Search results for: word recognition
1824 Identity Verification Based on Multimodal Machine Learning on Red Green Blue (RGB) Red Green Blue-Depth (RGB-D) Voice Data
Authors: LuoJiaoyang, Yu Hongyang
Abstract:
In this paper, we experimented with a new approach to multimodal identification using RGB, RGB-D and voice data. The multimodal combination of RGB and voice data has been applied in tasks such as emotion recognition and has shown good results and stability, and it is also the same in identity recognition tasks. We believe that the data of different modalities can enhance the effect of the model through mutual reinforcement. We try to increase the three modalities on the basis of the dual modalities and try to improve the effectiveness of the network by increasing the number of modalities. We also implemented the single-modal identification system separately, tested the data of these different modalities under clean and noisy conditions, and compared the performance with the multimodal model. In the process of designing the multimodal model, we tried a variety of different fusion strategies and finally chose the fusion method with the best performance. The experimental results show that the performance of the multimodal system is better than that of the single modality, especially in dealing with noise, and the multimodal system can achieve an average improvement of 5%.Keywords: multimodal, three modalities, RGB-D, identity verification
Procedia PDF Downloads 681823 The Automatisation of Dictionary-Based Annotation in a Parallel Corpus of Old English
Authors: Ana Elvira Ojanguren Lopez, Javier Martin Arista
Abstract:
The aims of this paper are to present the automatisation procedure adopted in the implementation of a parallel corpus of Old English, as well as, to assess the progress of automatisation with respect to tagging, annotation, and lemmatisation. The corpus consists of an aligned parallel text with word-for-word comparison Old English-English that provides the Old English segment with inflectional form tagging (gloss, lemma, category, and inflection) and lemma annotation (spelling, meaning, inflectional class, paradigm, word-formation and secondary sources). This parallel corpus is intended to fill a gap in the field of Old English, in which no parallel and/or lemmatised corpora are available, while the average amount of corpus annotation is low. With this background, this presentation has two main parts. The first part, which focuses on tagging and annotation, selects the layouts and fields of lexical databases that are relevant for these tasks. Most information used for the annotation of the corpus can be retrieved from the lexical and morphological database Nerthus and the database of secondary sources Freya. These are the sources of linguistic and metalinguistic information that will be used for the annotation of the lemmas of the corpus, including morphological and semantic aspects as well as the references to the secondary sources that deal with the lemmas in question. Although substantially adapted and re-interpreted, the lemmatised part of these databases draws on the standard dictionaries of Old English, including The Student's Dictionary of Anglo-Saxon, An Anglo-Saxon Dictionary, and A Concise Anglo-Saxon Dictionary. The second part of this paper deals with lemmatisation. It presents the lemmatiser Norna, which has been implemented on Filemaker software. It is based on a concordance and an index to the Dictionary of Old English Corpus, which comprises around three thousand texts and three million words. In its present state, the lemmatiser Norna can assign lemma to around 80% of textual forms on an automatic basis, by searching the index and the concordance for prefixes, stems and inflectional endings. The conclusions of this presentation insist on the limits of the automatisation of dictionary-based annotation in a parallel corpus. While the tagging and annotation are largely automatic even at the present stage, the automatisation of alignment is pending for future research. Lemmatisation and morphological tagging are expected to be fully automatic in the near future, once the database of secondary sources Freya and the lemmatiser Norna have been completed.Keywords: corpus linguistics, historical linguistics, old English, parallel corpus
Procedia PDF Downloads 2101822 Fight against Money Laundering with Optical Character Recognition
Authors: Saikiran Subbagari, Avinash Malladhi
Abstract:
Anti Money Laundering (AML) regulations are designed to prevent money laundering and terrorist financing activities worldwide. Financial institutions around the world are legally obligated to identify, assess and mitigate the risks associated with money laundering and report any suspicious transactions to governing authorities. With increasing volumes of data to analyze, financial institutions seek to automate their AML processes. In the rise of financial crimes, optical character recognition (OCR), in combination with machine learning (ML) algorithms, serves as a crucial tool for automating AML processes by extracting the data from documents and identifying suspicious transactions. In this paper, we examine the utilization of OCR for AML and delve into various OCR techniques employed in AML processes. These techniques encompass template-based, feature-based, neural network-based, natural language processing (NLP), hidden markov models (HMMs), conditional random fields (CRFs), binarizations, pattern matching and stroke width transform (SWT). We evaluate each technique, discussing their strengths and constraints. Also, we emphasize on how OCR can improve the accuracy of customer identity verification by comparing the extracted text with the office of foreign assets control (OFAC) watchlist. We will also discuss how OCR helps to overcome language barriers in AML compliance. We also address the implementation challenges that OCR-based AML systems may face and offer recommendations for financial institutions based on the data from previous research studies, which illustrate the effectiveness of OCR-based AML.Keywords: anti-money laundering, compliance, financial crimes, fraud detection, machine learning, optical character recognition
Procedia PDF Downloads 1441821 A Hybrid System for Boreholes Soil Sample
Authors: Ali Ulvi Uzer
Abstract:
Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.Keywords: feature selection, sequential forward selection, support vector machines, soil sample
Procedia PDF Downloads 4541820 Exploring the Use of Digital Tools for the Analysis and Interpretation of the Poems of Seamus Heaney
Authors: Ashok Sachdeva
Abstract:
This research paper delves into the application of digital tools, especially Voyant Tools and AntConc version 4.0, for the analysis and interpretation of Seamus Heaney's poems. Scholars and literary aficionados can acquire deeper insights into Heaney's writings by utilising these tools, revealing hidden nuances and improving their knowledge. This paper outlines the methodology used, presents sample analyses and evaluates the merits and limitations of using digital tools in literary analysis. The combination of traditional close reading with digital analysis tools promises to offer new paths for understanding Heaney's vast tapestry of poetry. Seamus Heaney, a Nobel winner known for his vivid poetry, provides a treasure mine of literary discovery. The advent of digital tools gives an exciting opportunity to reveal previously unknown layers of meaning within his works. This paper investigates the use of Voyant Tools and AntConc version 4.0 to analyse and understand Heaney's writings, demonstrating the symbiotic relationship between traditional literary analysis and cutting-edge digital methodologies. Methodology: To demonstrate the efficiency of digital tools in the analysis of Heaney's poetry, a sample of his notable works will be entered into Voyant Tools and AntConc version 4.0. The former provides a graphic representation of word frequency, word clouds, and patterns over numerous poems. The latter, a concordance tool, enables detailed linguistic analysis, revealing patterns, and linguistic subtleties.Keywords: digital tools, resonance, assonance, alliteration, creative quotient
Procedia PDF Downloads 711819 A Smartphone-Based Real-Time Activity Recognition and Fall Detection System
Authors: Manutchanok Jongprasithporn, Rawiphorn Srivilai, Paweena Pongsopha
Abstract:
Fall is the most serious accident leading to increased unintentional injuries and mortality. Falls are not only the cause of suffering and functional impairments to the individuals, but also the cause of increasing medical cost and days away from work. The early detection of falls could be an advantage to reduce fall-related injuries and consequences of falls. Smartphones, embedded accelerometer, have become a common device in everyday life due to decreasing technology cost. This paper explores a physical activity monitoring and fall detection application in smartphones which is a non-invasive biomedical device to determine physical activities and fall event. The combination of application and sensors could perform as a biomedical sensor to monitor physical activities and recognize a fall. We have chosen Android-based smartphone in this study since android operating system is an open-source and no cost. Moreover, android phone users become a majority of Thai’s smartphone users. We developed Thai 3 Axis (TH3AX) as a physical activities and fall detection application which included command, manual, results in Thai language. The smartphone was attached to right hip of 10 young, healthy adult subjects (5 males, 5 females; aged< 35y) to collect accelerometer and gyroscope data during performing physical activities (e.g., walking, running, sitting, and lying down) and falling to determine threshold for each activity. Dependent variables are including accelerometer data (acceleration, peak acceleration, average resultant acceleration, and time between peak acceleration). A repeated measures ANOVA was performed to test whether there are any differences between DVs’ means. Statistical analyses were considered significant at p<0.05. After finding threshold, the results were used as training data for a predictive model of activity recognition. In the future, accuracies of activity recognition will be performed to assess the overall performance of the classifier. Moreover, to help improve the quality of life, our system will be implemented with patients and elderly people who need intensive care in hospitals and nursing homes in Thailand.Keywords: activity recognition, accelerometer, fall, gyroscope, smartphone
Procedia PDF Downloads 6911818 Evaluation of Robust Feature Descriptors for Texture Classification
Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo
Abstract:
Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.Keywords: texture classification, texture descriptor, SIFT, SURF, ORB
Procedia PDF Downloads 3671817 Modelling and Control of Binary Distillation Column
Authors: Narava Manose
Abstract:
Distillation is a very old separation technology for separating liquid mixtures that can be traced back to the chemists in Alexandria in the first century A. D. Today distillation is the most important industrial separation technology. By the eleventh century, distillation was being used in Italy to produce alcoholic beverages. At that time, distillation was probably a batch process based on the use of just a single stage, the boiler. The word distillation is derived from the Latin word destillare, which means dripping or trickling down. By at least the sixteenth century, it was known that the extent of separation could be improved by providing multiple vapor-liquid contacts (stages) in a so called Rectifactorium. The term rectification is derived from the Latin words rectefacere, meaning to improve. Modern distillation derives its ability to produce almost pure products from the use of multi-stage contacting. Throughout the twentieth century, multistage distillation was by far the most widely used industrial method for separating liquid mixtures of chemical components.The basic principle behind this technique relies on the different boiling temperatures for the various components of the mixture, allowing the separation between the vapor from the most volatile component and the liquid of other(s) component(s). •Developed a simple non-linear model of a binary distillation column using Skogestad equations in Simulink. •We have computed the steady-state operating point around which to base our analysis and controller design. However, the model contains two integrators because the condenser and reboiler levels are not controlled. One particular way of stabilizing the column is the LV-configuration where we use D to control M_D, and B to control M_B; such a model is given in cola_lv.m where we have used two P-controllers with gains equal to 10.Keywords: modelling, distillation column, control, binary distillation
Procedia PDF Downloads 2751816 Culture of Writing and Writing of Culture: Organizational Connections and Pedagogical Implications of ESL Writing in Multilingual Philippine Setting
Authors: Randy S. Magdaluyo, Lea M. Cabar, Jefferson Q. Correa
Abstract:
One recurring issue in ESL writing is the confusing differences in the writing conventions of the first language and the target language. Culture may play an intriguing role in specifying writing features and structures that ESL writers have to follow. Although writing is typically organized in a three-part structure with introduction, body, and conclusion, it is important to analyze the complex nature of ESL writing. This study investigated the organizational features and structures of argumentative essays written in English by thirty college ESL students from three linguistic backgrounds (Cebuano, Chavacao, and Tausug) in a Philippine university. The nature of word order and sentence construction in the students’ essays and the specific components of the introduction, body, and conclusion were quantitatively and qualitatively analyzed based on ESL writing models. Focus group discussions were also conducted to help clarify the possible influence of students’ first language on the ways their essays were conceptualized and organized. Results indicate that while there was no significant difference in the overall introduction, body, and conclusion in all essays, the sentence length was interestingly different for each linguistic group of ESL students, and the word order was notably inconsistent with the S-V-O pattern of the target language. The first language was also revealed to have a facilitative role in the cognitive translation process of these ESL students. As such, implications for a multicultural writing pedagogy was discussed and recommended considering both the students’ native resources in their first language and the ESL writing models in their target language.Keywords: community funds of knowledge, contrastive rhetoric, ESL writing, multicultural writing pedagogy
Procedia PDF Downloads 1361815 Clustering Ethno-Informatics of Naming Village in Java Island Using Data Mining
Authors: Atje Setiawan Abdullah, Budi Nurani Ruchjana, I. Gede Nyoman Mindra Jaya, Eddy Hermawan
Abstract:
Ethnoscience is used to see the culture with a scientific perspective, which may help to understand how people develop various forms of knowledge and belief, initially focusing on the ecology and history of the contributions that have been there. One of the areas studied in ethnoscience is etno-informatics, is the application of informatics in the culture. In this study the science of informatics used is data mining, a process to automatically extract knowledge from large databases, to obtain interesting patterns in order to obtain a knowledge. While the application of culture described by naming database village on the island of Java were obtained from Geographic Indonesia Information Agency (BIG), 2014. The purpose of this study is; first, to classify the naming of the village on the island of Java based on the structure of the word naming the village, including the prefix of the word, syllable contained, and complete word. Second to classify the meaning of naming the village based on specific categories, as well as its role in the community behavioral characteristics. Third, how to visualize the naming of the village to a map location, to see the similarity of naming villages in each province. In this research we have developed two theorems, i.e theorems area as a result of research studies have collected intersection naming villages in each province on the island of Java, and the composition of the wedge theorem sets the provinces in Java is used to view the peculiarities of a location study. The methodology in this study base on the method of Knowledge Discovery in Database (KDD) on data mining, the process includes preprocessing, data mining and post processing. The results showed that the Java community prioritizes merit in running his life, always working hard to achieve a more prosperous life, and love as well as water and environmental sustainment. Naming villages in each location adjacent province has a high degree of similarity, and influence each other. Cultural similarities in the province of Central Java, East Java and West Java-Banten have a high similarity, whereas in Jakarta-Yogyakarta has a low similarity. This research resulted in the cultural character of communities within the meaning of the naming of the village on the island of Java, this character is expected to serve as a guide in the behavior of people's daily life on the island of Java.Keywords: ethnoscience, ethno-informatics, data mining, clustering, Java island culture
Procedia PDF Downloads 2821814 Multimodal Sentiment Analysis With Web Based Application
Authors: Shreyansh Singh, Afroz Ahmed
Abstract:
Sentiment Analysis intends to naturally reveal the hidden mentality that we hold towards an entity. The total of this assumption over a populace addresses sentiment surveying and has various applications. Current text-based sentiment analysis depends on the development of word embeddings and Machine Learning models that take in conclusion from enormous text corpora. Sentiment Analysis from text is presently generally utilized for consumer loyalty appraisal and brand insight investigation. With the expansion of online media, multimodal assessment investigation is set to carry new freedoms with the appearance of integral information streams for improving and going past text-based feeling examination using the new transforms methods. Since supposition can be distinguished through compelling follows it leaves, like facial and vocal presentations, multimodal opinion investigation offers good roads for examining facial and vocal articulations notwithstanding the record or printed content. These methodologies use the Recurrent Neural Networks (RNNs) with the LSTM modes to increase their performance. In this study, we characterize feeling and the issue of multimodal assessment investigation and audit ongoing advancements in multimodal notion examination in various spaces, including spoken surveys, pictures, video websites, human-machine, and human-human connections. Difficulties and chances of this arising field are additionally examined, promoting our theory that multimodal feeling investigation holds critical undiscovered potential.Keywords: sentiment analysis, RNN, LSTM, word embeddings
Procedia PDF Downloads 1181813 Traffic Light Detection Using Image Segmentation
Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra
Abstract:
Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks
Procedia PDF Downloads 1721812 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata
Authors: Pavan K. Rallabandi, Kailash C. Patidar
Abstract:
In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata
Procedia PDF Downloads 3871811 Ambisyllabic Conditioning in English: Evidence from the Accent of Nigerian Speakers of English
Authors: Nkereke Mfon Essien
Abstract:
In an ambisyllabic environment, one consonant sound simultaneously assumes both the coda and onset positions of a word due to its structural proclivity to affect two phonological processes or repair two ill-formed sequences in those syllable positions at the same time. This study sets out to examine the structural conditions that trigger this not-so-common phonological privilege for consonant sounds in the English language and Nigerian English and if such constraints could have any correspondence in the language studied. Data for the study were obtained from a native speaker of English who was the control and twenty (20) educated Nigerian speakers of English from the three ethnic/linguistic groups in Nigeria. Preliminary findings from the data show that ambisyllabicity in English is triggered mainly by stress, a condition which causes a consonant in a stressed syllable to become glottalised and simultaneously devoices the nearest voiced consonant in the next syllable. For example, in the word coupler,/'kʌplɜr/ is realized as ['kʌˀpl̥ɜr]. In some Nigerian English, preliminary findings show that ambisyllabicity is triggered by a sequence of intervocalic short, high central vowels and a coda nasal. Since the short vowel may not occur in an open syllable, the nasal serves to close the impermissible open syllable. However, since the Nigerian English foot structure does not permit a CVC.V syllable, the same coda nasal simultaneously repairs the impermissible syllable foot to (CV.CV) by applying the Maximal Onset Principle since this is a preliminary investigation, a conclusion would not suffice yet.Keywords: ambisyllabicity, nasal, coda, stress, phonological process, syllable, foot
Procedia PDF Downloads 171810 A Similar Image Retrieval System for Auroral All-Sky Images Based on Local Features and Color Filtering
Authors: Takanori Tanaka, Daisuke Kitao, Daisuke Ikeda
Abstract:
The aurora is an attractive phenomenon but it is difficult to understand the whole mechanism of it. An approach of data-intensive science might be an effective approach to elucidate such a difficult phenomenon. To do that we need labeled data, which shows when and what types of auroras, have appeared. In this paper, we propose an image retrieval system for auroral all-sky images, some of which include discrete and diffuse aurora, and the other do not any aurora. The proposed system retrieves images which are similar to the query image by using a popular image recognition method. Using 300 all-sky images obtained at Tromso Norway, we evaluate two methods of image recognition methods with or without our original color filtering method. The best performance is achieved when SIFT with the color filtering is used and its accuracy is 81.7% for discrete auroras and 86.7% for diffuse auroras.Keywords: data-intensive science, image classification, content-based image retrieval, aurora
Procedia PDF Downloads 4471809 Difficulties in the Emotional Processing of Intimate Partner Violence Perpetrators
Authors: Javier Comes Fayos, Isabel RodríGuez Moreno, Sara Bressanutti, Marisol Lila, Angel Romero MartíNez, Luis Moya Albiol
Abstract:
Given the great impact produced by gender-based violence, its comprehensive approach seems essential. Consequently, research has focused on risk factors for violent behaviour, linking various psychosocial variables, as well as cognitive and neuropsychological deficits with the aggressors. However, studies on affective processing are scarce, so the present study investigates possible emotional alterations in men convicted of gender violence. The participants were 51 aggressors, who attended the CONTEXTO program with sentences of less than two years, and 47 men with no history of violence. The sample did not differ in age, socioeconomic level, education, or alcohol and other substances consumption. Anger, alexithymia and facial recognition of other people´s emotions were assessed through the State-Trait Anger Expression Inventory (STAXI-2), the Toronto Alexithymia Scale (TAS-20) and Reading the mind in the eyes (REM), respectively. Men convicted of gender-based violence showed higher scores on the anger trait and temperament dimensions, as well as on the anger expression index. They also scored higher on alexithymia and in the identification and emotional expression subscales. In addition, they showed greater difficulties in the facial recognition of emotions by having a lower score in the REM. These results seem to show difficulties in different affective areas in men condemned for gender violence. The deficits are reflected in greater difficulty in identifying and expressing emotions, in processing anger and in recognizing the emotions of others. All these difficulties have been related to the use of violent behavior. Consequently, it is essential and necessary to include emotional regulation in intervention programs for men who have been convicted of gender-based violence.Keywords: alexithymia, anger, emotional processing, emotional recognition, empathy, intimate partner violence
Procedia PDF Downloads 1981808 Neurocognitive and Executive Function in Cocaine Addicted Females
Authors: Gwendolyn Royal-Smith
Abstract:
Cocaine ranks as one of the world’s most addictive and commonly abused stimulant drugs. Recent evidence indicates that the abuse of cocaine has risen so quickly among females that this group now accounts for about 40 percent of all users in the United States. Neuropsychological studies have demonstrated that specific neural activation patterns carry higher risks for neurocognitive and executive function in cocaine addicted females thereby increasing their vulnerability for poorer treatment outcomes and more frequent post-treatment relapse when compared to males. This study examined secondary data with a convenience sample of 164 cocaine addicted male and females to assess neurocognitive and executive function. The principal objective of this study was to assess whether individual performance on the Stroop Word Color Task is predictive of treatment success by gender. A second objective of the study evaluated whether individual performance employing neurocognitive measures including the Stroop Word-Color task, the Rey Auditory Verbal Learning Test (RALVT), the Iowa Gambling Task, the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale (FrSBE) test demonstrated differences in neurocognitive and executive function performance by gender. Logistic regression models were employed utilizing a covariate adjusted model application. Initial analyses of the Stroop Word color tasks indicated significant differences in the performance of males and females, with females experiencing more challenges in derived interference reaction time and associate recall ability. In early testing including the Rey Auditory Verbal Learning Test (RALVT), the number of advantageous vs disadvantageous cards from the Iowa Gambling Task, the number of perseverance errors from the Wisconsin Card Sorting Task (WISCT), the total score from the Barratte Impulsiveness Scale (Version 11) (BIS-11) and the total score from the Frontal Systems Behavioral Scale, results were mixed with women scoring lower in multiple indicators in both neurocognitive and executive function.Keywords: cocaine addiction, gender, neuropsychology, neurocognitive, executive function
Procedia PDF Downloads 3991807 Analyzing Microblogs: Exploring the Psychology of Political Leanings
Authors: Meaghan Bowman
Abstract:
Microblogging has become increasingly popular for commenting on current events, spreading gossip, and encouraging individualism--which favors its low-context communication channel. These social media (SM) platforms allow users to express opinions while interacting with a wide range of populations. Hashtags allow immediate identification of like-minded individuals worldwide on a vast array of topics. The output of the analytic tool, Linguistic Inquiry and Word Count (LIWC)--a program that associates psychological meaning with the frequency of use of specific words--may suggest the nature of individuals’ internal states and general sentiments. When applied to groupings of SM posts unified by a hashtag, such information can be helpful to community leaders during periods in which the forming of public opinion happens in parallel with the unfolding of political, economic, or social events. This is especially true when outcomes stand to impact the well-being of the group. Here, we applied the online tools, Google Translate and the University of Texas’s LIWC, to a 90-posting sample from a corpus of Colombian Spanish microblogs. On translated disjoint sets, identified by hashtag as being authored by advocates of voting “No,” advocates voting “Yes,” and entities refraining from hashtag use, we observed the value of LIWC’s Tone feature as distinguishing among the categories and the word “peace,” as carrying particular significance, due to its frequency of use in the data.Keywords: Colombia peace referendum, FARC, hashtags, linguistics, microblogging, social media
Procedia PDF Downloads 1061806 Conversational Assistive Technology of Visually Impaired Person for Social Interaction
Authors: Komal Ghafoor, Tauqir Ahmad, Murtaza Hanif, Hira Zaheer
Abstract:
Assistive technology has been developed to support visually impaired people in their social interactions. Conversation assistive technology is designed to enhance communication skills, facilitate social interaction, and improve the quality of life of visually impaired individuals. This technology includes speech recognition, text-to-speech features, and other communication devices that enable users to communicate with others in real time. The technology uses natural language processing and machine learning algorithms to analyze spoken language and provide appropriate responses. It also includes features such as voice commands and audio feedback to provide users with a more immersive experience. These technologies have been shown to increase the confidence and independence of visually impaired individuals in social situations and have the potential to improve their social skills and relationships with others. Overall, conversation-assistive technology is a promising tool for empowering visually impaired people and improving their social interactions. One of the key benefits of conversation-assistive technology is that it allows visually impaired individuals to overcome communication barriers that they may face in social situations. It can help them to communicate more effectively with friends, family, and colleagues, as well as strangers in public spaces. By providing a more seamless and natural way to communicate, this technology can help to reduce feelings of isolation and improve overall quality of life. The main objective of this research is to give blind users the capability to move around in unfamiliar environments through a user-friendly device by face, object, and activity recognition system. This model evaluates the accuracy of activity recognition. This device captures the front view of the blind, detects the objects, recognizes the activities, and answers the blind query. It is implemented using the front view of the camera. The local dataset is collected that includes different 1st-person human activities. The results obtained are the identification of the activities that the VGG-16 model was trained on, where Hugging, Shaking Hands, Talking, Walking, Waving video, etc.Keywords: dataset, visually impaired person, natural language process, human activity recognition
Procedia PDF Downloads 581805 The Effective Method for Postering Thinking Dispositions of Learners
Authors: H. Jalahi, A. Yazdanpanah Nozari
Abstract:
Background and Purpose: Assessment of learners’ performance is an important factors in teaching-learning process. When a factor is sensitive and has high influence on life, their assessment should be done precisely. Thinking dispositions are very important factors in medical education because of its specific condition. In this study a model is designed for fostering thinking dispositions of learners in which authentic assessment is an important element. Materials and Methods: Objective based research is developmental, and such a model was not designed for curricula. Data collection and comparing approaches about assessment and analyzing current assessments offered applied proposals. Results: Based on research findings, the current assessments are response-based, that is students instead of product of response, only offers the specific response which the teachers expects; but authentic assessment is a form of assessment in which students are asked to perform real-word tasks that demonstrate meaningful application of essential knowledge and skills. Conclusion: Because of the difficulties and unexpected problems in life and individuals needs to lifelong learning and conditions in medical course that require decision making in specific times, we must pay attention to reach thinking dispositions and it should be included in curriculum. Authentic assessment as an important aspect of curriculum can help fostering thinking dispositions of learners. Using this kind of assessments which focus on application of information and skills to solve real-word tasks have more important role in medical courses.Keywords: assessment, authentic, medical courses, developmental
Procedia PDF Downloads 3641804 Development of a Computer Vision System for the Blind and Visually Impaired Person
Authors: Rodrigo C. Belleza, Jr., Roselyn A. Maaño, Karl Patrick E. Camota, Darwin Kim Q. Bulawan
Abstract:
Eyes are an essential and conspicuous organ of the human body. Human eyes are outward and inward portals of the body that allows to see the outside world and provides glimpses into ones inner thoughts and feelings. Inevitable blindness and visual impairments may result from eye-related disease, trauma, or congenital or degenerative conditions that cannot be corrected by conventional means. The study emphasizes innovative tools that will serve as an aid to the blind and visually impaired (VI) individuals. The researchers fabricated a prototype that utilizes the Microsoft Kinect for Windows and Arduino microcontroller board. The prototype facilitates advanced gesture recognition, voice recognition, obstacle detection and indoor environment navigation. Open Computer Vision (OpenCV) performs image analysis, and gesture tracking to transform Kinect data to the desired output. A computer vision technology device provides greater accessibility for those with vision impairments.Keywords: algorithms, blind, computer vision, embedded systems, image analysis
Procedia PDF Downloads 3161803 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory
Authors: Xu Jiaqiao
Abstract:
Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments
Procedia PDF Downloads 931802 Disaggregating and Forecasting the Total Energy Consumption of a Building: A Case Study of a High Cooling Demand Facility
Authors: Juliana Barcelos Cordeiro, Khashayar Mahani, Farbod Farzan, Mohsen A. Jafari
Abstract:
Energy disaggregation has been focused by many energy companies since energy efficiency can be achieved when the breakdown of energy consumption is known. Companies have been investing in technologies to come up with software and/or hardware solutions that can provide this type of information to the consumer. On the other hand, not all people can afford to have these technologies. Therefore, in this paper, we present a methodology for breaking down the aggregate consumption and identifying the highdemanding end-uses profiles. These energy profiles will be used to build the forecast model for optimal control purpose. A facility with high cooling load is used as an illustrative case study to demonstrate the results of proposed methodology. We apply a high level energy disaggregation through a pattern recognition approach in order to extract the consumption profile of its rooftop packaged units (RTUs) and present a forecast model for the energy consumption.Keywords: energy consumption forecasting, energy efficiency, load disaggregation, pattern recognition approach
Procedia PDF Downloads 2761801 Financial Reporting Quality and International Financial Reporting
Authors: Matthias Nnadi
Abstract:
Using samples of 250 large listed firms by market capitalization in China and Hong Kong, we conducted empirical test to determine the impact of regulatory environment on reporting quality following IFRS convergence using three financial reporting measures; earning management, timely loss recognition and value relevance. Our results indicate that accounting data are more value relevant for Hong Kong listed firms than the Chinese A-share firms. The empirical results for timely loss recognition further reveal that there is a larger coefficient estimate on bad news earnings, which suggests that Chines A-share firms are more likely to report losses in a timely manner. The results support the evidence that substantial convergence of IFRS can improve financial reporting quality in a regulated environment such as China. This further supports the expectation that IFRS are relevant to China and has positive effect on its accounting practice and quality.Keywords: reporting, quality, earning, loss, relevance, financial, China, Hong Kong
Procedia PDF Downloads 4601800 Awareness of Turkish Cypriots on Domestic Violence: Exploratory Study of Cultural Influence on Public Health
Authors: Nazif Fuat Turkmen
Abstract:
Domestic violence is the most common form of violence that risks the health and psychological well-being of victims and its witnesses. Psychology as a scientific field has made contributions in research, exploration, assessment, intervention, and prevention of domestic violence. The present study will be exploring the level of recognition of Turkish Cypriots on domestic violence and their understanding about it in general terms. While discussing the level of awareness of Turkish Cypriots on domestic violence and the effects of this level of awareness on the general well-being of the members of the society, the most common types of domestic violence as well as how Turkish Cypriots recognize and interpret these different types will be explored. The participants consisted of 224 Turkish Cypriots; 48.4% (n= 109) were female, 51.1% (n=115) were male. For the purpose of the study, a 28-item questionnaire was prepared and used for data collection. According to the results, there is a strong relationship between the education level of the respondents and their awareness on domestic violence. The study shows that cultural approaches on child rearing effect people’s recognition of violence in general and awareness on domestic violence in particular.Keywords: culture, domestic violence, health psychology, public health, Turkish Cypriots, violence
Procedia PDF Downloads 4511799 Phonological Processing and Its Role in Pseudo-Word Decoding in Children Learning to Read Kannada Language between 5.6 to 8.6 Years
Authors: Vangmayee. V. Subban, Somashekara H. S, Shwetha Prabhu, Jayashree S. Bhat
Abstract:
Introduction and Need: Phonological processing is critical in learning to read alphabetical and non-alphabetical languages. However, its role in learning to read Kannada an alphasyllabary is equivocal. The literature has focused on the developmental role of phonological awareness on reading. To the best of authors knowledge, the role of phonological memory and phonological naming has not been addressed in alphasyllabary Kannada language. Therefore, there is a need to evaluate the comprehensive role of the phonological processing skills in Kannada on word decoding skills during the early years of schooling. Aim and Objectives: The present study aimed to explore the phonological processing abilities and their role in learning to decode pseudowords in children learning to read the Kannada language during initial years of formal schooling between 5.6 to 8.6 years. Method: In this cross sectional study, 60 typically developing Kannada speaking children, 20 each from Grade I, Grade II, and Grade III between the age range of 5.6 to 6.6 years, 6.7 to 7.6 years and 7.7 to 8.6 years respectively were selected from Kannada medium schools. Phonological processing abilities were assessed using an assessment tool specifically developed to address the objectives of the present research. The assessment tool was content validated by subject experts and had good inter and intra-subject reliability. Phonological awareness was assessed at syllable level using syllable segmentation, blending, and syllable stripping at initial, medial and final position. Phonological memory was assessed using pseudoword repetition task and phonological naming was assessed using rapid automatized naming of objects. Both phonological awareneness and phonological memory measures were scored for the accuracy of the response, whereas Rapid Automatized Naming (RAN) was scored for total naming speed. Results: The mean scores comparison using one-way ANOVA revealed a significant difference (p ≤ 0.05) between the groups on all the measures of phonological awareness, pseudoword repetition, rapid automatized naming, and pseudoword reading. Subsequent post-hoc grade wise comparison using Bonferroni test revealed significant differences (p ≤ 0.05) between each of the grades for all the tasks except (p ≥ 0.05) for syllable blending, syllable stripping, and pseudoword repetition between Grade II and Grade III. The Pearson correlations revealed a highly significant positive correlation (p=0.000) between all the variables except phonological naming which had significant negative correlations. However, the correlation co-efficient was higher for phonological awareness measures compared to others. Hence, phonological awareness was chosen a first independent variable to enter in the hierarchical regression equation followed by rapid automatized naming and finally, pseudoword repetition. The regression analysis revealed syllable awareness as a single most significant predictor of pseudoword reading by explaining the unique variance of 74% and there was no significant change in R² when RAN and pseudoword repetition were added subsequently to the regression equation. Conclusion: Present study concluded that syllable awareness matures completely by Grade II, whereas the phonological memory and phonological naming continue to develop beyond Grade III. Amongst phonological processing skills, phonological awareness, especially syllable awareness is crucial for word decoding than phonological memory and naming during initial years of schooling.Keywords: phonological awareness, phonological memory, phonological naming, phonological processing, pseudo-word decoding
Procedia PDF Downloads 1731798 A Preliminary Analysis of The Effect After Cochlear Implantation in the Unilateral Hearing Loss
Authors: Haiqiao Du, Qian Wang, Shuwei Wang, Jianan Li
Abstract:
Purpose: The aim is to evaluate the effect of cochlear implantation (CI) in patients with unilateral hearing loss, with a view to providing data support for the selection of therapeutic interventions for patients with single-sided deafness (SSD)/asymmetric hearing loss (AHL) and the broadening of the indications for CI. Methods: The study subjects were patients with unilateral hearing loss who underwent cochlear implantation surgery in our hospital in August 2022 and were willing to cooperate with the test and were divided into 2 groups: SSD group and AHL group. The enrolled patients were followed up for hearing level, tinnitus changes, speech recognition ability, sound source localization ability, and quality of life at five-time points: preoperatively, and 1, 3, 6, and 12 months after postoperative start-up. Results: As of June 30, 2024, a total of nine patients completed follow-up, including four in the SSD group and five in the AHL group. The mean postoperative hearing aid thresholds on the CI side were 31.56 dB HL and 34.75 dB HL in the two groups, respectively. Of the four patients with preoperative tinnitus symptoms (three patients in the SSD group and one patient in the AHL group), all showed a degree of reduction in Tinnitus Handicap Inventory (THI) scores, except for one patient who showed no change. In both the SSD and AHL groups, the sound source localization results (expressed as RMS error values, with smaller values indicating better ability) were 66.87° and 77.41° preoperatively and 29.34° and 54.60° 12 months after postoperative start-up, respectively, which showed that the ability to localize the sound source improved significantly with longer implantation time. The level of speech recognition was assessed by 3 test methods: speech recognition rate of monosyllabic words in a quiet environment and speech recognition rate of different sound source directions at 0° and 90° (implantation side) in a noisy environment. The results of the 3 tests were 99.0%, 72.0%, and 36.0% in the preoperative SSD group and 96.0%, 83.6%, and 73.8% in the AHL group, respectively, whereas they fluctuated in the postoperative period 3 months after start-up, and stabilized at 12 months after start-up to 99.0%, 100.0%, and 100.0% in the SSD group and 99.5%, 96.0%, and 99.0%. Quality of life was subjectively evaluated by three tests: the Speech Spatial Quality of Sound Auditory Scale (SSQ-12), the Quality-of-Life Bilateral Listening Questionnaire (QLBHE), and the Nijmegen Cochlear Implantation Inventory (NCIQ). The results of the SSQ-12 (with a 10-point score out of 10) showed that the scores of preoperative and postoperative 12 months after start-up were 6.35 and 6.46 in the SSD group, while they were 5.61 and 9.83 in the AHL group. The QLBHE scores (100 points out of 100) were 61.0 and 76.0 in the SSD group and 53.4 and 63.7 in the AHL group for the preoperative versus the postoperative 12 months after start-up. Conclusion: Patients with unilateral hearing loss can benefit from cochlear implantation: CI implantation is effective in compensating for the hearing on the affected side and reduces the accompanying tinnitus symptoms; there is a significant improvement in sound source localization and speech recognition in the presence of noise; and the quality of life is improved.Keywords: single-sided deafness, asymmetric hearing loss, cochlear implant, unilateral hearing loss
Procedia PDF Downloads 121797 The Impact of Trait and Mathematical Anxiety on Oscillatory Brain Activity during Lexical and Numerical Error-Recognition Tasks
Authors: Alexander N. Savostyanov, Tatyana A. Dolgorukova, Elena A. Esipenko, Mikhail S. Zaleshin, Margherita Malanchini, Anna V. Budakova, Alexander E. Saprygin, Yulia V. Kovas
Abstract:
The present study compared spectral-power indexes and cortical topography of brain activity in a sample characterized by different levels of trait and mathematical anxiety. 52 healthy Russian-speakers (age 17-32; 30 males) participated in the study. Participants solved an error recognition task under 3 conditions: A lexical condition (simple sentences in Russian), and two numerical conditions (simple arithmetic and complicated algebraic problems). Trait and mathematical anxiety were measured using self-repot questionnaires. EEG activity was recorded simultaneously during task execution. Event-related spectral perturbations (ERSP) were used to analyze spectral-power changes in brain activity. Additionally, sLORETA was applied in order to localize the sources of brain activity. When exploring EEG activity recorded after tasks onset during lexical conditions, sLORETA revealed increased activation in frontal and left temporal cortical areas, mainly in the alpha/beta frequency ranges. When examining the EEG activity recorded after task onset during arithmetic and algebraic conditions, additional activation in delta/theta band in the right parietal cortex was observed. The ERSP plots reveled alpha/beta desynchronizations within a 500-3000 ms interval after task onset and slow-wave synchronization within an interval of 150-350 ms. Amplitudes of these intervals reflected the accuracy of error recognition, and were differently associated with the three (lexical, arithmetic and algebraic) conditions. The level of trait anxiety was positively correlated with the amplitude of alpha/beta desynchronization. The level of mathematical anxiety was negatively correlated with the amplitude of theta synchronization and of alpha/beta desynchronization. Overall, trait anxiety was related with an increase in brain activation during task execution, whereas mathematical anxiety was associated with increased inhibitory-related activity. We gratefully acknowledge the support from the №11.G34.31.0043 grant from the Government of the Russian Federation.Keywords: anxiety, EEG, lexical and numerical error-recognition tasks, alpha/beta desynchronization
Procedia PDF Downloads 5241796 Micro-Rest: Extremely Short Breaks in Post-Learning Interference Support Memory Retention over the Long Term
Authors: R. Marhenke, M. Martini
Abstract:
The distraction of attentional resources after learning hinders long-term memory consolidation compared to several minutes of post-encoding inactivity in form of wakeful resting. We tested whether an 8-minute period of wakeful resting, compared to performing an adapted version of the d2 test of attention after learning, supports memory retention. Participants encoded and immediately recalled a word list followed by either an 8 minute period of wakeful resting (eyes closed, relaxed) or by performing an adapted version of the d2 test of attention (scanning and selecting specific characters while ignoring others). At the end of the experimental session (after 12-24 min) and again after 7 days, participants were required to complete a surprise free recall test of both word lists. Our results showed no significant difference in memory retention between the experimental conditions. However, we found that participants who completed the first lines of the d2 test in less than the given time limit of 20 seconds and thus had short unfilled intervals before switching to the next test line, remembered more words over the 12-24 minute and over the 7 days retention interval than participants who did not complete the first lines. This interaction occurred only for the first test lines, with the highest temporal proximity to the encoding task and not for later test lines. Differences in retention scores between groups (completed first line vs. did not complete) seem to be widely independent of the general performance in the d2 test. Implications and limitations of these exploratory findings are discussed.Keywords: long-term memory, retroactive interference, attention, forgetting
Procedia PDF Downloads 1311795 Cities Idioms Together with ICT and Countries Interested in the Smart City: A Review of Current Status
Authors: Qasim HamaKhurshid HamaMurad, Normal Mat Jusoh, Uznir Ujang
Abstract:
The concept of the city with an infrastructure of (information and communication) Technology embraces several definitions depending on the meanings of the word "smart" are (intelligent city, smart city, knowledge city, ubiquitous city, sustainable city, digital city). Many definitions of the city exist, but this chapter explores which one has been universally acknowledged. From literature analysis, it emerges that Smart City is the most used terminologies in literature through the digital database to indicate the smartness of a city. This paper share exploration the research from main seven website digital databases and journal about Smart City from "January 2015 to the February of 2020" to (a) Time research, to examine the causes of the Smart City phenomenon and other concept literature in the last five years (b) Review of words, to see how and where the smart city specification and relation different definition And(c) Geographical research to consider where Smart Cities' greatest concentrations are in the world and are Malaysia has interacting with the smart city, and (d) how many papers published from all Malaysia from 2015 to 2020 about smart citie. Three steps are followed to accomplish the goal. (1)The analysis covered publications Build a systematic literature review search strategy to gather a representative sub-set of papers on Smart City and other definitions utilizing (GoogleScholar, Elsevier, Scopus, ScienceDirect, IEEEXplore, WebofScience, Springer) January2015-February2020. (2)A bibliometric map was formed based on the bibliometric evaluation using the mapping technique VOSviewer to visualize differences. (3)VOSviewer application program was used to build initial clusters. The Map of Bibliometric Visualizes the analytical findings which targeted the word harmony.Keywords: bibliometric research, smart city, ICT, VOSviewer, urban modernization
Procedia PDF Downloads 200