Search results for: real estate price prediction
7654 Network Analysis and Sex Prediction based on a full Human Brain Connectome
Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller
Abstract:
we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.Keywords: network analysis, neuroscience, machine learning, optimization
Procedia PDF Downloads 1477653 The LNG Paradox: The Role of Gas in the Energy Transition
Authors: Ira Joseph
Abstract:
The LNG paradox addresses the issue of how the most expensive form of gas supply, which is LNG, will grow in an end user market where demand is most competitive, which is power generation. In this case, LNG demand growth is under siege from two entirely different directions. At one end is price; it will be extremely difficult for gas to replace coal in Asia due to the low price of coal and the age of the generation plants. Asia's coal fleet, on average, is less than two decades old and will need significant financial incentives to retire before its state lifespan. While gas would cut emissions in half relative to coal, it would also more than double the price of the fuel source for power generation, which puts it in a precarious position. In most countries in Asia other than China, this cost increase, particularly from imports, is simply not realistic when it is also necessary to focus on economic growth and social welfare. On the other end, renewables are growing at an exponential rate for three reasons. One is that prices are dropping. Two is that policy incentives are driving deployment, and three is that China is forcing renewables infrastructure into the market to take a political seat at the global energy table with Saudi Arabia, the US, and Russia. Plus, more renewables will lower import growth of oil and gas in China, if not end it altogether. Renewables are the predator at the gate of gas demand in power generation and in every year that passes, renewables cut into demand growth projections for gas; in particular, the type of gas that is most expensive, which is LNG. Gas does have a role in the future, particularly within a domestic market. Once it crosses borders in the form of LNG or even pipeline gas, it quickly becomes a premium fuel and must be marketed and used this way. Our research shows that gas will be able to compete with batteries as an intermittency and storage tool and does offer a method to harmonize with renewables as part of the energy transition. As a baseload fuel, however, the role of gas, particularly, will be limited by cost once it needs to cross a border. Gas converted into blue or green hydrogen or ammonia is also an option for storage depending on the location. While this role is much reduced from the primary baseload role that gas once aspired to land, it still offers a credible option for decades to come.Keywords: natural gas, LNG, demand, price, intermittency, storage, renewables
Procedia PDF Downloads 617652 An Improved Heat Transfer Prediction Model for Film Condensation inside a Tube with Interphacial Shear Effect
Authors: V. G. Rifert, V. V. Gorin, V. V. Sereda, V. V. Treputnev
Abstract:
The analysis of heat transfer design methods in condensing inside plain tubes under existing influence of shear stress is presented in this paper. The existing discrepancy in more than 30-50% between rating heat transfer coefficients and experimental data has been noted. The analysis of existing theoretical and semi-empirical methods of heat transfer prediction is given. The influence of a precise definition concerning boundaries of phase flow (it is especially important in condensing inside horizontal tubes), shear stress (friction coefficient) and heat flux on design of heat transfer is shown. The substantiation of boundary conditions of the values of parameters, influencing accuracy of rated relationships, is given. More correct relationships for heat transfer prediction, which showed good convergence with experiments made by different authors, are substantiated in this work.Keywords: film condensation, heat transfer, plain tube, shear stress
Procedia PDF Downloads 2457651 Lie Symmetry Treatment for Pricing Options with Transactions Costs under the Fractional Black-Scholes Model
Authors: B. F. Nteumagne, E. Pindza, E. Mare
Abstract:
We apply Lie symmetries analysis to price and hedge options in the fractional Brownian framework. The reputation of Lie groups is well spread in the area of Mathematical sciences and lately, in Finance. In the presence of transactions costs and under fractional Brownian motions, analytical solutions become difficult to obtain. Lie symmetries analysis allows us to simplify the problem and obtain new analytical solution. In this paper, we investigate the use of symmetries to reduce the partial differential equation obtained and obtain the analytical solution. We then proposed a hedging procedure and calibration technique for these types of options, and test the model on real market data. We show the robustness of our methodology by its application to the pricing of digital options.Keywords: fractional brownian model, symmetry, transaction cost, option pricing
Procedia PDF Downloads 3997650 The Antecedents of Green Purchase Intention in Nigeria: Mediating Effect of Perceived Behavioral Control
Authors: Victoria Masi Haruna Karatu, Nik Kamariah Nikmat
Abstract:
In recent times awareness about the environment and green purchase has been on the increase across nations due to global warming. Previous researchers have attempted to determine what actually influences the purchase intention of consumers in this environmentally conscious epoch. The consumers too have become conscious of what to buy and who to buy from in their purchasing decisions as this action will reflect their concern about the environment and their personal well-being. This trend is a widespread phenomenon in most developed countries of the world. On the contrary evidence revealed that only 5% of the populations of Nigeria involve in green purchase activities thus making the country lag behind its counterparts in green practices. This is not a surprise as Nigeria is facing problems of inadequate green knowledge, non-enforcement of environmental regulations, sensitivity to the price of green products when compared with the conventional ones and distrust towards green products which has been deduced from prior studies of other regions. The main objectives of this study is to examine the direct antecedents of green purchase intention (green availability, government regulations, perceived green knowledge, perceived value and green price sensitivity) in Nigeria and secondly to establish the mediating role of perceived behavioral control on the relationship between these antecedents and green purchase intention. The study adopts quantitative method whereby 700 questionnaires were administered to lecturers in three Nigerian universities. 502 datasets were collected which represents 72 percent response rate. After screening the data only 440 were usable and analyzed using structural equation modeling (SEM) and bootstrapping. From the findings, three antecedents have significant direct relationships with green purchase intention (perceived green knowledge, perceived behavioral control, and green availability) while two antecedents have positive and significant direct relationship with perceived behavioral control (perceived value and green price sensitivity). On the other hand, PBC does not mediate any of the paths from the predictors to criterion variable. This result is discussed in the Nigerian context.Keywords: Green Availability, Green Price Sensitivity, Green Purchase Intention, Perceived Green Knowledge, Perceived Value
Procedia PDF Downloads 4267649 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay
Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari
Abstract:
Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.Keywords: model tree, CART, logistic regression, soil shear strength
Procedia PDF Downloads 1977648 Ultimate Strength Prediction of Shear Walls with an Aspect Ratio between One and Two
Authors: Said Boukais, Ali Kezmane, Kahil Amar, Mohand Hamizi, Hannachi Neceur Eddine
Abstract:
This paper presents an analytical study on the behavior of rectangular reinforced concrete walls with an aspect ratio between one and tow. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood equation for shear and strain compatibility analysis for flexure. Subsequently, nominal ultimate wall strengths from the formulas were compared with the ultimate wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate strength. New semi empirical equation are developed using data from tests of 46 walls with the objective of improving the prediction of ultimate strength of walls with the most possible accuracy and for all failure modes.Keywords: prediction, ultimate strength, reinforced concrete walls, walls, rectangular walls
Procedia PDF Downloads 3377647 Economic Valuation of Emissions from Mobile Sources in the Urban Environment of Bogotá
Authors: Dayron Camilo Bermudez Mendoza
Abstract:
Road transportation is a significant source of externalities, notably in terms of environmental degradation and the emission of pollutants. These emissions adversely affect public health, attributable to criteria pollutants like particulate matter (PM2.5 and PM10) and carbon monoxide (CO), and also contribute to climate change through the release of greenhouse gases, such as carbon dioxide (CO2). It is, therefore, crucial to quantify the emissions from mobile sources and develop a methodological framework for their economic valuation, aiding in the assessment of associated costs and informing policy decisions. The forthcoming congress will shed light on the externalities of transportation in Bogotá, showcasing methodologies and findings from the construction of emission inventories and their spatial analysis within the city. This research focuses on the economic valuation of emissions from mobile sources in Bogotá, employing methods like hedonic pricing and contingent valuation. Conducted within the urban confines of Bogotá, the study leverages demographic, transportation, and emission data sourced from the Mobility Survey, official emission inventories, and tailored estimates and measurements. The use of hedonic pricing and contingent valuation methodologies facilitates the estimation of the influence of transportation emissions on real estate values and gauges the willingness of Bogotá's residents to invest in reducing these emissions. The findings are anticipated to be instrumental in the formulation and execution of public policies aimed at emission reduction and air quality enhancement. In compiling the emission inventory, innovative data sources were identified to determine activity factors, including information from automotive diagnostic centers and used vehicle sales websites. The COPERT model was utilized to ascertain emission factors, requiring diverse inputs such as data from the national transit registry (RUNT), OpenStreetMap road network details, climatological data from the IDEAM portal, and Google API for speed analysis. Spatial disaggregation employed GIS tools and publicly available official spatial data. The development of the valuation methodology involved an exhaustive systematic review, utilizing platforms like the EVRI (Environmental Valuation Reference Inventory) portal and other relevant sources. The contingent valuation method was implemented via surveys in various public settings across the city, using a referendum-style approach for a sample of 400 residents. For the hedonic price valuation, an extensive database was developed, integrating data from several official sources and basing analyses on the per-square meter property values in each city block. The upcoming conference anticipates the presentation and publication of these results, embodying a multidisciplinary knowledge integration and culminating in a master's thesis.Keywords: economic valuation, transport economics, pollutant emissions, urban transportation, sustainable mobility
Procedia PDF Downloads 577646 House Price Index Predicts a Larger Impact of Habitat Loss than Primary Productivity on the Biodiversity of North American Avian Communities
Authors: Marlen Acosta Alamo, Lisa Manne, Richard Veit
Abstract:
Habitat loss due to land use change is one of the leading causes of biodiversity loss worldwide. This form of habitat loss is a non-random phenomenon since the same environmental factors that make an area suitable for supporting high local biodiversity overlap with those that make it attractive for urban development. We aimed to compare the effect of two non-random habitat loss predictors on the richness, abundance, and rarity of nature-affiliated and human-affiliated North American breeding birds. For each group of birds, we simulated the non-random habitat loss using two predictors: the House Price Index as a measure of the attractiveness of an area for humans and the Normalized Difference Vegetation Index as a proxy for primary productivity. We compared the results of the two non-random simulation sets and one set of random habitat loss simulations using an analysis of variance and followed up with a Tukey-Kramer test when appropriate. The attractiveness of an area for humans predicted estimates of richness loss and increase of rarity higher than primary productivity and random habitat loss for nature-affiliated and human-affiliated birds. For example, at 50% of habitat loss, the attractiveness of an area for humans produced estimates of richness at least 5% lower and of a rarity at least 40% higher than primary productivity and random habitat loss for both groups of birds. Only for the species abundance of nature-affiliated birds, the attractiveness of an area for humans did not outperform primary productivity as a predictor of biodiversity following habitat loss. We demonstrated the value of the House Price Index, which can be used in conservation assessments as an index of the risks of habitat loss for natural communities. Thus, our results have relevant implications for sustainable urban land-use planning practices and can guide stakeholders and developers in their efforts to conserve local biodiversity.Keywords: biodiversity loss, bird biodiversity, house price index, non-random habitat loss
Procedia PDF Downloads 867645 Advances on the Understanding of Sequence Convergence Seen from the Perspective of Mathematical Working Spaces
Authors: Paula Verdugo-Hernandez, Patricio Cumsille
Abstract:
We analyze a first-class on the convergence of real number sequences, named hereafter sequences, to foster exploration and discovery of concepts through graphical representations before engaging students in proving. The main goal was to differentiate between sequences and continuous functions-of-a-real-variable and better understand concepts at an initial stage. We applied the analytic frame of mathematical working spaces, which we expect to contribute to extending to sequences since, as far as we know, it has only developed for other objects, and which is relevant to analyze how mathematical work is built systematically by connecting the epistemological and cognitive perspectives, and involving the semiotic, instrumental, and discursive dimensions.Keywords: convergence, graphical representations, mathematical working spaces, paradigms of real analysis, real number sequences
Procedia PDF Downloads 1437644 Epilepsy Seizure Prediction by Effective Connectivity Estimation Using Granger Causality and Directed Transfer Function Analysis of Multi-Channel Electroencephalogram
Authors: Mona Hejazi, Ali Motie Nasrabadi
Abstract:
Epilepsy is a persistent neurological disorder that affects more than 50 million people worldwide. Hence, there is a necessity to introduce an efficient prediction model for making a correct diagnosis of the epileptic seizure and accurate prediction of its type. In this study we consider how the Effective Connectivity (EC) patterns obtained from intracranial Electroencephalographic (EEG) recordings reveal information about the dynamics of the epileptic brain and can be used to predict imminent seizures, as this will enable the patients (and caregivers) to take appropriate precautions. We use this definition because we believe that effective connectivity near seizures begin to change, so we can predict seizures according to this feature. Results are reported on the standard Freiburg EEG dataset which contains data from 21 patients suffering from medically intractable focal epilepsy. Six channels of EEG from each patients are considered and effective connectivity using Directed Transfer Function (DTF) and Granger Causality (GC) methods is estimated. We concentrate on effective connectivity standard deviation over time and feature changes in five brain frequency sub-bands (Alpha, Beta, Theta, Delta, and Gamma) are compared. The performance obtained for the proposed scheme in predicting seizures is: average prediction time is 50 minutes before seizure onset, the maximum sensitivity is approximate ~80% and the false positive rate is 0.33 FP/h. DTF method is more acceptable to predict epileptic seizures and generally we can observe that the greater results are in gamma and beta sub-bands. The research of this paper is significantly helpful for clinical applications, especially for the exploitation of online portable devices.Keywords: effective connectivity, Granger causality, directed transfer function, epilepsy seizure prediction, EEG
Procedia PDF Downloads 4697643 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence
Procedia PDF Downloads 1447642 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High Speed Streams
Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous
Abstract:
Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of solar wind using mathematical models, MHD models, and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulates the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar cycles (sc) 21, 22, 23, and most of 24.Keywords: artificial neural network, coronal hole area, feed-forward neural network models, solar high speed streams
Procedia PDF Downloads 887641 The Combination of the Mel Frequency Cepstral Coefficients (MFCC), Perceptual Linear Prediction (PLP), JITTER and SHIMMER Coefficients for the Improvement of Automatic Recognition System for Dysarthric Speech
Authors: Brahim-Fares Zaidi, Malika Boudraa, Sid-Ahmed Selouani
Abstract:
Our work aims to improve our Automatic Recognition System for Dysarthria Speech (ARSDS) based on the Hidden Models of Markov (HMM) and the Hidden Markov Model Toolkit (HTK) to help people who are sick. With pronunciation problems, we applied two techniques of speech parameterization based on Mel Frequency Cepstral Coefficients (MFCC's) and Perceptual Linear Prediction (PLP's) and concatenated them with JITTER and SHIMMER coefficients in order to increase the recognition rate of a dysarthria speech. For our tests, we used the NEMOURS database that represents speakers with dysarthria and normal speakers.Keywords: hidden Markov model toolkit (HTK), hidden models of Markov (HMM), Mel-frequency cepstral coefficients (MFCC), perceptual linear prediction (PLP’s)
Procedia PDF Downloads 1617640 Detecting Rat’s Kidney Inflammation Using Real Time Photoacoustic Tomography
Authors: M. Y. Lee, D. H. Shin, S. H. Park, W.C. Ham, S.K. Ko, C. G. Song
Abstract:
Photoacoustic Tomography (PAT) is a promising medical imaging modality that combines optical imaging contrast with the spatial resolution of ultrasound imaging. It can also distinguish the changes in biological features. But, real-time PAT system should be confirmed due to photoacoustic effect for tissue. Thus, we have developed a real-time PAT system using a custom-developed data acquisition board and ultrasound linear probe. To evaluate performance of our system, phantom test was performed. As a result of those experiments, the system showed satisfactory performance and its usefulness has been confirmed. We monitored the degradation of inflammation which induced on the rat’s kidney using real-time PAT.Keywords: photoacoustic tomography, inflammation detection, rat, kidney, contrast agent, ultrasound
Procedia PDF Downloads 4577639 Robust Barcode Detection with Synthetic-to-Real Data Augmentation
Authors: Xiaoyan Dai, Hsieh Yisan
Abstract:
Barcode processing of captured images is a huge challenge, as different shooting conditions can result in different barcode appearances. This paper proposes a deep learning-based barcode detection using synthetic-to-real data augmentation. We first augment barcodes themselves; we then augment images containing the barcodes to generate a large variety of data that is close to the actual shooting environments. Comparisons with previous works and evaluations with our original data show that this approach achieves state-of-the-art performance in various real images. In addition, the system uses hybrid resolution for barcode “scan” and is applicable to real-time applications.Keywords: barcode detection, data augmentation, deep learning, image-based processing
Procedia PDF Downloads 1687638 The Application of Bayesian Heuristic for Scheduling in Real-Time Private Clouds
Authors: Sahar Sohrabi
Abstract:
The emergence of Cloud data centers has revolutionized the IT industry. Private Clouds in specific provide Cloud services for certain group of customers/businesses. In a real-time private Cloud each task that is given to the system has a deadline that desirably should not be violated. Scheduling tasks in a real-time private CLoud determine the way available resources in the system are shared among incoming tasks. The aim of the scheduling policy is to optimize the system outcome which for a real-time private Cloud can include: energy consumption, deadline violation, execution time and the number of host switches. Different scheduling policies can be used for scheduling. Each lead to a sub-optimal outcome in a certain settings of the system. A Bayesian Scheduling strategy is proposed for scheduling to further improve the system outcome. The Bayesian strategy showed to outperform all selected policies. It also has the flexibility in dealing with complex pattern of incoming task and has the ability to adapt.Keywords: cloud computing, scheduling, real-time private cloud, bayesian
Procedia PDF Downloads 3597637 Multi-Scale Damage Modelling for Microstructure Dependent Short Fiber Reinforced Composite Structure Design
Authors: Joseph Fitoussi, Mohammadali Shirinbayan, Abbas Tcharkhtchi
Abstract:
Due to material flow during processing, short fiber reinforced composites structures obtained by injection or compression molding generally present strong spatial microstructure variation. On the other hand, quasi-static, dynamic, and fatigue behavior of these materials are highly dependent on microstructure parameters such as fiber orientation distribution. Indeed, because of complex damage mechanisms, SFRC structures design is a key challenge for safety and reliability. In this paper, we propose a micromechanical model allowing prediction of damage behavior of real structures as a function of microstructure spatial distribution. To this aim, a statistical damage criterion including strain rate and fatigue effect at the local scale is introduced into a Mori and Tanaka model. A critical local damage state is identified, allowing fatigue life prediction. Moreover, the multi-scale model is coupled with an experimental intrinsic link between damage under monotonic loading and fatigue life in order to build an abacus giving Tsai-Wu failure criterion parameters as a function of microstructure and targeted fatigue life. On the other hand, the micromechanical damage model gives access to the evolution of the anisotropic stiffness tensor of SFRC submitted to complex thermomechanical loading, including quasi-static, dynamic, and cyclic loading with temperature and amplitude variations. Then, the latter is used to fill out microstructure dependent material cards in finite element analysis for design optimization in the case of complex loading history. The proposed methodology is illustrated in the case of a real automotive component made of sheet molding compound (PSA 3008 tailgate). The obtained results emphasize how the proposed micromechanical methodology opens a new path for the automotive industry to lighten vehicle bodies and thereby save energy and reduce gas emission.Keywords: short fiber reinforced composite, structural design, damage, micromechanical modelling, fatigue, strain rate effect
Procedia PDF Downloads 1077636 A Picture is worth a Billion Bits: Real-Time Image Reconstruction from Dense Binary Pixels
Authors: Tal Remez, Or Litany, Alex Bronstein
Abstract:
The pursuit of smaller pixel sizes at ever increasing resolution in digital image sensors is mainly driven by the stringent price and form-factor requirements of sensors and optics in the cellular phone market. Recently, Eric Fossum proposed a novel concept of an image sensor with dense sub-diffraction limit one-bit pixels (jots), which can be considered a digital emulation of silver halide photographic film. This idea has been recently embodied as the EPFL Gigavision camera. A major bottleneck in the design of such sensors is the image reconstruction process, producing a continuous high dynamic range image from oversampled binary measurements. The extreme quantization of the Poisson statistics is incompatible with the assumptions of most standard image processing and enhancement frameworks. The recently proposed maximum-likelihood (ML) approach addresses this difficulty, but suffers from image artifacts and has impractically high computational complexity. In this work, we study a variant of a sensor with binary threshold pixels and propose a reconstruction algorithm combining an ML data fitting term with a sparse synthesis prior. We also show an efficient hardware-friendly real-time approximation of this inverse operator. Promising results are shown on synthetic data as well as on HDR data emulated using multiple exposures of a regular CMOS sensor.Keywords: binary pixels, maximum likelihood, neural networks, sparse coding
Procedia PDF Downloads 2017635 Time and Cost Prediction Models for Language Classification Over a Large Corpus on Spark
Authors: Jairson Barbosa Rodrigues, Paulo Romero Martins Maciel, Germano Crispim Vasconcelos
Abstract:
This paper presents an investigation of the performance impacts regarding the variation of five factors (input data size, node number, cores, memory, and disks) when applying a distributed implementation of Naïve Bayes for text classification of a large Corpus on the Spark big data processing framework. Problem: The algorithm's performance depends on multiple factors, and knowing before-hand the effects of each factor becomes especially critical as hardware is priced by time slice in cloud environments. Objectives: To explain the functional relationship between factors and performance and to develop linear predictor models for time and cost. Methods: the solid statistical principles of Design of Experiments (DoE), particularly the randomized two-level fractional factorial design with replications. This research involved 48 real clusters with different hardware arrangements. The metrics were analyzed using linear models for screening, ranking, and measurement of each factor's impact. Results: Our findings include prediction models and show some non-intuitive results about the small influence of cores and the neutrality of memory and disks on total execution time, and the non-significant impact of data input scale on costs, although notably impacts the execution time.Keywords: big data, design of experiments, distributed machine learning, natural language processing, spark
Procedia PDF Downloads 1207634 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization
Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang
Abstract:
Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.Keywords: energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning
Procedia PDF Downloads 4177633 The Effect of Macroeconomic Policies on Cambodia's Economy: ARDL and VECM Model
Authors: Siphat Lim
Abstract:
This study used Autoregressive Distributed Lag (ARDL) approach to cointegration. In the long-run the general price level and exchange rate have a positively significant effect on domestic output. The estimated result further revealed that fiscal stimulus help stimulate domestic output in the long-run, but not in the short-run, while monetary expansion help to stimulate output in both short-run and long-run. The result is complied with the theory which is the macroeconomic policies, fiscal and monetary policy; help to stimulate domestic output in the long-run. The estimated result of the Vector Error Correction Model (VECM) has indicated more clearly that the consumer price index has a positive effect on output with highly statistically significant. Increasing in the general price level would increase the competitiveness among producers than increase in the output. However, the exchange rate also has a positive effect and highly significant on the gross domestic product. The exchange rate depreciation might increase export since the purchasing power of foreigners has increased. More importantly, fiscal stimulus would help stimulate the domestic output in the long-run since the coefficient of government expenditure is positive. In addition, monetary expansion would also help stimulate the output and the result is highly significant. Thus, fiscal stimulus and monetary expansionary would help stimulate the domestic output in the long-run in Cambodia.Keywords: fiscal policy, monetary policy, ARDL, VECM
Procedia PDF Downloads 4317632 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 2317631 Fracture and Fatigue Crack Growth Analysis and Modeling
Authors: Volkmar Nolting
Abstract:
Fatigue crack growth prediction has become an important topic in both engineering and non-destructive evaluation. Crack propagation is influenced by the mechanical properties of the material and is conveniently modelled by the Paris-Erdogan equation. The critical crack size and the total number of load cycles are calculated. From a Larson-Miller plot the maximum operational temperature can for a given stress level be determined so that failure does not occur within a given time interval t. The study is used to determine a reasonable inspection cycle and thus enhances operational safety and reduces costs.Keywords: fracturemechanics, crack growth prediction, lifetime of a component, structural health monitoring
Procedia PDF Downloads 497630 Green Hydrogen: Exploring Economic Viability and Alluring Business Scenarios
Authors: S. Sakthivel
Abstract:
Currently, the global economy is based on the hydrocarbon economy, which is referencing the global hydrocarbon industry. Problems of using these fossil fuels (like oil, NG, coal) are emitting greenhouse gases (GHGs) and price fluctuation, supply/distribution, etc. These challenges can be overcome by using clean energy as hydrogen. The hydrogen economy is the use of hydrogen as a low carbon fuel, particularly for hydrogen vehicles, alternative industrial feedstock, power generation, and energy storage, etc. Engineering consulting firms have a significant role in this ambition and green hydrogen value chain (i.e., integration of renewables, production, storage, and distribution to end-users). Typically, the cost of green hydrogen is a function of the price of electricity needed, the cost of the electrolyser, and the operating cost to run the system. This article focuses on economic viability and explores the alluring business scenarios globally. Break-even analysis was carried out for green hydrogen production and in order to evaluate and compare the impact of the electricity price on the production costs of green hydrogen and relate it to fossil fuel-based brown/grey/blue hydrogen costs. It indicates that the cost of green hydrogen production will fall drastically due to the declining costs of renewable electricity prices and along with the improvement and scaling up of electrolyser manufacturing. For instance, in a scenario where electricity prices are below US$ 40/MWh, green hydrogen cost is expected to reach cost competitiveness.Keywords: green hydrogen, cost analysis, break-even analysis, renewables, electrolyzer
Procedia PDF Downloads 1437629 Modelling Distress Sale in Agriculture: Evidence from Maharashtra, India
Authors: Disha Bhanot, Vinish Kathuria
Abstract:
This study focusses on the issue of distress sale in horticulture sector in India, which faces unique challenges, given the perishable nature of horticulture crops, seasonal production and paucity of post-harvest produce management links. Distress sale, from a farmer’s perspective may be defined as urgent sale of normal or distressed goods, at deeply discounted prices (way below the cost of production) and it is usually characterized by unfavorable conditions for the seller (farmer). The small and marginal farmers, often involved in subsistence farming, stand to lose substantially if they receive lower prices than expected prices (typically framed in relation to cost of production). Distress sale maximizes price uncertainty of produce leading to substantial income loss; and with increase in input costs of farming, the high variability in harvest price severely affects profit margin of farmers, thereby affecting their survival. The objective of this study is to model the occurrence of distress sale by tomato cultivators in the Indian state of Maharashtra, against the background of differential access to set of factors such as - capital, irrigation facilities, warehousing, storage and processing facilities, and institutional arrangements for procurement etc. Data is being collected using primary survey of over 200 farmers in key tomato growing areas of Maharashtra, asking information on the above factors in addition to seeking information on cost of cultivation, selling price, time gap between harvesting and selling, role of middleman in selling, besides other socio-economic variables. Farmers selling their produce far below the cost of production would indicate an occurrence of distress sale. Occurrence of distress sale would then be modelled as a function of farm, household and institutional characteristics. Heckman-two-stage model would be applied to find the probability/likelihood of a famer falling into distress sale as well as to ascertain how the extent of distress sale varies in presence/absence of various factors. Findings of the study would recommend suitable interventions and promotion of strategies that would help farmers better manage price uncertainties, avoid distress sale and increase profit margins, having direct implications on poverty.Keywords: distress sale, horticulture, income loss, India, price uncertainity
Procedia PDF Downloads 2437628 An Analysis of Present Supplier Selection Criteria of State Pharmaceutical Corporation (SPC) Sri Lanka: A Case Study
Authors: Gamalath M. B. P. Abeysekara
Abstract:
Primary objective of any organization is to enhance the bottom line profit. Strategic procurement is one of the prominent aspects in view of receiving this ultimate objective. Strategic procurement is an activity used in each and every organization in their operations. Pharmaceutical procurement is an especially significant task for any organizations, particularly state sector concerned. The whole pharmaceutical procurement requirement of the country is procured through the State Pharmaceutical Corporation (SPC) of Sri Lanka. They follow Pharmaceutical Procurement Guideline of 2006 as the procurement principle. The main objective of this project is to identify the importance of State Pharmaceutical Corporation supplier selection criteria and critical analysis of pharmaceutical procurement procedure. State Pharmaceutical Corporations applied net price, product quality, past performance, and delivery of suppliers’ as main criteria for the selection suppliers. Data collection for this study was taken place through a questionnaire, given to fifty doctors within the Colombo district attached to five main state hospitals. Data analysis is carried out with mean and standard deviation functions. The ultimate outcomes indicated product quality, net price, and delivery of suppliers’ are the most important criteria behind the selection of suppliers. Critical analysis proved State Pharmaceutical Corporation should focus on net price reduction, improving laboratory testing facilities and effective communication between up and down stream of supply chain.Keywords: government procurement procedure, pharmaceutical procurement supplier selection criteria, importance of SPC supplier selection criteria
Procedia PDF Downloads 4517627 Prediction of Wind Speed by Artificial Neural Networks for Energy Application
Authors: S. Adjiri-Bailiche, S. M. Boudia, H. Daaou, S. Hadouche, A. Benzaoui
Abstract:
In this work the study of changes in the wind speed depending on the altitude is calculated and described by the model of the neural networks, the use of measured data, the speed and direction of wind, temperature and the humidity at 10 m are used as input data and as data targets at 50m above sea level. Comparing predict wind speeds and extrapolated at 50 m above sea level is performed. The results show that the prediction by the method of artificial neural networks is very accurate.Keywords: MATLAB, neural network, power low, vertical extrapolation, wind energy, wind speed
Procedia PDF Downloads 6927626 Case-Based Reasoning for Build Order in Real-Time Strategy Games
Authors: Ben G. Weber, Michael Mateas
Abstract:
We present a case-based reasoning technique for selecting build orders in a real-time strategy game. The case retrieval process generalizes features of the game state and selects cases using domain-specific recall methods, which perform exact matching on a subset of the case features. We demonstrate the performance of the technique by implementing it as a component of the integrated agent framework of McCoy and Mateas. Our results demonstrate that the technique outperforms nearest-neighbor retrieval when imperfect information is enforced in a real-time strategy game.Keywords: case based reasoning, real time strategy systems, requirements elicitation, requirement analyst, artificial intelligence
Procedia PDF Downloads 4417625 A High Content Screening Platform for the Accurate Prediction of Nephrotoxicity
Authors: Sijing Xiong, Ran Su, Lit-Hsin Loo, Daniele Zink
Abstract:
The kidney is a major target for toxic effects of drugs, industrial and environmental chemicals and other compounds. Typically, nephrotoxicity is detected late during drug development, and regulatory animal models could not solve this problem. Validated or accepted in silico or in vitro methods for the prediction of nephrotoxicity are not available. We have established the first and currently only pre-validated in vitro models for the accurate prediction of nephrotoxicity in humans and the first predictive platforms based on renal cells derived from human pluripotent stem cells. In order to further improve the efficiency of our predictive models, we recently developed a high content screening (HCS) platform. This platform employed automated imaging in combination with automated quantitative phenotypic profiling and machine learning methods. 129 image-based phenotypic features were analyzed with respect to their predictive performance in combination with 44 compounds with different chemical structures that included drugs, environmental and industrial chemicals and herbal and fungal compounds. The nephrotoxicity of these compounds in humans is well characterized. A combination of chromatin and cytoskeletal features resulted in high predictivity with respect to nephrotoxicity in humans. Test balanced accuracies of 82% or 89% were obtained with human primary or immortalized renal proximal tubular cells, respectively. Furthermore, our results revealed that a DNA damage response is commonly induced by different PTC-toxicants with diverse chemical structures and injury mechanisms. Together, the results show that the automated HCS platform allows efficient and accurate nephrotoxicity prediction for compounds with diverse chemical structures.Keywords: high content screening, in vitro models, nephrotoxicity, toxicity prediction
Procedia PDF Downloads 312