaking efficiency of PDC bits will help reduce drilling time and drilling cost. Advances in PDC bit technology have resulted in a leapfrogging improvement in the rate of penetration (ROP) of PDC bits over roller cone bits in soft to medium-hard formations. Recently, with the development of PDC technology, the diameter of the PDC tooth can be further expanded. The maximum diameter of the PDC cutter used in this paper is 22 mm. According to the theoretical calculation, under the same depth of cut (DOC), the 22mm-PDC cutter increases the exposure of the cutter, and the increase of PDC cutter diameter helps to increase the cutting area of the PDC cutter. In order to evaluate the cutting performance of the 22 mm-PDC cutter and the existing commonly used cutters, the 16 mm, 19 mm and 22 mm PDC cutter was selected put on a vertical turret lathe (VTL) in the laboratory for cutting tests under different DOCs. The DOCs were 0.5mm, 1.0 mm, 1.5 mm and 2.0 mm, 2.5 mm and 3 mm, respectively. The rock sample used in the experiment was limestone. Results of laboratory tests have shown the new 22 mm-PDC cutter technology greatly improved cutting efficiency. On the one hand, as the DOC increases, the mechanical specific energy (MSE) of all cutters decreases, which means that the cutting efficiency increases. On the other hand, under the same DOC condition, the larger the cutter diameter is, the larger the working area of the cutter is, which leads to higher the cutting efficiency. In view of the high performance of the 22 mm-PDC cutters, which was applied to carry out full-scale bit field experiments. The result shows that the bit with 22mm-PDC cutters achieves a breakthrough improvement of ROP than that with conventional 16mm and 19mm cutters in offset well drilling.Keywords: polycrystalline diamond compact, 22 mm-PDC cutters, cutting efficiency, mechanical specific energy
Procedia PDF Downloads 2094789 La0.80Ag0.15MnO3 Magnetic Nanoparticles for Self-Controlled Magnetic Fluid Hyperthermia
Authors: Marian Mihalik, Kornel Csach, Martin Kovalik, Matúš Mihalik, Martina Kubovčíková, Maria Zentková, Martin Vavra, Vladimír Girman, Jaroslav Briančin, Marija Perovic, Marija Boškovic, Magdalena Fitta, Robert Pelka
Abstract:
Current nanomaterials for use in biomedicine are based mainly on iron oxides and on present knowledge on magnetic nanostructures. Manganites can represent another material which can be used optionally. Manganites and their unique electronic properties have been extensively studied in the last decades not only due to fundamental interest but to possible applications of colossal magnetoresistance, magnetocaloric effect, and ferroelectric properties. It was found that the oxygen-reduction reaction on perovskite oxide is intimately connected with metal ion e.g., orbital occupation. The effect of oxygen deviation from the stoichiometric composition on crystal structure was studied very carefully by many authors on LaMnO₃. Depending on oxygen content, the crystal structure changes from orthorhombic one to rhombohedric for oxygen content 3.1. In the case of hole-doped manganites, the change from the orthorhombic crystal structure, which is typical for La1-xCaxMnO3 based manganites, to the rhombohedric crystal structure (La1-xMxMnO₃ where M = K, Ag, and Sr based materials) results in an enormous increase of the Curie temperature. In our paper, we study the effect of oxygen content on crystal structure, thermal, and magnetic properties (including magnetocaloric effect) of La1-xAgxMnO₃nano particle system. The content of oxygen in samples was tuned by heat treatment in different thermal regimes and in various environment (air, oxygen, argon). Water nanosuspensions based on La0.80Ag0.15MnO₃ magnetic particles with the Curie temperature of about 43oC were prepared by two different approaches. First, by using a laboratory circulation mill for milling of powder in the presence of sodium dodecyl sulphate (SDS) and subsequent centrifugation. Second nanosuspension was prepared using an agate bowl, etching in citric acid and HNO3, ultrasound homogeniser, centrifugation, and dextran 40 kDA or 15 kDA as surfactant. Electrostatic stabilisation obtained by the first approach did not offer long term kinetic and aggregation colloidal stability and was unable to compensate for attractive forces between particles under a magnetic field. By the second approach, we prepared suspension oversaturated by dextran 40 kDA for steric stabilisation, with evidence of the presence of superparamagnetic behaviour. Low concentration of nanoparticles and not ideal coverage of nanoparticles impacting the stability of ferrofluids was the disadvantage of this approach. Strong steric stabilisation was observable at alcaic conditions under pH = ~10. Application of dextran 15 kDA leads to relatively stable ferrofluid with pH around physiological conditions, but desegregation of powder by HNO₃ was not effective enough, and the average size of fragments was to large of about 150 nm, and we did not see any signature of superparamagnetic behaviour. The prepared ferrofluids were characterised by scanning and transition microscope method, thermogravimetry, magnetization, and AC susceptibility measurements. Specific Absorption Rate measurements were undertaken on powder as well on ferrofluids in order to estimate the potential application of La₀.₈₀Ag₀.₁₅MnO₃ magnetic particles based ferrofluid for hyperthermia. Our complex study contains an investigation of biocompatibility and potential biohazard of this material.Keywords: manganites, magnetic nanoparticles, oxygen content, magnetic phase transition, magnetocaloric effect, ferrofluid, hyperthermia
Procedia PDF Downloads 954788 Thermal Instability in Rivlin-Ericksen Elastico-Viscous Nanofluid with Connective Boundary Condition: Effect of Vertical Throughflow
Authors: Shivani Saini
Abstract:
The effect of vertical throughflow on the onset of convection in Rivlin-Ericksen Elastico-Viscous nanofluid with convective boundary condition is investigated. The flow is stimulated with modified Darcy model under the assumption that the nanoparticle volume fraction is not actively managed on the boundaries. The heat conservation equation is formulated by introducing the convective term of nanoparticle flux. A linear stability analysis based upon normal mode is performed, and an approximate solution of eigenvalue problems is obtained using the Galerkin weighted residual method. Investigation of the dependence of the Rayleigh number on various viscous and nanofluid parameter is performed. It is found that through flow and nanofluid parameters hasten the convection while capacity ratio, kinematics viscoelasticity, and Vadasz number do not govern the stationary convection. Using the convective component of nanoparticle flux, critical wave number is the function of nanofluid parameters as well as the throughflow parameter. The obtained solution provides important physical insight into the behavior of this model.Keywords: Darcy model, nanofluid, porous layer, throughflow
Procedia PDF Downloads 1424787 Online Compressor Washing for Gas Turbine Power Output
Authors: Enyia James Diwa, Isaiah Thank-God Ebi, Dodeye Ina Igbong
Abstract:
The privatization of utilities has brought about very strong competition in industries such as petrochemical and gas distribution among others, considering the continuous increase in cost of fuel. This has brought about the intense reason for gas turbine owners and operators to reduce and control performance degradation of the engine in other to minimize cost. The most common and very crucial problem of the gas turbine is the fouling of compressor, which is mostly caused by a reduction in flow capacity, compressor efficiency, and pressure ratio, this, in turn, lead to the engine compressor re-matching and output power and thermal efficiency reduction. The content of this paper encompasses a detailed presentation of the major causes, effects and control mechanism of fouling. The major emphasis is on compressor water washing to enable power augmentation. A modelled gas turbine similar to that of GE LM6000 is modelled for the current study, based on TURBOMATCH which is a Cranfield University software specifically made for gas turbine performance simulation and fouling detection. The compounded and intricate challenges of compressor online water washing of large output gas turbine are carried out. The treatment is applied to axial compressor used in the petrochemical and hydrocarbon industry.Keywords: gas turbine, fouling, degradation, compressor washing
Procedia PDF Downloads 3524786 Comparati̇ve Study of Pi̇xel and Object-Based Image Classificati̇on Techni̇ques for Extracti̇on of Land Use/Land Cover Informati̇on
Authors: Mahesh Kumar Jat, Manisha Choudhary
Abstract:
Rapid population and economic growth resulted in changes in large-scale land use land cover (LULC) changes. Changes in the biophysical properties of the Earth's surface and its impact on climate are of primary concern nowadays. Different approaches, ranging from location-based relationships or modelling earth surface - atmospheric interaction through modelling techniques like surface energy balance (SEB) have been used in the recent past to examine the relationship between changes in Earth surface land cover and climatic characteristics like temperature and precipitation. A remote sensing-based model i.e., Surface Energy Balance Algorithm for Land (SEBAL), has been used to estimate the surface heat fluxes over Mahi Bajaj Sagar catchment (India) from 2001 to 2020. Landsat ETM and OLI satellite data are used to model the SEB of the area. Changes in observed precipitation and temperature, obtained from India Meteorological Department (IMD) have been correlated with changes in surface heat fluxes to understand the relative contributions of LULC change in changing these climatic variables. Results indicate a noticeable impact of LULC changes on climatic variables, which are aligned with respective changes in SEB components. Results suggest that precipitation increases at a rate of 20 mm/year. The maximum and minimum temperature decreases and increases at 0.007 ℃ /year and 0.02 ℃ /year, respectively. The average temperature increases at 0.009 ℃ /year. Changes in latent heat flux and sensible heat flux positively correlate with precipitation and temperature, respectively. Variation in surface heat fluxes influences the climate parameters and is an adequate reason for climate change. So, SEB modelling is helpful to understand the LULC change and its impact on climate.Keywords: remote sensing, GIS, object based, classification
Procedia PDF Downloads 1374785 Model Evaluation of Nanosecond, High-Intensity Electric Pulses Induced Cellular Apoptosis
Authors: Jiahui Song, Ravindra Joshi
Abstract:
High-intensity, nanosecond, pulsed electric fields have been shown to be useful non-thermal tools capable of producing a variety of specific cellular responses. While reversible and temporary changes are often desired based on electromanipulation, irreversible effects can also be important objectives. These include elimination of tumor cells and bacterial decontamination. A simple model-based rate-equation treatment of the various cellular biochemical processes was used to qualitatively predict the pulse number-dependent caspase activation and cell survival trends. The model incorporated the caspase-8 associated extrinsic pathway, the delay inherent in its activation, cytochrome c release, and the internal feedback mechanism between caspase-3 and Bid. Results were roughly in keeping with the experimental cell-survival data. A pulse-number threshold was predicted followed by a near-exponential fall-off. The intrinsic pathway was shown to be much weaker as compared to the extrinsic mechanism for electric pulse induced cell apoptosis. Also, delays of about an hour are predicted for detectable molecular concentration increases following electrical pulsing.Keywords: apoptosis, cell survival, model, pathway
Procedia PDF Downloads 2404784 Two Coordination Polymers Synthesized from Various N-Donor Clusters Spaced by Terephtalic Acid for Efficient Photocatalytic Degradation of Ibuprofen in Water under Solar and Artificial Irradiation
Authors: Amina Adala, Nadra Debbache, Tahar Sehili
Abstract:
Coordination polymers and uniformly {[Zn(II)(BIPY)(Pht)]n} (1), {[Zn (HYD)(Pht)]n} (2) (BIPY = 4,4’ bipyridine, Pht = terephtalic acid, HYD = 8-hydroxyquinoline) have been successfully synthesized by a hydrothermal process using aqueous zinc solution. The as-prepared compounds phases were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy, UV-visible spectroscopy, thermogravimetric analysis (TGA), and the electrochemistry study by the voltammetry cyclic. The results showed a crystalline phase for CP1 however, CP2 requires recrystallization; the FTIR showed the presence of characteristic bands of all ligands; besides that, TGA shows thermal stability up to 300°C. The electrochemistry study showed a good charge transfer between the ligands and Zn metal for the two components. UV-Vis measurement showed strong absorption in a wide range from UV to visible light with a band gap of 2.69 eV for CP1 and 2.56 eV for CP2, smaller than that of ZnO. This represents an alternative to using ZnO. The Ibuprofen IBP decomposition kinetics of 5.10⁻⁵ mol.L⁻¹ under solar and artificial light were studied for different irradiation conditions. Good photocatalytic properties were observed due to their high surface area.Keywords: metal-organic frameworks, photocatalysis, photodegradation, organic pollutant, ibuprofen
Procedia PDF Downloads 894783 Theoretical Evaluation of Minimum Superheat, Energy and Exergy in a High-Temperature Heat Pump System Operating with Low GWP Refrigerants
Authors: Adam Y. Sulaiman, Donal F. Cotter, Ming J. Huang, Neil J. Hewitt
Abstract:
Suitable low global warming potential (GWP) refrigerants that conform to F-gas regulations are required to extend the operational envelope of high-temperature heat pumps (HTHPs) used for industrial waste heat recovery processes. The thermophysical properties and characteristics of these working fluids need to be assessed to provide a comprehensive understanding of operational effectiveness in HTHP applications. This paper presents the results of a theoretical simulation to investigate a range of low-GWP refrigerants and their suitability to supersede refrigerants HFC-245fa and HFC-365mfc. A steady-state thermodynamic model of a single-stage HTHP with an internal heat exchanger (IHX) was developed to assess system cycle characteristics at temperature ranges between 50 to 80 °C heat source and 90 to 150 °C heat sink. A practical approach to maximize the operational efficiency was examined to determine the effects of regulating minimum superheat within the process and subsequent influence on energetic and exergetic efficiencies. A comprehensive map of minimum superheat across the HTHP operating variables were used to assess specific tipping points in performance at 30 and 70 K temperature lifts. Based on initial results, the refrigerants HCFO-1233zd(E) and HFO-1336mzz(Z) were found to be closely aligned matches for refrigerants HFC-245fa and HFC-365mfc. The overall results show effective performance for HCFO-1233zd(E) occurs between 5-7 K minimum superheat, and HFO-1336mzz(Z) between 18-21 K dependant on temperature lift. This work provides a method to optimize refrigerant selection based on operational indicators to maximize overall HTHPs system performance.Keywords: high-temperature heat pump, minimum superheat, energy & exergy efficiency, low GWP refrigerants
Procedia PDF Downloads 1894782 Properties of Modified Dry Masonry Mixtures for Effective Masonry Units
Authors: Vyacheslav S. Semenov, Tamara A. Rozovskaya
Abstract:
The paper is devoted to the problem of the development of dry light-weight mixtures with hollow ceramics microspheres (CMS) for masonry works. For the one-layer fencing structures including effective masonry units, the use of “warm” masonry mortars is necessary. The used light-weight masonry mortars do not provide the brand strength and thermal uniformity of the fencing structures because of high average density. The CMS are effective light-weight aggregate for such mortars. The influence of the dosage of CMS on the physics-and-mechanics parameters and the technological properties of the masonry mortars were studied. The optimal mixture compositions have been obtained and their main properties have been determined. The influence of an air-entraining admixture and redispersible polymer powders on the average density and physics-and-mechanics parameters of the masonry mortars were studied. The optimal compositions of light-weight dry masonry mixtures with CMS have been suggested.Keywords: dry mortar mixtures, light-weight dry mixtures, hollow ceramics microspheres, masonry mortars, “warm” mortars, air-entraining admixture, redispersible polymer powders
Procedia PDF Downloads 5084781 Crystal Nucleation in 3D Printed Polymer Scaffolds in Tissue Engineering
Authors: Amani Alotaibi
Abstract:
3D printing has emerged as a pivotal technique for scaffold development, particularly in the field of bone tissue regeneration, due to its ability to customize scaffolds to fit complex geometries of bone defects. Among the various methods available, fused deposition modeling (FDM) is particularly promising as it avoids the use of solvents or toxic chemicals during fabrication. This study investigates the effects of three key parameters, extrusion temperature, screw rotational speed, and deposition speed, on the crystallization and mechanical properties of polycaprolactone (PCL) scaffolds. Three extrusion temperatures (70°C, 80°C, and 90°C), three screw speeds (10 RPM, 15 RPM, and 20 RPM), and three deposition speeds (8 mm/s, 10 mm/s, and 12 mm/s) were evaluated. The scaffolds were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and tensile testing to assess changes in crystallinity and mechanical properties. Additionally, the scaffolds were analyzed for crystal size and biocompatibility. The results demonstrated that increasing the extrusion temperature to 80°C, combined with a screw speed of 15 RPM and a deposition speed of 10 mm/s, significantly improved the crystallinity, compressive modulus, and thermal resistance of the PCL scaffolds. These findings suggest that by fine-tuning basic 3D printing parameters, it is possible to modulate the structural and mechanical properties of the scaffold, thereby enhancing its suitability for bone tissue regeneration.Keywords: 3D printing, polymer, scaffolds, tissue engineering, crystallization
Procedia PDF Downloads 19