Search results for: wireless impulse generator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1446

Search results for: wireless impulse generator

876 Iterative Replanning of Diesel Generator and Energy Storage System for Stable Operation of an Isolated Microgrid

Authors: Jiin Jeong, Taekwang Kim, Kwang Ryel Ryu

Abstract:

The target microgrid in this paper is isolated from the large central power system and is assumed to consist of wind generators, photovoltaic power generators, an energy storage system (ESS), a diesel power generator, the community load, and a dump load. The operation of such a microgrid can be hazardous because of the uncertain prediction of power supply and demand and especially due to the high fluctuation of the output from the wind generators. In this paper, we propose an iterative replanning method for determining the appropriate level of diesel generation and the charging/discharging cycles of the ESS for the upcoming one-hour horizon. To cope with the uncertainty of the estimation of supply and demand, the one-hour plan is built repeatedly in the regular interval of one minute by rolling the one-hour horizon. Since the plan should be built with a sufficiently large safe margin to avoid any possible black-out, some energy waste through the dump load is inevitable. In our approach, the level of safe margin is optimized through learning from the past experience. The simulation experiments show that our method combined with the margin optimization can reduce the dump load compared to the method without such optimization.

Keywords: microgrid, operation planning, power efficiency optimization, supply and demand prediction

Procedia PDF Downloads 432
875 Local Tax Map Software System Development

Authors: Smithinun Thairoongrojana

Abstract:

This research is a qualitative research with three main purposes: (1) to develop the local tax map software system to be linked to the main Local Tax Map System (LTAX3000) system; (2) to design and develop a program for tax data fieldwork on wireless devices and link it to LTAX3000 database of Surat Thani Municipality; (3) to develop the human resource responsible for the fieldwork to be able to use the program and maintain the system and also to be able to work with the dynamic of technologies. In-depth interviews with the two groups of samples, the board of Surat Thani Municipality and operation staff responsible for observing and taxing fieldworks were conducted. The result of this study demonstrates the new developed fieldworks system that can be used both stand-alone usage and networking usage. The fieldworks system to collect and store the variety of taxing information within Surat Thani Municipality will be explained. Then the fieldwork operation process development and the replacement of transferring and storing the information via the network communication.

Keywords: Local tax map, software system development, wireless devices, human resource

Procedia PDF Downloads 192
874 Energy-Efficient Clustering Protocol in Wireless Sensor Networks for Healthcare Monitoring

Authors: Ebrahim Farahmand, Ali Mahani

Abstract:

Wireless sensor networks (WSNs) can facilitate continuous monitoring of patients and increase early detection of emergency conditions and diseases. High density WSNs helps us to accurately monitor a remote environment by intelligently combining the data from the individual nodes. Due to energy capacity limitation of sensors, enhancing the lifetime and the reliability of WSNs are important factors in designing of these networks. The clustering strategies are verified as effective and practical algorithms for reducing energy consumption in WSNs and can tackle WSNs limitations. In this paper, an Energy-efficient weight-based Clustering Protocol (EWCP) is presented. Artificial retina is selected as a case study of WSNs applied in body sensors. Cluster heads’ (CHs) selection is equipped with energy efficient parameters. Moreover, cluster members are selected based on their distance to the selected CHs. Comparing with the other benchmark protocols, the lifetime of EWCP is improved significantly.

Keywords: WSN, healthcare monitoring, weighted based clustering, lifetime

Procedia PDF Downloads 309
873 NUX: A Lightweight Block Cipher for Security at Wireless Sensor Node Level

Authors: Gaurav Bansod, Swapnil Sutar, Abhijit Patil, Jagdish Patil

Abstract:

This paper proposes an ultra-lightweight cipher NUX. NUX is a generalized Feistel network. It supports 128/80 bit key length and block length of 64 bit. For 128 bit key length, NUX needs only 1022 GEs which is less as compared to all existing cipher design. NUX design results into less footprint area and minimal memory size. This paper presents security analysis of NUX cipher design which shows cipher’s resistance against basic attacks like Linear and Differential Cryptanalysis. Advanced attacks like Biclique attack is also mounted on NUX cipher design. Two different F function in NUX cipher design results in high diffusion mechanism which generates large number of active S-boxes in minimum number of rounds. NUX cipher has total 31 rounds. NUX design will be best-suited design for critical application like smart grid, IoT, wireless sensor network, where memory size, footprint area and the power dissipation are the major constraints.

Keywords: lightweight cryptography, Feistel cipher, block cipher, IoT, encryption, embedded security, ubiquitous computing

Procedia PDF Downloads 372
872 Structural Health Monitoring of Buildings–Recorded Data and Wave Method

Authors: Tzong-Ying Hao, Mohammad T. Rahmani

Abstract:

This article presents the structural health monitoring (SHM) method based on changes in wave traveling times (wave method) within a layered 1-D shear beam model of structure. The wave method measures the velocity of shear wave propagating in a building from the impulse response functions (IRF) obtained from recorded data at different locations inside the building. If structural damage occurs in a structure, the velocity of wave propagation through it changes. The wave method analysis is performed on the responses of Torre Central building, a 9-story shear wall structure located in Santiago, Chile. Because events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded at this building, therefore it can serve as a full-scale benchmark to validate the structural health monitoring method utilized. The analysis of inter-story drifts and the Fourier spectra for the EW and NS motions during 2010 Chile earthquake are presented. The results for the NS motions suggest the coupling of translation and torsion responses. The system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) were detected initially decreasing approximately 24% in the EW motion. Near the end of shaking, an increase of about 17% was detected. These analysis and results serve as baseline indicators of the occurrence of structural damage. The detected changes in wave velocities of the shear beam model are consistent with the observed damage. However, the 1-D shear beam model is not sufficient to simulate the coupling of translation and torsion responses in the NS motion. The wave method is proven for actual implementation in structural health monitoring systems based on carefully assessing the resolution and accuracy of the model for its effectiveness on post-earthquake damage detection in buildings.

Keywords: Chile earthquake, damage detection, earthquake response, impulse response function, shear beam model, shear wave velocity, structural health monitoring, torre central building, wave method

Procedia PDF Downloads 367
871 Lovely, Lyrical, Lilting: Kubrick’s Translation of Lolita’s Voice

Authors: Taylor La Carriere

Abstract:

“What I had madly possessed was not she, but my own creation, another, fanciful Lolita perhaps, more real than Lolita; overlapping, encasing he and having no will, no consciousness indeed, no life of her own,” Vladimir Nabokov writes in his seminal work, Lolita. Throughout Nabokov’s novel, the eponymous character is rendered nonexistent through unreliable narrator Humbert Humbert’s impenetrable narrative, infused with lyrical rationalization. Instead, Lolita is “safely solipsised,” as Humbert muses, solidifying the potential for the erasure of Lolita’s agency and identity. In this literary work, Lolita’s voice is reduced to a nearly invisible presence, only seen through the eyes of her captor. However, in Stanley Kubrick’s film adaptation of Lolita (1962), the “nymphet,” as Nabokov coins, reemerges with a voice of her own, fueled by a lyric impulse, that displaces Humbert’s first-person narration. The lyric, as defined by Catherine Ing, is the voice of the invisible; it is also characterized by performance, the concentrated utterance of individual emotion, and the appearance of spontaneity. The novel’s lyricism is largely in the service of Humbert’s “seductive” voice, while the film reorients it more to Lolita’s subjectivity. Through a close analysis of Kubrick’s cinematic techniques, this paper examines the emergence and translation of Lolita’s voice in contrast with Humbert’s attempts to silence her in Nabokov’s Lolita, hypothesizing that Kubrick translates Lolita’s presence into a visual and aural voice with lyrical attributes, exemplified through the establishment of an altered power dynamic, Sue Lyon’s transformative performance as the titular character, Nelson Riddle and Bob Harris’ musical score, and the omission of Humbert’s first-person point-of-view. In doing so, the film reclaims Lolita’s agency by taking instances of Lolita’s voice in the novel as depicted in the last half of the work and expanding upon them in a way only cinematic depictions could allow. The results of this study suggest that Lolita’s voice in Kubrick’s adaptation functions without disrupting the lyricism present in Nabokov’s source text, materializing through the actions, expressions, and performance of Sue Lyon in the film. This voice, fueled by a lyric impulse of its own, refutes the silence bestowed upon the titular character and enables its ultimate reclamation upon the silver screen.

Keywords: cinema, adaptation, Lolita, lyric voice

Procedia PDF Downloads 193
870 Over the Air Programming Method for Learning Wireless Sensor Networks

Authors: K. Sangeeth, P. Rekha, P. Preeja, P. Divya, R. Arya, R. Maneesha

Abstract:

Wireless sensor networks (WSN) are small or tiny devices that consists of different sensors to sense physical parameters like air pressure, temperature, vibrations, movement etc., process these data and sends it to the central data center to take decisions. The WSN domain, has wide range of applications such as monitoring and detecting natural hazards like landslides, forest fire, avalanche, flood monitoring and also in healthcare applications. With such different applications, it is being taught in undergraduate/post graduate level in many universities under department of computer science. But the cost and infrastructure required to purchase WSN nodes for having the students getting hands on expertise on these devices is expensive. This paper gives overview about the remote triggered lab that consists of more than 100 WSN nodes that helps the students to remotely login from anywhere in the world using the World Wide Web, configure the nodes and learn the WSN concepts in intuitive way. It proposes new way called over the air programming (OTAP) and its internals that program the 100 nodes simultaneously and view the results without the nodes being physical connected to the computer system, thereby allowing for sparse deployment.

Keywords: WSN, over the air programming, virtual lab, AT45DB

Procedia PDF Downloads 377
869 A 5G Architecture Based to Dynamic Vehicular Clustering Enhancing VoD Services Over Vehicular Ad hoc Networks

Authors: Lamaa Sellami, Bechir Alaya

Abstract:

Nowadays, video-on-demand (VoD) applications are becoming one of the tendencies driving vehicular network users. In this paper, considering the unpredictable vehicle density, the unexpected acceleration or deceleration of the different cars included in the vehicular traffic load, and the limited radio range of the employed communication scheme, we introduce the “Dynamic Vehicular Clustering” (DVC) algorithm as a new scheme for video streaming systems over VANET. The proposed algorithm takes advantage of the concept of small cells and the introduction of wireless backhauls, inspired by the different features and the performance of the Long Term Evolution (LTE)- Advanced network. The proposed clustering algorithm considers multiple characteristics such as the vehicle’s position and acceleration to reduce latency and packet loss. Therefore, each cluster is counted as a small cell containing vehicular nodes and an access point that is elected regarding some particular specifications.

Keywords: video-on-demand, vehicular ad-hoc network, mobility, vehicular traffic load, small cell, wireless backhaul, LTE-advanced, latency, packet loss

Procedia PDF Downloads 139
868 Optimal Energy Management and Environmental Index Optimization of a Microgrid Operating by Renewable and Sustainable Generation Systems

Authors: Nabil Mezhoud

Abstract:

The economic operation of electric energy generating systems is one of the predominant problems in energy systems. Due to the need for better reliability, high energy quality, lower losses, lower cost and a clean environment, the application of renewable and sustainable energy sources, such as wind energy, solar energy, etc., in recent years has become more widespread. In this work, one of a bio-inspired meta-heuristic algorithm inspired by the flashing behavior of fireflies at night called the Firefly Algorithm (FFA) is applied to solve the Optimal Energy Management (OEM) and the environmental index (EI) problems of a micro-grid (MG) operating by Renewable and Sustainable Generation Systems (RSGS). Our main goal is to minimize the nonlinear objective function of an electrical microgrid, taking into account equality and inequality constraints. The FFA approach was examined and tested on a standard MG system composed of different types of RSGS, such as wind turbines (WT), photovoltaic systems (PV), and non-renewable energy, such as fuel cells (FC), micro turbine (MT), diesel generator (DEG) and loads with energy storage systems (ESS). The results are promising and show the effectiveness and robustness of the proposed approach to solve the OEM and the EI problems. The results of the proposed method have been compared and validated with those known references published recently.

Keywords: renewable energy sources, energy management, distributed generator, micro-grids, firefly algorithm

Procedia PDF Downloads 75
867 Bit Error Rate Performance of MIMO Systems for Wireless Communications

Authors: E. Ghayoula, M. Haj Taieb, A. Bouallegue, J. Y. Chouinard, R. Ghayoula

Abstract:

This paper evaluates the bit error rate (BER) performance of MIMO systems for wireless communication. MIMO uses multiple transmitting antennas, multiple receiving antennas and the space-time block codes to provide diversity. MIMO transmits signal encoded by space-time block (STBC) encoder through different transmitting antennas. These signals arrive at the receiver at slightly different times. Spatially separated multiple receiving antennas are employed to provide diversity reception to combat the effect of fading in the channel. This paper presents a detailed study of diversity coding for MIMO systems. STBC techniques are implemented and simulation results in terms of the BER performance with varying number of MIMO transmitting and receiving antennas are presented. Our results show how increasing the number of both transmit and receive antenna improves system performance and reduces the bit error rate.

Keywords: MIMO systems, diversity, BER, MRRC, SIMO, MISO, STBC, alamouti, SNR

Procedia PDF Downloads 490
866 Clustering Using Cooperative Multihop Mini-Groups in Wireless Sensor Network: A Novel Approach

Authors: Virender Ranga, Mayank Dave, Anil Kumar Verma

Abstract:

Recently wireless sensor networks (WSNs) are used in many real life applications like environmental monitoring, habitat monitoring, health monitoring etc. Due to power constraint cheaper devices used in these applications, the energy consumption of each device should be kept as low as possible such that network operates for longer period of time. One of the techniques to prolong the network lifetime is an intelligent grouping of sensor nodes such that they can perform their operation in cooperative and energy efficient manner. With this motivation, we propose a novel approach by organize the sensor nodes in cooperative multihop mini-groups so that the total global energy consumption of the network can be reduced and network lifetime can be improved. Our proposed approach also reduces the number of transmitted messages inside the WSNs, which further minimizes the energy consumption of the whole network. The experimental simulations show that our proposed approach outperforms over the state-of-the-art approach in terms of stability period and aggregated data.

Keywords: clustering, cluster-head, mini-group, stability period

Procedia PDF Downloads 356
865 Impact of Import Restriction on Rice Production in Nigeria

Authors: C. O. Igberi, M. U. Amadi

Abstract:

This research paper on the impact of import restriction on rice production in Nigeria is aimed at finding/proffering valid solutions to the age long problem of rice self-sufficiency, through a better understanding of policy measures used in the past, in this case, the effectiveness of rice import restriction of the early 90’s. It tries to answer the questions of; import restriction boosting domestic rice production and the macroeconomic determining factors of Gross Domestic Rice Product (GDRP). The research probe is investigated through literature and analytical frameworks, such that time series data on the GDRP, Gross Fixed Capital Formation (GFCF), average foreign rice producers’ prices(PPF), domestic producers’ prices (PPN) and the labour force (LABF) are collated for analysis (with an import restriction dummy variable, POL1). The research objectives/hypothesis are analysed using; Cointegration, Vector Error Correction Model (VECM), Impulse Response Function (IRF) and Granger Causality Test(GCT) methodologies. Results show that in the short-run error correction specification for GDRP, a percentage (1%) deviation away from the long-run equilibrium in a current quarter is only corrected by 0.14% in the subsequent quarter. Also, the rice import restriction policy had no significant effect on the GDRP at this time. Other findings show that the policy period has, in fact, had effects on the PPN and LABF. The choice variables used are valid macroeconomic factors that explain the GDRP of Nigeria, as adduced from the IRF and GCT, and in the long-run. Policy recommendations suggest that the import restriction is not disqualified as a veritable tool for improving domestic rice production, rather better enforcement procedures and strict adherence to the policy dictates is needed. Furthermore, accompanying policies which drive public and private capital investment and accumulation must be introduced. Also, employment rate and labour substitution in the agricultural sector should not be drastically changed, rather its welfare and efficiency be improved.

Keywords: import restriction, gross domestic rice production, cointegration, VECM, Granger causality, impulse response function

Procedia PDF Downloads 206
864 A Multiple Beam LTE Base Station Antenna with Simultaneous Vertical and Horizontal Sectorization

Authors: Mohamed Sanad, Noha Hassan

Abstract:

A low wind-load light-weight broad-band multi-beam base station antenna has been developed. It can generate any required number of beams with the required beamwidths. It can have horizontal and vertical sectorization at the same time. Vertical sectorization doubles the overall number of beams. It will be very valuable in LTE-A and 5G. It can be used to serve vertically split inner and outer cells, which improves system performance. The intersection between the beams of the proposed multi-beam antenna can be controlled by optimizing the design parameters of the antenna. The gain at the points of intersection between the beams, the null filling and the overlap between the beams can all be modified. The proposed multi-beam base station antenna can cover an unlimited number of wireless applications, regardless of their frequency bands. It can simultaneously cover all, current and future, wireless technology generations such as 2G, 3G, 4G (LTE), --- etc. For example, in LTE, it covers the bands 450-470 MHz, 690-960 MHz, 1.4-2.7 GHz and 3.3-3.8 GHz. It has at least 2 ports for each band in each beam for ±45° polarizations. It can include up to 72 ports or even more, which could facilitate any further needed capacity expansions.

Keywords: base station antenna, multi-beam antenna, smart antenna, vertical sectorization

Procedia PDF Downloads 260
863 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images

Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou

Abstract:

This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.

Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning

Procedia PDF Downloads 127
862 IoT Based Monitoring Temperature and Humidity

Authors: Jay P. Sipani, Riki H. Patel, Trushit Upadhyaya

Abstract:

Today there is a demand to monitor environmental factors almost in all research institutes and industries and even for domestic uses. The analog data measurement requires manual effort to note readings, and there may be a possibility of human error. Such type of systems fails to provide and store precise values of parameters with high accuracy. Analog systems are having drawback of storage/memory. Therefore, there is a requirement of a smart system which is fully automated, accurate and capable enough to monitor all the environmental parameters with utmost possible accuracy. Besides, it should be cost-effective as well as portable too. This paper represents the Wireless Sensor (WS) data communication using DHT11, Arduino, SIM900A GSM module, a mobile device and Liquid Crystal Display (LCD). Experimental setup includes the heating arrangement of DHT11 and transmission of its data using Arduino and SIM900A GSM shield. The mobile device receives the data using Arduino, GSM shield and displays it on LCD too. Heating arrangement is used to heat and cool the temperature sensor to study its characteristics.

Keywords: wireless communication, Arduino, DHT11, LCD, SIM900A GSM module, mobile phone SMS

Procedia PDF Downloads 282
861 Optimal Design of Linear Generator to Recharge the Smartphone Battery

Authors: Jin Ho Kim, Yujeong Shin, Seong-Jin Cho, Dong-Jin Kim, U-Syn Ha

Abstract:

Due to the development of the information industry and technologies, cellular phones have must not only function to communicate, but also have functions such as the Internet, e-banking, entertainment, etc. These phones are called smartphones. The performance of smartphones has improved, because of the various functions of smartphones, and the capacity of the battery has been increased gradually. Recently, linear generators have been embedded in smartphones in order to recharge the smartphone's battery. In this study, optimization is performed and an array change of permanent magnets is examined in order to increase efficiency. We propose an optimal design using design of experiments (DOE) to maximize the generated induced voltage. The thickness of the poleshoe and permanent magnet (PM), the height of the poleshoe and PM, and the thickness of the coil are determined to be design variables. We made 25 sampling points using an orthogonal array according to four design variables. We performed electromagnetic finite element analysis to predict the generated induced voltage using the commercial electromagnetic analysis software ANSYS Maxwell. Then, we made an approximate model using the Kriging algorithm, and derived optimal values of the design variables using an evolutionary algorithm. The commercial optimization software PIAnO (Process Integration, Automation, and Optimization) was used with these algorithms. The result of the optimization shows that the generated induced voltage is improved.

Keywords: smartphone, linear generator, design of experiment, approximate model, optimal design

Procedia PDF Downloads 345
860 Modeling of Full Range Flow Boiling Phenomenon in 23m Long Vertical Steam Generator Tube

Authors: Chaitanya R. Mali, V. Vinod, Ashwin W. Patwardhan

Abstract:

Design of long vertical steam generator (SG) tubes in nuclear power plant involves an understanding of different aspects of flow boiling phenomenon such as flow instabilities, flow regimes, dry out, critical heat flux, pressure drop, etc. The knowledge of the prediction of local thermal hydraulic characteristics is necessary to understand these aspects. For this purpose, the methodology has been developed which covers all the flow boiling regimes to model full range flow boiling phenomenon. In this methodology, the vertical tube is divided into four sections based on vapor fraction value at the end of each section. Different modeling strategies have been applied to the different sections of the vertical tube. Computational fluid dynamics simulations have been performed on a vertical SG tube of 0.0126 m inner diameter and 23 m length. The thermal hydraulic parameters such as vapor fraction, liquid temperature, heat transfer coefficient, pressure drop, heat flux distribution have been analyzed for different designed heat duties (1.1 MW (20%) to 3.3 MW (60%)) and flow conditions (10 % to 80 %). The sensitivity of different boiling parameters such as bubble departure diameter, nucleation site density, bubble departure frequency on the thermal hydraulic parameters was also studied. Flow instability has been observed at 20 % designed heat duty and 20 % flow conditions.

Keywords: thermal hydraulics, boiling, vapor fraction, sensitivity

Procedia PDF Downloads 147
859 Oxyhydrogen Gas (HHO) as Replacement to Gasoline Fuel

Authors: Rishabh Pandey, Umang Kumar Yadav

Abstract:

In today’s era of technological advancement, we come across incalculable innovations, almost every day. No doubt that the society has developed a lot in learning and technology, but we should also take into account the problems and inflictions that are occurring. Focusing on the petroleum sector a trending global concern is toward lowering fuel consumption and emissions. It is well known that gasoline is non-renewable source of energy and its burning produces harmful emissions which are adversely affecting the environment, such issues are motivating us to seek alternative solutions that would not require much modification in engine design and help us come out with an outcome. Keeping in mind the importance of environment and human race, we present a factious idea of use of oxyhydrogen gas or HHO gas in place of gasoline in the vehicles and petroleum industry. This technology is prospering, highly efficient, could be used economically and safe, and it will be responsible for changing the future of oil and gas sector in accordance with protection to the environment. In the coming future, we will check the compatibility of HHO generator with fuel engine for production of oxyhydrogen gas with use of water and effect of introducing HHO gas to the combustion on both thermal efficiency and specific fuel consumption. We will also work on the comparison of HHO gas and commercially available gasoline fuel in support of their chemical structures; ignition rate; octane rating; knocking properties; storage; transportation and cost effectiveness and it is trusted that use of HHO gas will be ecofriendly as no harmful emissions are produced, rather the only emission is water. Additionally, this paper will include the use of HHO cell in fuel engines and challenges faced in installing it in the current period and provide effective solutions for the same.

Keywords: fuel, gas, generator, water

Procedia PDF Downloads 327
858 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction

Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic

Abstract:

Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.

Keywords: bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks

Procedia PDF Downloads 385
857 The Analysis of Drill Bit Optimization by the Application of New Electric Impulse Technology in Shallow Water Absheron Peninsula

Authors: Ayshan Gurbanova

Abstract:

Despite based on the fact that drill bit which is the smallest part of bottom hole assembly costs only in between 10% and 15% of the total expenses made, they are the first equipment that is in contact with the formation itself. Hence, it is consequential to choose the appropriate type and dimension of drilling bit, which will prevent majority of problems by not demanding many tripping procedure. However, within the advance in technology, it is now seamless to be beneficial in the terms of many concepts such as subsequent time of operation, energy, expenditure, power and so forth. With the intention of applying the method to Azerbaijan, the field of Shallow Water Absheron Peninsula has been suggested, where the mainland has been located 15 km away from the wildcat wells, named as “NKX01”. It has the water depth of 22 m as indicated. In 2015 and 2016, the seismic survey analysis of 2D and 3D have been conducted in contract area as well as onshore shallow water depth locations. With the aim of indicating clear elucidation, soil stability, possible submersible dangerous scenarios, geohazards and bathymetry surveys have been carried out as well. Within the seismic analysis results, the exact location of exploration wells have been determined and along with this, the correct measurement decisions have been made to divide the land into three productive zones. In the term of the method, Electric Impulse Technology (EIT) is based on discharge energies of electricity within the corrosivity in rock. Take it simply, the highest value of voltages could be created in the less range of nano time, where it is sent to the rock through electrodes’ baring as demonstrated below. These electrodes- higher voltage powered and grounded are placed on the formation which could be obscured in liquid. With the design, it is more seamless to drill horizontal well based on the advantage of loose contact of formation. There is also no chance of worn ability as there are no combustion, mechanical power exist. In the case of energy, the usage of conventional drilling accounts for 1000 𝐽/𝑐𝑚3 , where this value accounts for between 100 and 200 𝐽/𝑐𝑚3 in EIT. Last but not the least, from the test analysis, it has been yielded that it achieves the value of ROP more than 2 𝑚/ℎ𝑟 throughout 15 days. Taking everything into consideration, it is such a fact that with the comparison of data analysis, this method is highly applicable to the fields of Azerbaijan.

Keywords: drilling, drill bit cost, efficiency, cost

Procedia PDF Downloads 73
856 Development and Experimental Validation of Coupled Flow-Aerosol Microphysics Model for Hot Wire Generator

Authors: K. Ghosh, S. N. Tripathi, Manish Joshi, Y. S. Mayya, Arshad Khan, B. K. Sapra

Abstract:

We have developed a CFD coupled aerosol microphysics model in the context of aerosol generation from a glowing wire. The governing equations can be solved implicitly for mass, momentum, energy transfer along with aerosol dynamics. The computationally efficient framework can simulate temporal behavior of total number concentration and number size distribution. This formulation uniquely couples standard K-Epsilon scheme with boundary layer model with detailed aerosol dynamics through residence time. This model uses measured temperatures (wire surface and axial/radial surroundings) and wire compositional data apart from other usual inputs for simulations. The model predictions show that bulk fluid motion and local heat distribution can significantly affect the aerosol behavior when the buoyancy effect in momentum transfer is considered. Buoyancy generated turbulence was found to be affecting parameters related to aerosol dynamics and transport as well. The model was validated by comparing simulated predictions with results obtained from six controlled experiments performed with a laboratory-made hot wire nanoparticle generator. Condensation particle counter (CPC) and scanning mobility particle sizer (SMPS) were used for measurement of total number concentration and number size distribution at the outlet of reactor cell during these experiments. Our model-predicted results were found to be in reasonable agreement with observed values. The developed model is fast (fully implicit) and numerically stable. It can be used specifically for applications in the context of the behavior of aerosol particles generated from glowing wire technique and in general for other similar large scale domains. Incorporation of CFD in aerosol microphysics framework provides a realistic platform to study natural convection driven systems/ applications. Aerosol dynamics sub-modules (nucleation, coagulation, wall deposition) have been coupled with Navier Stokes equations modified to include buoyancy coupled K-Epsilon turbulence model. Coupled flow-aerosol dynamics equation was solved numerically and in the implicit scheme. Wire composition and temperature (wire surface and cell domain) were obtained/measured, to be used as input for the model simulations. Model simulations showed a significant effect of fluid properties on the dynamics of aerosol particles. The role of buoyancy was highlighted by observation and interpretation of nucleation zones in the planes above the wire axis. The model was validated against measured temporal evolution, total number concentration and size distribution at the outlet of hot wire generator cell. Experimentally averaged and simulated total number concentrations were found to match closely, barring values at initial times. Steady-state number size distribution matched very well for sub 10 nm particle diameters while reasonable differences were noticed for higher size ranges. Although tuned specifically for the present context (i.e., aerosol generation from hotwire generator), the model can also be used for diverse applications, e.g., emission of particles from hot zones (chimneys, exhaust), fires and atmospheric cloud dynamics.

Keywords: nanoparticles, k-epsilon model, buoyancy, CFD, hot wire generator, aerosol dynamics

Procedia PDF Downloads 142
855 Improved Network Construction Methods Based on Virtual Rails for Mobile Sensor Network

Authors: Noritaka Shigei, Kazuto Matsumoto, Yoshiki Nakashima, Hiromi Miyajima

Abstract:

Although Mobile Wireless Sensor Networks (MWSNs), which consist of mobile sensor nodes (MSNs), can cover a wide range of observation region by using a small number of sensor nodes, they need to construct a network to collect the sensing data on the base station by moving the MSNs. As an effective method, the network construction method based on Virtual Rails (VRs), which is referred to as VR method, has been proposed. In this paper, we propose two types of effective techniques for the VR method. They can prolong the operation time of the network, which is limited by the battery capabilities of MSNs and the energy consumption of MSNs. The first technique, an effective arrangement of VRs, almost equalizes the number of MSNs belonging to each VR. The second technique, an adaptive movement method of MSNs, takes into account the residual energy of battery. In the simulation, we demonstrate that each technique can improve the network lifetime and the combination of both techniques is the most effective.

Keywords: mobile sensor node, relay of sensing data, residual energy, virtual rail, wireless sensor network

Procedia PDF Downloads 330
854 Performance Analysis of Deterministic Stable Election Protocol Using Fuzzy Logic in Wireless Sensor Network

Authors: Sumanpreet Kaur, Harjit Pal Singh, Vikas Khullar

Abstract:

In Wireless Sensor Network (WSN), the sensor containing motes (nodes) incorporate batteries that can lament at some extent. To upgrade the energy utilization, clustering is one of the prototypical approaches for split sensor motes into a number of clusters where one mote (also called as node) proceeds as a Cluster Head (CH). CH selection is one of the optimization techniques for enlarging stability and network lifespan. Deterministic Stable Election Protocol (DSEP) is an effectual clustering protocol that makes use of three kinds of nodes with dissimilar residual energy for CH election. Fuzzy Logic technology is used to expand energy level of DSEP protocol by using fuzzy inference system. This paper presents protocol DSEP using Fuzzy Logic (DSEP-FL) CH by taking into account four linguistic variables such as energy, concentration, centrality and distance to base station. Simulation results show that our proposed method gives more effective results in term of a lifespan of network and stability as compared to the performance of other clustering protocols.

Keywords: DSEP, fuzzy logic, energy model, WSN

Procedia PDF Downloads 207
853 Cooperative Diversity Scheme Based on MIMO-OFDM in Small Cell Network

Authors: Dong-Hyun Ha, Young-Min Ko, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

In Heterogeneous network (HetNet) can provide high quality of a service in a wireless communication system by composition of small cell networks. The composition of small cell networks improves cell coverage and capacity to the mobile users.Recently, various techniques using small cell networks have been researched in the wireless communication system. In this paper, the cooperative scheme obtaining high reliability is proposed in the small cell networks. The proposed scheme suggests a cooperative small cell system and the new signal transmission technique in the proposed system model. The new signal transmission technique applies a cyclic delay diversity (CDD) scheme based on the multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system to obtain improved performance. The improved performance of the proposed scheme is confirmed by the simulation results.

Keywords: adaptive transmission, cooperative communication, diversity gain, OFDM

Procedia PDF Downloads 501
852 Application of Hybrid Honey Bees Mating Optimization Algorithm in Multiuser Detection of Wireless Communication Systems

Authors: N. Larbi, F. Debbat

Abstract:

Wireless communication systems have changed dramatically and shown spectacular evolution over the past two decades. These radio technologies are engaged in a quest endless high-speed transmission coupled to a constant need to improve transmission quality. Various radio communication systems being developed use code division multiple access (CDMA) technique. This work analyses a hybrid honey bees mating optimization algorithm (HBMO) applied to multiuser detection (MuD) in CDMA communication systems. The HBMO is a swarm-based optimization algorithm, which simulates the mating process of real honey bees. We apply a hybridization of HBMO with simulated annealing (SA) in order to improve the solution generated by the HBMO. Simulation results show that the detection based on Hybrid HBMO, in term of bit error rate (BER), is viable option when compared with the classic detectors from literature under Rayleigh flat fading channel.

Keywords: BER, DS-CDMA multiuser detection, genetic algorithm, hybrid HBMO, simulated annealing

Procedia PDF Downloads 435
851 3D Plant Growth Measurement System Using Deep Learning Technology

Authors: Kazuaki Shiraishi, Narumitsu Asai, Tsukasa Kitahara, Sosuke Mieno, Takaharu Kameoka

Abstract:

The purpose of this research is to facilitate productivity advances in agriculture. To accomplish this, we developed an automatic three-dimensional (3D) recording system for growth of field crops that consists of a number of inexpensive modules: a very low-cost stereo camera, a couple of ZigBee wireless modules, a Raspberry Pi single-board computer, and a third generation (3G) wireless communication module. Our system uses an inexpensive Web stereo camera in order to keep total costs low. However, inexpensive video cameras record low-resolution images that are very noisy. Accordingly, in order to resolve these problems, we adopted a deep learning method. Based on the results of extended period of time operation test conducted without the use of an external power supply, we found that by using Super-Resolution Convolutional Neural Network method, our system could achieve a balance between the competing goals of low-cost and superior performance. Our experimental results showed the effectiveness of our system.

Keywords: 3D plant data, automatic recording, stereo camera, deep learning, image processing

Procedia PDF Downloads 273
850 The Potential of Hybrid Microgrids for Mitigating Power Outage in Lebanon

Authors: R. Chedid, R. Ghajar

Abstract:

Lebanon electricity crisis continues to escalate. Rationing hours still apply across the country but with different rates. The capital Beirut is subjected to 3 hours cut while other cities, town and villages may endure 9 to 14 hours of power shortage. To mitigate this situation, private diesel generators distributed illegally all over the country are being used to bridge the gap in power supply. Almost each building in large cities has its own generator and individual villages may have more than one generator supplying their loads. These generators together with their private networks form incomplete and ill-designed and managed microgrids (MG) but can be further developed to become renewable energy-based MG operating in island- or grid-connected modes. This paper will analyze the potential of introducing MG to help resolve the energy crisis in Lebanon. It will investigate the usefulness of developing MG under the prevailing situation of existing private power supply service providers and in light of the developed national energy policy that supports renewable energy development. A case study on a distribution feeder in a rural area will be analyzed using HOMER software to demonstrate the usefulness of introducing photovoltaic (PV) arrays along the existing diesel generators for all the stakeholders; namely, the developers, the customers, the utility and the community at large. Policy recommendations regarding MG development in Lebanon will be presented on the basis of the accumulated experience in private generation and the privatization and public-private partnership laws.

Keywords: decentralized systems, distributed generation, microgrids, renewable energy

Procedia PDF Downloads 133
849 Communication Layer Security in Smart Farming: A Survey on Wireless Technologies

Authors: Hossein Mohammadi Rouzbahani, Hadis Karimipour, Evan Fraser, Ali Dehghantanha, Emily Duncan, Arthur Green, Conchobhair Russell

Abstract:

Human population growth has driven rising demand for food that has, in turn, imposed huge impacts on the environment. In an effort to reconcile our need to produce more sustenance while also protecting the world’s ecosystems, farming is becoming more reliant on smart tools and communication technologies. Developing a smart farming framework allows farmers to make more efficient use of inputs, thus protecting water quality and biodiversity habitat. Internet of Things (IoT), which has revolutionized every sphere of the economy, is being applied to agriculture by connecting on-farm devices and providing real-time monitoring of everything from environmental conditions to market signals through to animal health data. However, utilizing IoT means farming networks are now vulnerable to malicious activities, mostly when wireless communications are highly employed. With that in mind, this research aims to review different utilized communication technologies in smart farming. Moreover, possible cyber-attacks are investigated to discover the vulnerabilities of communication technologies considering the most frequent cyber-attacks that have been happened.

Keywords: smart farming, Internet of Things, communication layer, cyber-attack

Procedia PDF Downloads 242
848 U Slot Loaded Wearable Textile Antenna

Authors: Varsha Kheradiya, Ganga Prasad Pandey

Abstract:

The use of wearable antennas is rising because wireless devices become small. The wearable antenna is part of clothes used in communication applications, including energy harvesting, medical application, navigation, and tracking. In current years, Antennas embroidered on clothes, conducting antennas based on fabric, polymer embedded antennas, and inkjet-printed antennas are all attractive ways. Also shows the analysis required for wearable antennas, such as wearable antennae interacting with the human body. The primary requirements for the antenna are small size, low profile minimizing radiation absorption by the human body, high efficiency, structural integrity to survive worst situations, and good gain. Therefore, research in energy harvesting, biomedicine, and military application design is increasingly favoring flexible wearable antennas. Textile materials that are effectively used for designing and developing wearable antennas for body area networks. The wireless body area network is primarily concerned with creating effective antenna systems. The antenna should reduce their size, be lightweight, and be adaptable when integrated into clothes. When antennas integrate into clothes, it provides a convenient alternative to those fabricated using rigid substrates. This paper presents a study of U slot loaded wearable textile antenna. U slot patch antenna design is illustrated for wideband from 1GHz to 6 GHz using textile material jeans as substrate and pure copper polyester taffeta fabric as conducting material. This antenna design exhibits dual band results for WLAN at 2.4 GHz and 3.6 GHz frequencies. Also, study U slot position horizontal and vertical shifting. Shifting the horizontal positive X-axis position of the U slot produces the third band at 5.8 GHz.

Keywords: microstrip patch antenna, textile material, U slot wearable antenna, wireless body area network

Procedia PDF Downloads 90
847 Optimizing Rectangular Microstrip Antenna Performance with Nanofiller Integration

Authors: Chejarla Raghunathababu, E. Logashanmugam

Abstract:

An antenna is an assortment of linked devices that function together to transmit and receive radio waves as a single antenna. Antennas occur in a variety of sizes and forms, but the microstrip patch antenna outperforms other types in terms of effectiveness and prediction. These antennas are easy to generate with discreet benefits. Nevertheless, the antenna's effectiveness will be affected because of the patch's shape above a thick dielectric substrate. As a result, a double-pole rectangular microstrip antenna with nanofillers was suggested in this study. By employing nano-composite substances (Fumed Silica and Aluminum Oxide), which are composites of graphene with nanofillers, the physical characteristics of the microstrip antenna, that is, the elevation of the microstrip antenna substrate and the width of the patch microstrip antenna have been improved in this research. The surface conductivity of graphene may be modified to function at specific frequencies. In order to prepare for future wireless communication technologies, a microstrip patch antenna operating at 93 GHz resonant frequency is constructed and investigated. The goal of this study was to reduce VSWR and increase gain. The simulation yielded results for the gain and VSWR, which were 8.26 dBi and 1.01, respectively.

Keywords: graphene, microstrip patch antenna, substrate material, wireless communication, nanocomposite material

Procedia PDF Downloads 110