Search results for: thermophilic proteins
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1054

Search results for: thermophilic proteins

484 Novel Molecular Mechanisms Involved in Macrophage Phenotypic Polarization

Authors: Mansi Srivastava, Uzma Saqib, Adnan Naim, Anjali Roy, Dongfang Liu, Deepak Bhatnagar, Ravinder Ravinder, Mirza S. Baig

Abstract:

Macrophages polarize to proinflammatory M1 or anti-inflammatory M2 states with distinct physiological functions. This transition within the M1 to M2 phenotypes decides the nature, duration, and severity of an inflammatory response. However, inspite of a substantial understanding of the fate of these phenotypes, the underlying molecular mechanisms are not well understood. We have investigated the role of Neuronal nitric oxide synthase (NOS1) mediated regulation of Activator protein 1 (AP-1) transcription factor in macrophages as a critical effector of macrophage phenotypic change. Activator protein 1 (AP-1) is a group of dimeric transcription factors composed of jun, Fos, and ATF family proteins. We determined that NOS1-derived nitric oxide (NO) facilitate Fos and jun interaction which induces IL12 & IL23 expression. Pharmacological inhibition of NOS1 inhibits Fos and jun interaction but increases ATF2 and Fos dimerization. Switching of Fos and jun dimer to ATF2 and jun dimerization switches phenotype from IL–12high IL-23high IL-10low to IL–12low IL-23lowIL-10high phenotype, respectively. Together, these findings highlight a key role of the TLR4-NOS1-AP1 signaling axis in regulating macrophage polarization.

Keywords: inflammation, macrophage, lipopolysaccharide (LPS), proinflammatory cytokines, activator protein 1 (AP-1), neuronal nitric oxide synthase (NOS1)

Procedia PDF Downloads 264
483 Production of Bioethanol from Oil PalmTrunk by Cocktail Carbohydrases Enzyme Produced by Thermophilic Bacteria Isolated from Hot spring in West Sumatera, Indonesia

Authors: Yetti Marlida, Syukri Arif, Nadirman Haska

Abstract:

Recently, alcohol fuels have been produced on industrial scales by fermentation of sugars derived from wheat, corn, sugar beets, sugar cane etc. The enzymatic hydrolysis of cellulosic materials to produce fermentable sugars has an enormous potential in meeting global bioenergy demand through the biorefinery concept, since agri-food processes generate millions of tones of waste each year (Xeros and Christakopoulos 2009) such as sugar cane baggase , wheat straw, rice straw, corn cob, and oil palm trunk. In fact oil palm trunk is one of the most abundant lignocellulosic wastes by-products worldwide especially come from Malaysia, Indonesia and Nigeria and provides an alternative substrate to produce useful chemicals such as bioethanol. Usually, from the ages 3 years to 25 years, is the economical life of oil palm and after that, it is cut for replantation. The size of trunk usually is 15-18 meters in length and 46-60 centimeters in diameter. The trunk after cutting is agricultural waste causing problem in elimination but due to the trunk contains about 42% cellulose, 34.4%hemicellulose, 17.1% lignin and 7.3% other compounds,these agricultural wastes could make value added products (Pumiput, 2006).This research was production of bioethanol from oil palm trunk via saccharafication by cocktail carbohydrases enzymes. Enzymatic saccharification of acid treated oil palm trunk was carried out in reaction mixture containing 40 g treated oil palm trunk in 200 ml 0.1 M citrate buffer pH 4.8 with 500 unit/kg amylase for treatment A: Treatment B: Treatment A + 500 unit/kg cellulose; C: treatment B + 500 unit/kgg xylanase: D: treatment D + 500 unit/kg ligninase and E: OPT without treated + 500 unit/kg amylase + 500 unit/kg cellulose + 500 unit/kg xylanase + 500 unit/kg ligninase. The reaction mixture was incubated on a water bath rotary shaker adjusted to 600C and 75 rpm. The samples were withdraw at intervals 12 and 24, 36, 48,60, and 72 hr. For bioethanol production in biofermentor of 5L the hydrolysis product were inoculated a loop of Saccharomyces cerevisiae and then incubated at 34 0C under static conditions. Samples are withdraw after 12, 24, 36, 48 and 72 hr for bioethanol and residual glucose. The results of the enzymatic hidrolysis (Figure1) showed that the treatment B (OPT hydrolyzed with amylase and cellulase) have optimum condition for glucose production, where was both of enzymes can be degraded OPT perfectly. The same results also reported by Primarini et al., (2012) reported the optimum conditions the hydrolysis of OPT was at concentration of 25% (w /v) with 0.3% (w/v) amylase, 0.6% (w /v) glucoamylase and 4% (w/v) cellulase. In the Figure 2 showed that optimum bioethanol produced at 48 hr after incubation,if time increased the biothanol decreased. According Roukas (1996), a decrease in the concentration of ethanol occur at excess glucose as substrate and product inhibition effects. Substrate concentration is too high reduces the amount of dissolved oxygen, although in very small amounts, oxygen is still needed in the fermentation by Saccaromyces cerevisiae to keep life in high cell concentrations (Nowak 2000, Tao et al. 2005). The results of the research can be conluded that the optimum enzymatic hydrolysis occured when the OPT added with amylase and cellulase and optimum bioethanol produced at 48 hr incubation using Saccharomyses cerevicea whereas 18.08 % bioethanol produced from glucose conversion. This work was funded by Directorate General of Higher Education (DGHE), Ministry of Education and Culture, contract no.245/SP2H/DIT.LimtabMas/II/2013

Keywords: oil palm trunk, enzymatic hydrolysis, saccharification

Procedia PDF Downloads 495
482 Protein Quality of Game Meat Hunted in Latvia

Authors: Vita Strazdina, Aleksandrs Jemeljanovs, Vita Sterna

Abstract:

Not all proteins have the same nutritional value, since protein quality strongly depends on its amino acid composition and digestibility. The meat of game animals could be a high protein source because of its well-balanced essential amino acids composition. Investigations about biochemical composition of game meat such as wild boar (Sus scrofa scrofa), roe deer (Capreolus capreolus) and beaver (Castor fiber) are not very much. Therefore, the aim of the investigation was evaluate protein composition of game meat hunted in Latvia. The biochemical analysis, evaluation of connective tissue and essential amino acids in meat samples were done, the amino acids score were calculate. Results of analysis showed that protein content 20.88-22.05% of all types of meat samples is not different statistically. The content of connective tissue from 1.3% in roe deer till 1.5% in beaver meat allowed classified game animal as high quality meat. The sum of essential amino acids in game meat samples were determined 7.05–8.26g100g-1. Roe deer meat has highest protein content and lowest content of connective tissues among game meat hunted in Latvia. Concluded that amino acid score for limiting amino acids phenylalanine and tyrosine is high and shows high biological value of game meat.

Keywords: dietic product, game meat, amino acids, scores

Procedia PDF Downloads 298
481 Apoptosis Activity of Persea declinata (Bl.) Kosterm Bark Methanolic Crude Extract

Authors: P. Narrima, C. Y. Looi, M. A. Mohd, H. M. Ali

Abstract:

Persea declinata (Bl.) Kosterm is a member of the Lauraceae family, widely distributed in Southeast Asia. It is from the same genus with avocado (Persea americana Mill), which is widely consumed as food and for medicinal purposes. In the present study, we examined the anticancer properties of Persea declinata (Bl.) Kosterm bark methanolic crude extract (PDM). PDM exhibited a potent antiproliferative effect in MCF-7 human breast cancer cells, with an IC50 value of 16.68 µg/mL after 48h of treatment. We observed that PDM caused cell cycle arrest and subsequent apoptosis in MCF-7 cells, as exhibited by increased population at G0/G1 phase, higher lactate dehydrogenase (LDH) release, and DNA fragmentation. Mechanistic studies showed that PDM caused significant elevation in ROS production, leading to perturbation of mitochondrial membrane potential, cell permeability, and activation of caspases-3/7. On the other hand, real-time PCR and Western blot analysis showed that PDM treatment increased the expression of the proapoptotic molecule, Bax, but decreased the expression of prosurvival proteins, Bcl-2 and Bcl-xL, in a dose-dependent manner. These findings imply that PDM could inhibit proliferation in MCF-7 cells via cell cycle arrest and apoptosis induction, indicating its potential as a therapeutic agent worthy of further development.

Keywords: antiproliferative, apoptosis, MCF-7 human breast cancer, Persea declinata

Procedia PDF Downloads 230
480 Simultaneous Targeting of MYD88 and Nur77 as an Effective Approach for the Treatment of Inflammatory Diseases

Authors: Uzma Saqib, Mirza S. Baig

Abstract:

Myeloid differentiation primary response protein 88 (MYD88) has long been considered a central player in the inflammatory pathway. Recent studies clearly suggest that it is an important therapeutic target in inflammation. On the other hand, a recent study on the interaction between the orphan nuclear receptor (Nur77) and p38α, leading to increased lipopolysaccharide-induced hyperinflammatory response, suggests this binary complex as a therapeutic target. In this study, we have designed inhibitors that can inhibit both MYD88 and Nur77 at the same time. Since both MYD88 and Nur77 are an integral part of the pathways involving lipopolysaccharide-induced activation of NF-κB-mediated inflammation, we tried to target both proteins with the same library in order to retrieve compounds having dual inhibitory properties. To perform this, we developed a homodimeric model of MYD88 and, along with the crystal structure of Nur77, screened a virtual library of compounds from the traditional Chinese medicine database containing ~61,000 compounds. We analyzed the resulting hits for their efficacy for dual binding and probed them for developing a common pharmacophore model that could be used as a prototype to screen compound libraries as well as to guide combinatorial library design to search for ideal dual-target inhibitors. Thus, our study explores the identification of novel leads having dual inhibiting effects due to binding to both MYD88 and Nur77 targets.

Keywords: drug design, Nur77, MYD88, inflammation

Procedia PDF Downloads 286
479 Clustered Regularly Interspaced Short Palindromic Repeat/cas9-Based Lateral Flow and Fluorescence Diagnostics for Rapid Pathogen Detection

Authors: Mark Osborn

Abstract:

Clustered, regularly interspaced short palindromic repeat (CRISPR/Cas) proteins can be designed to bind specified DNA and RNA sequences and hold great promise for the accurate detection of nucleic acids for diagnostics. Commercially available reagents were integrated into a CRISPR/Cas9-based lateral flow assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequences with single-base specificity. This approach requires minimal equipment and represents a simplified platform for field-based deployment. A rapid, multiplex fluorescence CRISPR/Cas9 nuclease cleavage assay capable of detecting and differentiating SARS-CoV-2, influenza A and B, and respiratory syncytial virus in a single reaction was also developed. These findings provide proof of principle for CRISPR/Cas9 point-of-care diagnosis that can detect specific SARS-CoV-2 strain(s). Further, Cas9 cleavage allows for a scalable fluorescent platform for identifying respiratory viral pathogens with overlapping symptomology. Collectively, this approach is a facile platform for diagnostics with broad application to user-defined sequence interrogation and detection.

Keywords: CRISPR/Cas9, lateral flow assay, SARS-Co-V2, single-nucleotide resolution

Procedia PDF Downloads 163
478 Development of Enzymatic Amperometric Biosensors with Carbon Nanotubes Decorated with Iron Oxide Nanoparticles

Authors: Uc-Cayetano E. G., Ake-Uh O. E., Villanueva-Mena I. E., Ordonez L. C.

Abstract:

Carbon nanotubes (CNTs) and other graphitic nanostructures are materials with extraordinary physical, physicochemical and electrochemical properties which are being aggressively investigated for a variety of sensing applications. Thus, sensing of biological molecules such as proteins, DNA, glucose and other enzymes using either single wall or multiwall carbon nanotubes (MWCNTs) has been widely reported. Despite the current progress in this area, the electrochemical response of CNTs used in a variety of sensing arrangements still needs to be improved. An alternative towards the enhancement of this CNTs' electrochemical response is to chemically (or physically) modify its surface. The influence of the decoration with iron oxide nanoparticles in different types of MWCNTs on the amperometric sensing of glucose, urea, and cholesterol in solution is investigated. Commercial MWCNTs were oxidized in acid media and subsequently decorated with iron oxide nanoparticles; finally, the enzymes glucose oxidase, urease, and cholesterol oxidase are chemically immobilized to oxidized and decorated MWCNTs for glucose, urease, and cholesterol electrochemical sensing. The results of the electrochemical characterizations consistently show that the presence of iron oxide nanoparticles decorating the surface of MWCNTs enhance the amperometric response and the sensitivity to increments in glucose, urease, and cholesterol concentration when compared to non-decorated MWCNTs.

Keywords: WCNTs, enzymes, oxidation, decoration

Procedia PDF Downloads 109
477 Design of a Recombinant Expression System for Bacterial Cellulose Production

Authors: Gizem Buldum, Alexander Bismarck, Athanasios Mantalaris

Abstract:

Cellulose is the most abundant biopolymer on earth and it is currently being utilised in a multitude of industrial applications. Over the last 30 years, attention has been paid to the bacterial cellulose (BC), since BC exhibits unique physical, chemical and mechanical properties when compared to plant-based cellulose, including high purity and biocompatibility. Although Acetobacter xylinum is the most efficient producer of BC, it’s long doubling time results in insufficient yields of the cellulose production. This limits widespread and continued use of BC. In this study, E. coli BL21 (DE3) or E. coli HMS cells are selected as host organisms for the expression of bacterial cellulose synthase operon (bcs) of A.xylinum. The expression system is created based on pET-Duet1 and pCDF plasmid vectors, which carry bcs operon. The results showed that all bcs genes were successfully transferred and expressed in E.coli strains. The expressions of bcs proteins were shown by SDS and Native page analyses. The functionality of the bcs operon was proved by congo red binding assay. The effect of culturing temperature and the inducer concentration (IPTG) on cell growth and plasmid stability were monitored. The percentage of plasmid harboring cells induced with 0.025 mM IPTG was obtained as 85% at 22˚C in the end of 10-hr culturing period. It was confirmed that the high output cellulose production machinery of A.xylinum can be transferred into other organisms.

Keywords: bacterial cellulose, biopolymer, recombinant expression system, production

Procedia PDF Downloads 372
476 Genome Sequencing of the Yeast Saccharomyces cerevisiae Strain 202-3

Authors: Yina A. Cifuentes Triana, Andrés M. Pinzón Velásco, Marío E. Velásquez Lozano

Abstract:

In this work the sequencing and genome characterization of a natural isolate of Saccharomyces cerevisiae yeast (strain 202-3), identified with potential for the production of second generation ethanol from sugarcane bagasse hydrolysates is presented. This strain was selected because its capability to consume xylose during the fermentation of sugarcane bagasse hydrolysates, taking into account that many strains of S. cerevisiae are incapable of processing this sugar. This advantage and other prominent positive aspects during fermentation profiles evaluated in bagasse hydrolysates made the strain 202-3 a candidate strain to improve the production of second-generation ethanol, which was proposed as a first step to study the strain at the genomic level. The molecular characterization was carried out by genome sequencing with the Illumina HiSeq 2000 platform paired end; the assembly was performed with different programs, finally choosing the assembler ABYSS with kmer 89. Gene prediction was developed with the approach of hidden Markov models with Augustus. The genes identified were scored based on similarity with public databases of nucleotide and protein. Records were organized from ontological functions at different hierarchical levels, which identified central metabolic functions and roles of the S. cerevisiae strain 202-3, highlighting the presence of four possible new proteins, two of them probably associated with the positive consumption of xylose.

Keywords: cellulosic ethanol, Saccharomyces cerevisiae, genome sequencing, xylose consumption

Procedia PDF Downloads 303
475 Ethylene Response Factor BnERF from Brassica napus L. Enhances Submergence Tolerance and Alleviates the Oxidative Damage Caused by Submergence in Arabidopsis thaliana

Authors: Sanxiong Fu, Yanyan Lv, Song Chen, Wei Zhang, Cunkou Qi

Abstract:

Ethylene response factor proteins are known to play an important role in regulating a variety of stress responses in plants, but their exact functions in submergence stress are not completely understood. In this study, we isolated BnERF from Brassica napus L. to study the function of BnERF in submergence tolerance. The expression of BnERF gene in Brassica napus L. and the expression of antioxidant enzyme genes in transgenic Arabidopsis were analyzed by Quantitative RT-PCR. It was found that expression of BnERF is apparently induced by submergence in Brassica napus L. and overexpression of BnERF in Arabidopsis increases the tolerance level to submergence and oxidative stress. Histochemical method detected lower level of H2O2, O2•− and malondialdehyde (MDA) in the transgenic Arabidopsis. Compared to wild type, transgenic lines also have higher soluble sugar content and higher activity of antioxidant enzymes, which helps protect the plants against the oxidative damage caused by submergence. It was concluded that BnERF can increase the tolerance of plants to submergence stress and BnERF might be involved in regulating soluble sugar content and the antioxidant system in the defense against submergence stress.

Keywords: antioxidant enzyme, Arabidopsis, ethylene response factor, submergence

Procedia PDF Downloads 283
474 Serum Levels of Plasminogen Activator Inhibitor-1 (PAI-1) Are Increased in Alzheimer’s Disease and MCI Patients and Correlate With Cognitive Deficits

Authors: Francesco Angelucci, Katerina Veverova, Alžbeta Katonová, Lydia Piendel, Martin Vyhnalek, Jakub Hort

Abstract:

Alzheimer's disease (AD) is a central nervous system (CNS) disease characterized by loss of memory, cognitive functions and neurodegeneration. Plasmin is an enzyme degrading many plasma proteins. In the CNS, plasmin may reduce the accumulation of A, and have other actions relevant to AD pathophysiology. Brain plasmin synthesis is regulated by two enzymes: one activating, the tissue plasminogen activator (tPA), and the other inhibiting, the plasminogen activator inhibitor-1 (PAI-1). We investigated whether tPA and PAI-1 serum levels in AD and amnestic mild cognitive impairment (aMCI) patients are altered compared to cognitively healthy controls. Moreover, we examined the PAI-1/tPA ratio in these patient groups. 40 AD, 40 aMCI and 10 healthy controls were recruited. Venous blood was collected and PAI-1 and tPA serum concentrations were quantified by sandwich ELISAs. The results showed that PAI-1 levels increased in AD and aMCI patients. This increase negatively correlated with cognitive deficit measured by MMSE. Similarly, the ratio between tPA and PAI-1 gradually increases in aMCI and AD patients. This study demonstrates that AD and aMCI patients have altered PAI-1 serum levels and PAI-1/tPA ratio. Since these enzymes are CNS regulators of plasmin, PAI-1 serum levels could be a marker reflecting a cognitive decline in AD.

Keywords: Alzheimer disease, amnestic mild cognitive impairment, plasmin, tissue-type plasminogen activator

Procedia PDF Downloads 59
473 Nitric Oxide: Role in Immunity and Therapeutics

Authors: Anusha Bhardwaj, Shekhar Shinde

Abstract:

Nitric oxide (NO•) has been documented in research papers as one of the most versatile player in the therapeutics. It is identified as a biological multifunctional messenger molecule which is synthesized by the action of nitric oxide synthase (NOS) enzyme from L-arginine. The protective and the toxic effect in conjunction form the complete picture of the biological function of nitric oxide in humans. The dual nature is because of various factors such as concentration of NO, the isoform of NOS involved, type of cells in which it is synthesized, reaction partners like proteins, reactive oxygen intermediates, prosthetic groups, thiols etc., availability of the substrate L-arginine, intracellular environment in which NO is produced and generation of guanosine 3, 5’- cyclic monophosphate (cGMP). Activation of NOS through infection or trauma leads to one or more systemic effects including enhanced immune activity against invading pathogens, vaso/bronchodilatation in the cardiovascular and respiratory systems and altered neurotransmission which can be protective or toxic. Hence, NO affects the balance between healthy signaling and neurodegeneration in the brain. In lungs, it has beneficial effects on the function of airways as a bronchodilator and acts as the neurotransmitter of bronchodilator nerves. Whereas, on the other hand, NO may have deleterious effects by amplifying the asthmatic inflammatory response and also act as a vasodilator in the airways by increasing plasma exudation. But NOS Inhibitors and NO donors hamper the signalling pathway and hence a therapeutic application of NO is compromised.

Keywords: nitric oxide, multifunctional, dual nature, therapeutic applications

Procedia PDF Downloads 476
472 Insect Inducible Methanol Production in Plants for Insect Resistance

Authors: Gourav Jain, Sameer Dixit, Surjeet Kumar Arya, Praveen C. Verma

Abstract:

Plant cell wall plays a major role in defence mechanism against biotic and abiotic stress as it constitutes the physical barrier between the microenvironment and internal component of the cell. It is a complex structure composed of mostly carbohydrates among which cellulose and hemicelluloses are most abundant that is embedded in a matrix of pectins and proteins. Multiple enzymes have been reported which plays a vital role in cell wall modification, Pectin Methylesterase (PME) is one of them which catalyses the demethylesterification of homogalacturonans component of pectin which releases acidic pectin and methanol. As emitted methanol is toxic to the insect pest, we use PME gene for the better methanol production. In the current study we showed overexpression of PME gene isolated from Withania somnifera under the insect inducible promoter causes enhancement of methanol production at the time of insect feeds to plants, and that provides better insect resistance property. We found that the 85-90% mortality causes by transgenic tobacco in both chewing (Spodoptera litura larvae and Helicoverpa armigera) and sap-sucking (Aphid, mealybug, and whitefly) pest. The methanol content and emission level were also enhanced by 10-15 folds at different inducible time point interval (15min, 30min, 45min, 60min) which would be analysed by Purpald/Alcohol Oxidase method.

Keywords: methanol, Pectin methylesterase, inducible promoters, Purpald/Alcohol oxidase

Procedia PDF Downloads 221
471 Nutritional Composition of Crackers Produced from Blend of Sprouted Pigeon Pea (Cajanus cajan), Unripe Plantain (Musa parasidiaca), and Brewers’ Spent Grain Flour and Blood Glucose Level of Diabetic Rats Fed the Biscuit

Authors: Nneka N. Uchegbu, Charles N. Ishiwu

Abstract:

The nutritional composition and hypoglycaemic effect of crackers produced from a blend of sprouted pigeon pea, unripe plantain, and brewers’ spent grain and fed to Alloxan induced diabetic rat was investigated. Crackers were produced from different blends of sprouted pigeon pea, unripe plantain and brewers’ spent grain. The crackers were evaluated for proximate composition, amino acid profile and antinutritional factors. Blood glucose levels of normal and diabetic rats fed with the control sample and different formulations of cracker were measured. The protein content of the samples were significantly different (p < 0.05) from each other with sample A having the lowest value and sample B with the highest value. The values obtained showed that the samples contained most of the amino acids that are found in plant proteins. The levels of antinutritional factor determined were generally low. Administration of the formulated cracker meals led to a significant reduction in the fasting blood glucose level in the diabetic rats. The present study concluded that consumption of crackers produced from this composite flour can be recommended for the diabetics and those who are sceptical about the disease.

Keywords: crackers, diabetics rat, sprouted pigeon pea, unripe plantain and brewers’ spent grain

Procedia PDF Downloads 418
470 Influence of κ-Casein Genotype on Milk Productivity of Latvia Local Dairy Breeds

Authors: S. Petrovska, D. Jonkus, D. Smiltiņa

Abstract:

κ-casein is one of milk proteins which are very important for milk processing. Genotypes of κ-casein affect milk yield, fat, and protein content. The main factors which affect local Latvian dairy breed milk yield and composition are analyzed in research. Data were collected from 88 Latvian brown and 82 Latvian blue cows in 2015. AA genotype was 0.557 in Latvian brown and 0.232 in Latvian blue breed. BB genotype was 0.034 in Latvian brown and 0.207 in Latvian blue breed. Highest milk yield was observed in Latvian brown (5131.2 ± 172.01 kg), significantly high fat content and fat yield also was in Latvian brown (p < 0.05). Significant differences between κ-casein genotypes were not found in Latvian brown, but highest milk yield (5057 ± 130.23 kg), protein content (3.42 ± 0.03%), and protein yield (171.9 ± 4.34 kg) were with AB genotype. Significantly high fat content was observed in Latvian blue breed with BB genotype (4.29 ± 0.17%) compared with AA genotypes (3.42 ± 0.19). Similar tendency was found in protein content – 3.27 ± 0.16% with BB genotype and 2.59 ± 0.16% with AA genotype (p < 0.05). Milk yield increases by increasing parity. We did not obtain major tendency of changes of milk fat and protein content according parity.

Keywords: dairy cows, κ-casein, milk productivity, polymorphism

Procedia PDF Downloads 244
469 Differential Proteomic Profile and Terpenoid Production in Somatic Embryos of Jatropha curcas

Authors: Anamarel Medina-Hernandez, Teresa Ponce-Noyola, Ileana Vera-Reyes, Ana C. Ramos-Valdivia

Abstract:

Somatic embryos reproduce original seed characteristics and could be implemented in biotechnological studies. Jatropha curcas L. is an important plant for biodiesel production, but also is used in traditional medicine. Seeds from J. curcas are toxic because contain diterpenoids called phorbol esters, but in Mexico exist a non-toxic variety. Therefore, somatic embryos suspension cultures from non-toxic J. curcas variety were induced. In order to investigate the characteristics of somatic embryos, a differential proteomic analysis was made between pre-globular and globular stages by 2-D gel electrophoresis. 108 spots were differentially expressed (p<0.02), and 20 spots from globular somatic embryos were sequenced by MALDI-TOF-TOF mass spectrometry. A comparative analysis of terpenoids production between the two stages was made by RP-18 TLC plates. The sequenced proteins were related to energy production (68%), protein destination and storage (9%), secondary metabolism (9%), signal transduction (5%), cell structure (5%) and aminoacid metabolism (4%). Regarding terpenoid production, in pre-globular and globular somatic embryos were identified sterols and triterpenes of pharmacological interest (alpha-amyrin and betulinic acid) but also it was found compounds that were unique to each stage. The results of this work are the basis to characterize at different levels the J. curcas somatic embryos so that this system can be used efficiently in biotechnological processes.

Keywords: Jatropha curcas, proteomics, somatic embryo, terpenoids

Procedia PDF Downloads 231
468 Cloning, Expression and Protein Purification of AV1 Gene of Okra Leaf Curl Virus Egyptian Isolate and Genetic Diversity between Whitefly and Different Plant Hosts

Authors: Dalia. G. Aseel

Abstract:

Begomoviruses are economically important plant viruses that infect dicotyledonous plants and exclusively transmitted by the whitefly Bemisia tabaci. Here, replicative form was isolated from Okra, Cotton, Tomato plants and whitefly infected with Begomoviruses. Using coat protein specific primers (AV1), the viral infection was verified with amplicon at 450 bp. The sequence of OLCuV-AV1 gene was recorded and received an accession number (FJ441605) from Genebank. The phylogenetic tree of OLCuV was closely related to Okra leaf curl virus previously isolated from Cameroon and USA with nucleotide sequence identity of 92%. The protein purification was carried out using His-Tag methodology by using Affinity Chromatography. The purified protein was separated on SDS-PAGE analysis and an enriched expected size of band at 30 kDa was observed. Furthermore, RAPD and SDS-PAGE were used to detect genetic variability between different hosts of okra leaf curl virus (OLCuV), cotton leaf curl virus (CLCuV), tomato yellow leaf curl virus (TYLCuV) and the whitefly vector. Finally, the present study would help to understand the relationship between the whitefly and different economical crops in Egypt.

Keywords: okra leaf curl virus, AV1 gene, sequencing, phylogenetic, cloning, purified protein, genetic diversity and viral proteins

Procedia PDF Downloads 125
467 Impact of Mid-Day Meal on Nutritional Status of Primary School Children in Haryana, India

Authors: Vinti Davar

Abstract:

India is one among the many countries where child malnutrition is severe and also a major underlying cause of child mortality. The Mid Day Meal (MDM) program was launched to improve the nutritional status of children, attendance, and retention in schools. It was based on one meal provided to the children, who are attending elementary school (primary school). The objective of present study was to evaluate the impact of mid-day meal on the nutritional status of primary school children in Haryana, India. The present work was carried out on 1200 children between 6-11years of age, studying in primary schools in Haryana, India. Out of these 960 students as, the experimental group was selected from schools where mid-day meal is supplied by the government, and 240 students as control group where mid-day meal is not supplied. The mean height, weight, and BMI of children of both the groups were found to be significantly low as compared to NCHS standards. Stunting was found in 56.40% MDMB (Mid-day meal beneficiaries) and 62.50 % NMDMC (non- mid-day meal children).The weight of almost all subjects were low according to age indicating thinness. Anemia was more prevalent in MDMB as compared to NMDMC may be because school meals did not include vegetables. The consumption of energy, proteins, fat, calcium, iron, vitamins was significantly low (P ≤ .01) in both groups especially in girls of NMDM. The consumption of various food groups except vegetables was better in MDMB compared to NMDMC. It is concluded that with certain improvements, mid-meal can be beneficial in meeting everyday requirements of school going children.

Keywords: foods, meals, nutritional status, school going children

Procedia PDF Downloads 284
466 Clustering of Natural and Nature Derived Compounds for Cardiovascular Disease: Pharmacophore Modeling

Authors: S. Roy, R. Rekha, K. Sriram, G. Subhadra, R. Johana

Abstract:

Cardiovascular disease remains a leading cause of death in most industrialized countries. Many chemical drugs are available in the market which targets different receptor proteins related to cardiovascular diseases. Of late the traditional herbal drugs are safer when compared to chemical drugs because of its side effects. However, many herbal remedies used in treating cardiovascular diseases have not undergone scientific assessment to prove its pharmacological activities. There are many natural compounds, nature derived and Natural product mimic compounds are available which are in the market as approved drug. In the most of the cases drug activity at the molecular level are not known. Here we have categorized those compounds with our experimental compounds in different classes based on the structural similarity and physicochemical properties, using a tool, Chemmine and has attempted to understand the mechanism of the action of a experimental compound, which are clustered with Simvastatin, Lovastatin, Mevastatin and Pravastatin. Target protein molecule for Simvastatin, Lovastatin, Mevastatin and Pravastatin is HMG-CoA reductase, so we concluded that the experimental compound may be able to bind to the same target. Molecular docking and atomic interaction studies with simvastatin and our experimental compound were compared. A pharmacophore modeling was done based on the experimental compound and HMG-CoA reductase inhibitor.

Keywords: molecular docking, physicochemical properties, pharmacophore modeling structural similarity, pravastatin

Procedia PDF Downloads 301
465 Identification and Characterization of Genes Expressed in Diseased Condition Silkworms (Bombyx mori): A Systematic Investigation

Authors: Siddharth Soni, Gourav Kumar Pandey, Sneha Kumari, Dev Mani Pandey, Koel Mukherjee

Abstract:

The silkworm Bombyx mori is a commercially important insect, but a major roadblock in silk production are silkworm diseases. Flacherie is one of the diseases of the silkworm, that affects the midgut of the 4th and 5th instar larvae and eventually makes them lethargic, stop feeding and finally result in their death. The concerned disease is a result of bacterial and viral infection and in some instances a combination of both. The present study aims to identify and study the expression level of genes in the flacherie condition. For the said work, total RNA was isolated from the infected larvae at their most probable infectious instar and cDNA was synthesized using Reverse Transcriptase PCR (RT-PCR). This cDNA was then used to amplify disease relalted genes whose expression levels were checked using quantitaive PCR (qPCR) using the double delta Ct method. Cry toxin receptors like APN and BtR-175, ROS mediator Dual Oxidase are few proteins whose genes were overexpressed. Interestingly, pattern recognition receptors (PRRs) C-type lectins' genes were found to be downregulated. The results explain about the strong expression of genes that can distinguish the concerned protein in the midgut of diseased silkworm and thereby aiding knowledge in the field of inhibitor designing research.

Keywords: Bombyx mori, flacherie disease, inhibitor designing, up and down regulation

Procedia PDF Downloads 260
464 Influence of Maturity Stage on Nutritional and Therapeutic Potentialities of Solanum anguivi Lam Berries (Gnagnan) Cultivated in CôTe D'Ivoire

Authors: G. Dan Chépo, L. Ban-Koffi, N. Kouassi Kouakou, M. Dje Kouakou, J. Nemlin, A. Sahore Drogba, L. Kouame Patrice

Abstract:

Solanum anguivi Lam, collectively called Gnagnan in Côte d'Ivoire is an eggplant with nutritional and therapeutic potentialities more or less known. The present study was undertaken to analyze the biochemical composition of berries at the different stages of maturity. Data showed that at the first stage of maturity (green berries), fruits are rich in ascorbic acid (34.48 ± 1.7 mg / 100 g dm), phenolic compounds (956.7 ± 71.14 mg / 100 g dm), iron (467.7 ± 1.84 mg / 100 g dm), magnesium (404.6 ± 16.25 mg / 100 g dm) and potassium (404.64 ± 16.25 mg/100 g dm). However, at the last stage of maturity (red berries), fruits are rich in proteins, cellulose, total sugars, fat and potassium with the values of 22.53 ± 2 g/100 g dm, 19.12 ± 0.35 g/100 g dm, 3.7 ± 0.2 g/100 g dm, 2.65 ± 0.19 g/100 g dm and 2290.84 ± 22.24 mg / 100 g dm, respectively. The chromatography on thin layer revealed the presence of glucose, ribose, xylose, arabinose and fructose at all the maturity stages. Except for alkaloids and gallic tannins, the phytochemical sorting revealed that Gnagnan contain many pharmacological components. According to the maturity stages, orange and red berries showed a higher content in sterols and polyterpens, flavonoids and saponins. The green berries contain most of polyphenols, catechintannins and quinons. As for the yellow berries, they are rich in polyphenols and catechintannins. These data contribute to enhance clinical researches on nutritional and pharmacological properties of S. anguivi Lam.

Keywords: Gnagnan, maturity stage, chemical composition, chromatography thin layer, phytochemical sorting

Procedia PDF Downloads 470
463 Analysis of Osmotin as Transcription Factor/Cell Signaling Modulator Using Bioinformatic Tools

Authors: Usha Kiran, M. Z. Abdin

Abstract:

Osmotin is an abundant cationic multifunctional protein discovered in cells of tobacco (Nicotiana tabacum L. var Wisconsin 38) adapted to an environment of low osmotic potential. It provides plants protection from pathogens, hence placed in the PRP family of proteins. The osmotin induced proline accumulation has been reported in plants including transgenic tomato and strawberry conferring tolerance against both biotic and abiotic stresses. The exact mechanism of induction of proline by osmotin is however, not known till date. These observations have led us to hypothesize that osmotin induced proline accumulation could be due to its involvement as transcription factor and/or cell signal pathway modulator in proline biosynthesis. The present investigation was therefore, undertaken to analyze the osmotin protein as transcription factor /cell signalling modulator using bioinformatics tools. The results of available online DNA binding motif search programs revealed that osmotin does not contain DNA-binding motifs. The alignment results of osmotin protein with the protein sequence from DATF showed the homology in the range of 0-20%, suggesting that it might not contain a DNA binding motif. Further to find unique DNA-binding domain, the superimposition of osmotin 3D structure on modeled Arabidopsis transcription factors using Chimera also suggested absence of the same. We, however, found evidence implicating osmotin in cell signaling. With these results, we concluded that osmotin is not a transcription factor but regulating proline biosynthesis and accumulation through cell signaling during abiotic stresses.

Keywords: osmotin, cell signaling modulator, bioinformatic tools, protein

Procedia PDF Downloads 247
462 Development of Chitosan/Dextran Gelatin Methacrylate Core/Shell 3D Scaffolds and Protein/Polycaprolactone Melt Electrowriting Meshes for Tissue Regeneration Applications

Authors: J. D. Cabral, E. Murray, P. Turner, E. Hewitt, A. Ali, M. McConnell

Abstract:

Worldwide demand for organ replacement and tissue regeneration is progressively increasing. Three-dimensional (3D) bioprinting, where a physical construct is produced using computer-aided design, is a promising tool to advance the tissue engineering and regenerative medicine fields. In this paper we describe two different approaches to developing 3D bioprinted constructs for use in tissue regeneration. Bioink development is critical in achieving the 3D biofabrication of functional, regenerative tissues. Hydrogels, cross-linked macromolecules that absorb large amounts of water, have received widespread interest as bioinks due to their relevant soft tissue mechanics, biocompatibility, and tunability. In turn, not only is bioink optimisation crucial, but the creation of vascularized tissues remains a key challenge for the successful fabrication of thicker, more clinically relevant bioengineered tissues. Among the various methodologies, cell-laden hydrogels are regarded as a favorable approach; and when combined with novel core/shell 3D bioprinting technology, an innovative strategy towards creating new vessel-like structures. In this work, we investigate this cell-based approach by using human umbilical endothelial cells (HUVECs) entrapped in a viscoelastic chitosan/dextran (CD)-based core hydrogel, printed simulataneously along with a gelatin methacrylate (GelMA) shell. We have expanded beyond our previously reported FDA approved, commercialised, post-surgical CD hydrogel, Chitogel®, by functionalizing it with cell adhesion and proteolytic peptides in order to promote bone marrow-derived mesenchymal stem cell (immortalized BMSC cell line, hTERT) and HUVECs growth. The biocompatibility and biodegradability of these cell lines in a 3D bioprinted construct is demonstrated. Our studies show that particular peptide combinations crosslinked within the CD hydrogel was found to increase in vitro growth of BMSCs and HUVECs by more than two-fold. These gels were then used as a core bioink combined with the more mechanically robust, UV irradiated GelMA shell bioink, to create 3D regenerative, vessel-like scaffolds with high print fidelity. As well, microporous MEW scaffolds made from milk proteins blended with PCL were found to show promising bioactivity, exhibiting a significant increase in keratinocyte (HaCaTs) and fibroblast (normal human dermal fibroblasts, NhDFs) cell migration and proliferation when compared to PCL only scaffolds. In conclusion, our studies indicate that a peptide functionalized CD hydrogel bioink reinforced with a GelMA shell is biocompatible, biodegradable, and an appropriate cell delivery vehicle in the creation of regenerative 3D constructs. In addition, a novel 3D printing technique, melt electrowriting (MEW), which allows fabrication of micrometer fibre meshes, was used to 3D print polycaprolactone (PCL) and bioactive milk protein, lactorferrin (LF) and whey protein (WP), blended scaffolds for potential skin regeneration applications. MEW milk protein/PCL scaffolds exhibited high porosity characteristics, low overall biodegradation, and rapid protein release. Human fibroblasts and keratinocyte cells were seeded on to the scaffolds. Scaffolds containing high concentrations of LF and combined proteins (LF+WP) showed improved cell viability over time as compared to PCL only scaffolds. This research highlights two scaffolds made using two different 3D printing techniques using a combination of both natural and synthetic biomaterial components in order to create regenerative constructs as potential chronic wound treatments.

Keywords: biomaterials, hydrogels, regenerative medicine, 3D bioprinting

Procedia PDF Downloads 248
461 Sesamol Decreases Melanin Biosynthesis via Melanogenesis-Related Gene Expressions in Melan-a Cells

Authors: Seung-Hwa Baek, In-Jung Nam, Sang-Han Lee

Abstract:

The development of anti-melanogenic agents is important for the prevention of serious esthetic problem like a melasma, freckle, age spots, and chloasma. The aim of this study was to investigate the anti-melanogenic effect of sesamol, an active lignan isolated from sesame seed, by mushroom and cellular tyrosinase assay, melanin content and the analysis of melanogensis-related mRNA expressions in melana cells. Sesamol showed strong inhibitory activity against the mushroom tyrosinase in a dose-dependent manner. Intracellular tyrosinase inhibition activity was also confirmed by zymography. At a concentration of 50 μM, sesamol inhibited melanin production in melan-a cells with no cytoxicity while those of phenylthiourea (PTU) as a positive control were the same condition. Sesamol significantly inhibited the expression of melanogensis-related genes, such as tyrosinase, tyrosinase-related protein-1 (TRP-1), dopachrome tautomerase (Dct), microphthalmia-associated transcription factor (MITF) and melanocortin 1 receptor (MC1R). These findings indicate that sesamol could reduce melanin biosynthesis via the downregulation of tyrosinase activity and melanin production via subsequent gene expression of melanogenesis-related proteins. Together, these results suggest that the sesamol have strong potential in inhibiting melanin biosynthesis, in that the substance may be used as a new skin-whitening agent of cosmetic materials.

Keywords: sesamol, sesame seed, melanin biosynthesis, melanogenesis-related gene, skin-whitening agent

Procedia PDF Downloads 368
460 Preparation and Antioxidant Activity of Heterocyclic Indole Derivatives

Authors: Tunca Gul Altuntas, Aziz Baydar, Cemre Acar, Sezen Yılmaz, Tulay Coban

Abstract:

Free radicals, which are generated in many bioorganic redox processes, play a role in the pathogenesis of several diseases including cancer, arthritis, hemorrhagic shock, inflammatory, cardiovascular, neurodegenerative diseases and age-related degenerative brain diseases. Exposures of normal cell to free radical damages several structures, oxidizes nucleic acids, proteins, lipids, or DNA. Compounds interfere with the action of reactive oxygen species might be useful in prevention and treatment of these pathologies. A series of indole compounds containing piperazine ring were synthesized. Coupling of indole-2-carboxylic acid with monosubstituted piperazines was accomplished with 1,1’-carbonyldiimidazole (CDI) in a good yield. The structures of prepared compounds were verified in good agreement with their 1H NMR (nuclear magnetic resonance), MS (mass spectrophotometry), and IR (infrared spectrophotometry) characteristics. In this work, all synthetized indole derivatives were screened in vitro for their antioxidative potential against vitamin E (α-tocopherol) using different antioxidant assays such as superoxide anion formation, lipid peroxidation levels in rat liver, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) stable radical scavenging activity. The synthesized compounds showed various levels of inhibition compared to vitamin E. This may give promising results for the development of new antioxidant agents.

Keywords: antioxidant, indoles, piperazines, reactive oxygen species

Procedia PDF Downloads 215
459 Molecular Interactions Driving RNA Binding to hnRNPA1 Implicated in Neurodegeneration

Authors: Sakina Fatima, Joseph-Patrick W. E. Clarke, Patricia A. Thibault, Subha Kalyaanamoorthy, Michael Levin, Aravindhan Ganesan

Abstract:

Heteronuclear ribonucleoprotein (hnRNPA1 or A1) is associated with the pathology of different diseases, including neurological disorders and cancers. In particular, the aggregation and dysfunction of A1 have been identified as a critical driver for neurodegeneration (NDG) in Multiple Sclerosis (MS). Structurally, A1 includes a low-complexity domain (LCD) and two RNA-recognition motifs (RRMs), and their interdomain coordination may play a crucial role in A1 aggregation. Previous studies propose that RNA-inhibitors or nucleoside analogs that bind to RRMs can potentially prevent A1 self-association. Therefore, molecular-level understanding of the structures, dynamics, and nucleotide interactions with A1 RRMs can be useful for developing therapeutics for NDG in MS. In this work, a combination of computational modelling and biochemical experiments were employed to analyze a set of RNA-A1 RRM complexes. Initially, the atomistic models of RNA-RRM complexes were constructed by modifying known crystal structures (e.g., PDBs: 4YOE and 5MPG), and through molecular docking calculations. The complexes were optimized using molecular dynamics simulations (200-400 ns), and their binding free energies were computed. The binding affinities of the selected complexes were validated using a thermal shift assay. Further, the most important molecular interactions that contributed to the overall stability of the RNA-A1 RRM complexes were deduced. The results highlight that adenine and guanine are the most suitable nucleotides for high-affinity binding with A1. These insights will be useful in the rational design of nucleotide-analogs for targeting A1 RRMs.

Keywords: hnRNPA1, molecular docking, molecular dynamics, RNA-binding proteins

Procedia PDF Downloads 96
458 Effect of Velocity Slip on Two Phase Flow in an Eccentric Annular Region

Authors: Umadevi B., Dinesh P. A., Indira. R., Vinay C. V.

Abstract:

A mathematical model is developed to study the simultaneous effects of particle drag and slip parameter on the velocity as well as rate of flow in an annular cross sectional region bounded by two eccentric cylinders. In physiological flows this phenomena can be observed in an eccentric catheterized artery with inner cylinder wall is impermeable and outer cylinder wall is permeable. Blood is a heterogeneous fluid having liquid phase consisting of plasma in which a solid phase of suspended cells and proteins. Arterial wall gets damaged due to aging and lipid molecules get deposited between damaged tissue cells. Blood flow increases towards the damaged tissues in the artery. In this investigation blood is modeled as two phase fluid as one is a fluid phase and the other is particulate phase. The velocity of the fluid phase and rate of flow are obtained by transforming eccentric annulus to concentric annulus with the conformal mapping. The formulated governing equations are analytically solved for the velocity and rate of flow. The numerical investigations are carried out by varying eccentricity parameter, slip parameter and drag parameter. Enhancement of slip parameter signifies loss of fluid then the velocity and rate of flow will be decreased. As particulate drag parameter increases then the velocity as well as rate flow decreases. Eccentricity facilitates transport of more fluid then the velocity and rate of flow increases.

Keywords: catheter, slip parameter, drag parameter, eccentricity

Procedia PDF Downloads 505
457 In vitro Antioxidant Scavenging of Root Fraction of Bryonia dioica

Authors: Yamani Amal, Lazaae Jamila, Elachouri Mostafa

Abstract:

Plants and their active agents – especially polyphenols – may have a principal role in the treatment of diseases that result from the defect of physiological antioxidant mechanisms. Bryonia dioica is well known in Moroccan traditional medicine for alleviatin pain and traiting many diseases. We have focused on plant belonging to Cucurbitaceae Family from around the world to understand their therapeutic uses and their potential antioxidant activities Although several biological activities and Chemical composition of Bryonia dioica are well characterized, no direct, in vitro study, of this natural product examined the antioxydant effect of the extract from the roots of Bryonia dioica. The aim of this study was to determine in vitro antioxidant activity of the B.dioica root, using antioxidant analysis methods based on determination of Hydroxyradical Scavenging, 1,1-diphenyl-2-picrylhydrazine (DPPH) radical scavenging, Hydrogenperoxide Scavenging and Nitric Oxide Scavenging. In this study, it was demonstrated, that, B. dioica root extract showed excellent antioxidant properties. This investigation showed that the roots of this plant contain potent natural scavengers R. It may represent an interesting source of antioxidant phenolics that may favour the extension of their cultivation as new source of natural antioxidants in addition to containing high quality proteins for human or animal nutrition. Therefore, there is need for all stakeholders on the Morocco to strive towards taking advantage of our enormous biodiversity resources to free our people from diseases, abject poverty and stagnation.

Keywords: Morocco, bryoniadioica, in vitro, antioxydant

Procedia PDF Downloads 364
456 Determination of Marbofloxacin in Pig Plasma Using LC-MS/MS and Its Application to the Pharmacokinetic Studies

Authors: Jeong Woo Kang, MiYoung Baek, Ki-Suk Kim, Kwang-Jick Lee, ByungJae So

Abstract:

Introduction: A fast, easy and sensitive detection method was developed and validated by liquid chromatography tandem mass spectrometry for the determination of marbofloxacin in pig plasma which was further applied to study the pharmacokinetics of marbofloxacin. Materials and Methods: The plasma sample (500 μL) was mixed with 1.5 ml of 0.1% formic acid in MeCN to precipitate plasma proteins. After shaking for 20 min, The mixture was centrifuged at 5,000 × g for 30 min. It was dried under a nitrogen flow at 50℃. 500 μL aliquot of the sample was injected into the LC-MS/MS system. Chromatographic analysis was carried out mobile phase gradient consisting 0.1% formic acid in D.W. (A) and 0.1% formic acid in MeCN (B) with C18 reverse phase column. Mass spectrometry was performed using the positive ion mode and the selected ion monitoring (MRM). Results and Conclusions: The method validation was performed in the sample matrix. Good linearities (R2>0.999) were observed and the quantified average recoveries of marbofloxacin were 87 - 92% at level of 10 ng g-1 -100 ng g-1. The percent of coefficient of variation (CV) for the described method was less than 10 % over the range of concentrations studied. The limits of detection (LOD) and quantification (LOQ) were 2 and 5 ng g-1, respectively. This method has also been applied successfully to pharmacokinetic analysis of marbofloxacin after intravenous (IV), intramuscular (IM) and oral administration (PO). The mean peak plasma concentration (Cmax) was 2,597 ng g-1at 0.25 h, 2,587 ng g-1at 0.44 h and 2,355 ng g-1at 1.58 h for IV, IM and PO, respectively. The area under the plasma concentration-time curve (AUC0–t) was 24.8, 29.0 and 25.2 h μg/mL for IV, IM and PO, respectively. The elimination half-life (T1/2) was 8.6, 13.1 and 9.5 for IV, IM and PO, respectively. Bioavailability (F) of the marbofloxacin in pig was 117 and 101 % for IM and PO, respectively. Based on these result, marbofloxacin does not have any obstacles as therapeutics to develop the oral formulations such as tablets and capsules.

Keywords: marbofloxacin, LC-MS/MS, pharmacokinetics, chromatographic

Procedia PDF Downloads 525
455 Protein Stabilized Foam Structures as Protective Carrier Systems during Microwave Drying of Probiotics

Authors: Jannika Dombrowski, Sabine Ambros, Ulrich Kulozik

Abstract:

Due to the increasing popularity of healthy products, probiotics are still of rising importance in food manufacturing. With the aim to amplify the field of probiotic application to non-chilled products, the cultures have to be preserved by drying. Microwave drying has proved to be a suitable technique to achieve relatively high survival rates, resulting from drying at gentle temperatures, among others. However, diffusion limitation due to compaction of cell suspension during drying can prolong drying times as well as deteriorate product properties (grindability, rehydration performance). Therefore, we aimed to embed probiotics in an aerated matrix of whey proteins (surfactants) and di-/polysaccharides (foam stabilization, probiotic protection) during drying. As a result of the manifold increased inner surface of the cell suspension, drying performance was enhanced significantly as compared to non-foamed suspensions. This work comprises investigations on suitable foam matrices, being stable under vacuum (variation of protein concentration, type and concentration of di-/polysaccharide) as well as development of an applicable microwave drying process in terms of microwave power, chamber pressure and maximum product temperatures. Performed analyses included foam characteristics (overrun, drainage, firmness, bubble sizes), and properties of the dried cultures (survival, activity). In addition, efficiency of the drying process was evaluated.

Keywords: foam structure, microwave drying, polysaccharides, probiotics

Procedia PDF Downloads 244