Search results for: plant disease classification
8469 Classification of Cosmological Wormhole Solutions in the Framework of General Relativity
Authors: Usamah Al-Ali
Abstract:
We explore the effect of expanding space on the exoticity of the matter supporting a traversable Lorentzian wormhole of zero radial tide whose line element is given by ds2 = dt^2 − a^2(t)[ dr^2/(1 − kr2 −b(r)/r)+ r2dΩ^2 in the context of General Relativity. This task is achieved by deriving the Einstein field equations for anisotropic matter field corresponding to the considered cosmological wormhole metric and performing a classification of their solutions on the basis of a variable equations of state (EoS) of the form p = ω(r)ρ. Explicit forms of the shape function b(r) and the scale factor a(t) arising in the classification are utilized to construct the corresponding energy-momentum tensor where the energy conditions for each case is investigated. While the violation of energy conditions is inevitable in case of static wormholes, the classification we performed leads to interesting solutions in which this violation is either reduced or eliminated.Keywords: general relativity, Einstein field equations, energy conditions, cosmological wormhole
Procedia PDF Downloads 638468 Change Detection and Analysis of Desertification Processes in Semi Arid Land in Algeria Using Landsat Data
Authors: Zegrar Ahmed, Ghabi Mohamed
Abstract:
The degradation of arid and semi-arid ecosystems in Algeria has become a palpable fact that only hinders progress and rural development. In these exceptionally fragile environments, the decline of vegetation is done according to an alarming increase and wind erosion dominates. The ecosystem is subjected to a long hot dry season and low annual average rainfall. The urgency of the fight against desertification is imposed by the very nature of the process that tends to self-accelerate, resulting when human intervention is not forthcoming the irreversibility situations, preventing any possibility of restoration state of these zones. These phenomena have led to different degradation processes, such as the destruction of vegetation, soil erosion, and deterioration of the physical environment. In this study, the work is mainly based on the criteria for classification and identification of physical parameters for spatial analysis and multi-sources to determine the vulnerability of major steppe formations and their impact on desertification. we used Landsat data with two different dates March 2010 and November 2014 in order to determine the changes in land cover, sand moving and land degradation for the diagnosis of the desertification Phenomenon. The application, through specific processes, including the supervised classification was used to characterize the main steppe formations. An analysis of the vulnerability of plant communities was conducted to assign weights and identify areas most susceptible to desertification. Vegetation indices are used to characterize the steppe formations to determine changes in land use.Keywords: remote sensing, SIG, ecosystem, degradation, desertification
Procedia PDF Downloads 3398467 Impact of Clinical Pharmacist Intervention in Improving Drug Related Problems in Patients with Chronic Kidney Disease
Authors: Aneena Suresh, C. S. Sidharth
Abstract:
Drug related problems (DRPs) are common in chronic kidney disease (CKD) patients and end stage patients undergoing hemodialysis. To treat the co-morbid conditions of the patients, more complex therapeutic regimen is required, and it leads to development of DRPs. So, this calls for frequent monitoring of the patients. Due to the busy work schedules, physicians are unable to deliver optimal care to these patients. Addition of a clinical pharmacist in the team will improve the standard of care offered to CKD patients by minimizing DRPs. In India, the role of clinical pharmacists in the improving the health outcomes in CKD patients is poorly recognized. Therefore, this study is conducted to put an insight on the role of clinical pharmacist in improving Drug Related Problems in patients with chronic kidney disease, thereby helping them to achieve desired therapeutic outcomes in the patients. A prospective interventional study was conducted for a year in a 620 bedded tertiary care hospital in India. Data was collected using an unstructured questionnaire, medication charts, etc. DRPs were categorized using Hepler and Strand classification. Relationships between the age, weight, GFR, average no of medication taken, average no of comorbidities, and average length of hospital days with the DRPs were identified using Mann Whitney U test. The study population primarily constituted of patients above the age of 50 years with a mean age of 59.91±13.59. Our study showed that 25% of the population presented with DRPs. On an average, CKD patients are prescribed at least 8 medications for the treatment in our study. This explains the high incidence of drug interactions in patients suffering from CKD (45.65%). The least common DRPs in our study were found to be sub therapeutic dose (2%) and adverse drug reactions (2%). Out of this, 60 % of the DRPs were addressed successfully. In our study, there is an association between the DRPs with the average number of medications prescribed, the average number of comorbidities, and the length of the hospital days with p value of 0.022, 0.004, and 0.000, respectively. In the current study, 86% of the proposed interventions were accepted, and 41 % were implemented by the physician, and only 14% were rejected. Hence, it is evident that clinical pharmacist interventions will contribute significantly to diminish the DRPs in CKD patients, thereby decreasing the economic burden of healthcare costs and improving patient’s quality of life.Keywords: chronic kidney disease, clinical pharmacist, drug related problem, intervention
Procedia PDF Downloads 1288466 On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment: A Practical Example
Authors: Jeroen S. de Bruin, Karin Schindler, Christian Schuh
Abstract:
With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper, we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.Keywords: mobile health, data integration, expert systems, disease-related malnutrition
Procedia PDF Downloads 4778465 Effect of Nitrogen and Gibberellic Acid at Different Level and their Interaction on Calendula
Authors: Pragnyashree Mishra, Shradhanjali Mohapatra
Abstract:
The present investigation is carried out to know the effect of foliar feeding of nitrogen and gibberellic acid on vegetative growth, flowering behaviour and yield of calendula variety ‘Golden Emporer’. The experiment was laid out in RBD in rabi season of 2013-14. There are 16 treatments are taken at different level such as nitrogen (at 0%,1%,2%,3%) and GA3 (at 50 ppm,100ppm,150 ppm). Among them maximum height at bud initiation stage was obtained at 3% nitrogen (27.00 cm) and at 150 ppm GA3 (26.5 cm), fist flowering was obtained at 3% nitrogen(60.00 days) and at 150 ppm GA3 (63.75 days), maximum flower stalk length was obtained at 3% nitrogen(3.50 cm) and at 150 ppm GA3 (5.42 cm),maximum duration of flowering was obtained at 3% nitrogen(46.00 days) and at 150 ppm GA3 (46.50days), maximum number of flower was obtained at 3% nitrogen (89.00per plant) and at 150 ppm GA3 (83.50 per plant), maximum flower weight was obtained at 3% nitrogen(1.25 gm per flower) and at 150 ppm GA3 (1.50 gm per flower), maximum yield was was obtained at 3% nitrogen (110.00 gm per plant) and at 150 ppm GA3 (105.00gm per plant) and minimum of all character was obtained when 0% nitrogen0 ppm GA3. All interaction between nitrogen and GA3 was found in significant except the yield .Keywords: calendula, golden emporer, GA3, nitrogen and gibberellic acid
Procedia PDF Downloads 4658464 A Leaf-Patchable Reflectance Meter for in situ Continuous Monitoring of Chlorophyll Content
Authors: Kaiyi Zhang, Wenlong Li, Haicheng Li, Yifei Luo, Zheng Li, Xiaoshi Wang, Xiaodong Chen
Abstract:
Plant wearable sensors facilitate the real-time monitoring of plant physiological status. In situ monitoring of the plant chlorophyll content over days could provide valuable information on the photosynthetic capacity, nitrogen content, and general plant health. However, it cannot be achieved by current chlorophyll measuring methods. Here, a miniaturized and plant-wearable chlorophyll meter was developed for rapid, non-destructive, in situ, and long-term chlorophyll monitoring. This reflectance-based chlorophyll sensor with 1.5 mm thickness and 0.2 g weight (1000 times lighter than the commercial chlorophyll meter), includes a light emitting diode (LED) and two symmetric photodetectors (PDs) on a flexible substrate and is patched onto the leaf upper epidermis with a conformal light guiding layer. A chlorophyll content index (CCI) calculated based on this sensor shows a better linear relationship with the leaf chlorophyll content (r² > 0.9) than the traditional chlorophyll meter. This meter can wirelessly communicate with a smartphone to monitor the leaf chlorophyll change under various stresses and indicate the unhealthy status of plants for long-term application of plants under various stresses earlier than chlorophyll meter and naked-eye observation. This wearable chlorophyll sensing patch is promising in smart and precision agriculture.Keywords: plant wearable sensors, reflectance-based measurements, chlorophyll content monitoring, smart agriculture
Procedia PDF Downloads 1168463 Application of Argumentation for Improving the Classification Accuracy in Inductive Concept Formation
Authors: Vadim Vagin, Marina Fomina, Oleg Morosin
Abstract:
This paper contains the description of argumentation approach for the problem of inductive concept formation. It is proposed to use argumentation, based on defeasible reasoning with justification degrees, to improve the quality of classification models, obtained by generalization algorithms. The experiment’s results on both clear and noisy data are also presented.Keywords: argumentation, justification degrees, inductive concept formation, noise, generalization
Procedia PDF Downloads 4428462 Virtual Process Hazard Analysis (Pha) Of a Nuclear Power Plant (Npp) Using Failure Mode and Effects Analysis (Fmea) Technique
Authors: Lormaine Anne A. Branzuela, Elysa V. Largo, Monet Concepcion M. Detras, Neil C. Concibido
Abstract:
The electricity demand is still increasing, and currently, the Philippine government is investigating the feasibility of operating the Bataan Nuclear Power Plant (BNPP) to address the country’s energy problem. However, the lack of process safety studies on BNPP focused on the effects of hazardous substances on the integrity of the structure, equipment, and other components, have made the plant operationalization questionable to the public. The three major nuclear power plant incidents – TMI-2, Chernobyl, and Fukushima – have made many people hesitant to include nuclear energy in the energy matrix. This study focused on the safety evaluation of possible operations of a nuclear power plant installed with a Pressurized Water Reactor (PWR), which is similar to BNPP. Failure Mode and Effects Analysis (FMEA) is one of the Process Hazard Analysis (PHA) techniques used for the identification of equipment failure modes and minimizing its consequences. Using the FMEA technique, this study was able to recognize 116 different failure modes in total. Upon computation and ranking of the risk priority number (RPN) and criticality rating (CR), it showed that failure of the reactor coolant pump due to earthquakes is the most critical failure mode. This hazard scenario could lead to a nuclear meltdown and radioactive release, as identified by the FMEA team. Safeguards and recommended risk reduction strategies to lower the RPN and CR were identified such that the effects are minimized, the likelihood of occurrence is reduced, and failure detection is improved.Keywords: PHA, FMEA, nuclear power plant, bataan nuclear power plant
Procedia PDF Downloads 1338461 Plant Species Composition and Frequency Distribution Along a Disturbance Gradient in Kano Metropolis Nigeria
Authors: Hamisu Jibril
Abstract:
The study explores changes in plant species composition along disturbance gradient in urban areas in Nigeria at Bayero University Kano campuses. The aim is to assess changes in plant species composition and distribution within a degraded dryland environment in Kano Metropolis, Nigeria. Vegetation sampling was conducted using plots quadrat and transect methods, and different plant species were identified in the three study sites. Data were analyzed using ANOVA, t-tests and conventional indices to compare species richness, evenness and diversity. The study found no significant differences in species frequency among sites or sampling methods but observed higher species richness, evenness and diversity values in grasses species compared to trees. The study addressed changes in plant species composition along a disturbance gradient in an urban environment, focusing on species richness, evenness, and diversity. The study contributes to understanding the vegetation dynamics in degraded urban environments and highlights the need for conservation efforts. The research also adds to the existing literature by confirming previous findings and suggesting re-planting efforts. The study suggests similarities in plant species composition between old and new campus areas and emphasizes the importance of further investigating factors leading to vegetation loss for conservation purposes.Keywords: species diversity, urban kano, dryland environment, vegetation sampling
Procedia PDF Downloads 618460 Reclamation of Fly Ash Dykes Using Naturally Growing Plant Species
Authors: Neelima Meravi, Santosh Prajapati
Abstract:
The present study was conducted over a period of three years on fly ash dyke. The physicochemical analysis of fly ash (pH, WHC, BD, porosity, EC% OC & available P, heavy metal content etc.) was performed before and after the growth of plant species. Fly ash was analyzed after concentrated nitric acid digestion by atomic absorption spectrophotometer AAS-7000b(Shimadzu) for heavy metals. The dyke was colonized by the propagules of native species over a period of time, and it was observed that fly ash was contaminated by heavy metals and plants were able to ameliorate the metal concentration of dyke. The growth of plant species also improved the condition of fly ash so that it can be used for agricultural purposes. Phytosociological studies of the fly ash dyke were performed so that these plants may be used for reclamation of fly ash for subsequent use in agriculture.Keywords: fly ash, heavy metals, IVI, phytosociology, reclamation
Procedia PDF Downloads 2208459 Comparison of Various Classification Techniques Using WEKA for Colon Cancer Detection
Authors: Beema Akbar, Varun P. Gopi, V. Suresh Babu
Abstract:
Colon cancer causes the deaths of about half a million people every year. The common method of its detection is histopathological tissue analysis, it leads to tiredness and workload to the pathologist. A novel method is proposed that combines both structural and statistical pattern recognition used for the detection of colon cancer. This paper presents a comparison among the different classifiers such as Multilayer Perception (MLP), Sequential Minimal Optimization (SMO), Bayesian Logistic Regression (BLR) and k-star by using classification accuracy and error rate based on the percentage split method. The result shows that the best algorithm in WEKA is MLP classifier with an accuracy of 83.333% and kappa statistics is 0.625. The MLP classifier which has a lower error rate, will be preferred as more powerful classification capability.Keywords: colon cancer, histopathological image, structural and statistical pattern recognition, multilayer perception
Procedia PDF Downloads 5758458 Peripheral Inflammation and Neurodegeneration; A Potential for Therapeutic Intervention in Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis
Authors: Lourdes Hanna, Edward Poluyi, Chibuikem Ikwuegbuenyi, Eghosa Morgan, Grace Imaguezegie
Abstract:
Background: Degeneration of the central nervous system (CNS), also known as neurodegeneration, describes an age-associated progressive loss of the structure and function of neuronal materials, leading to functional and mental impairments. Main body: Neuroinflammation contributes to the continuous worsening of neurodegenerative states which are characterised by functional and mental impairments due to the progressive loss of the structure and function of neu-ronal materials. Some of the most common neurodegenerative diseases include Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS). Whilst neuroinflammation is a key contributor to the progression of such disease states, it is not the single cause as there are multiple factors which contribute. Theoretically, non-steroidal anti-inflammatory drugs (NSAIDs) have potential to target neuroinflammation to reduce the severity of disease states. Whilst some animal models investigating the effects of NSAIDs on the risk of neurodegenerative diseases have shown a beneficial effect, this is not the same finding. Conclusion: Further investigation using more advanced research methods is required to better understand neuroinflammatory pathways and understand if there is still a potential window for NSAID efficacy.Keywords: intervention, central nervous system, neurodegeneration, neuroinflammation
Procedia PDF Downloads 838457 Tomato-Weed Classification by RetinaNet One-Step Neural Network
Authors: Dionisio Andujar, Juan lópez-Correa, Hugo Moreno, Angela Ri
Abstract:
The increased number of weeds in tomato crops highly lower yields. Weed identification with the aim of machine learning is important to carry out site-specific control. The last advances in computer vision are a powerful tool to face the problem. The analysis of RGB (Red, Green, Blue) images through Artificial Neural Networks had been rapidly developed in the past few years, providing new methods for weed classification. The development of the algorithms for crop and weed species classification looks for a real-time classification system using Object Detection algorithms based on Convolutional Neural Networks. The site study was located in commercial corn fields. The classification system has been tested. The procedure can detect and classify weed seedlings in tomato fields. The input to the Neural Network was a set of 10,000 RGB images with a natural infestation of Cyperus rotundus l., Echinochloa crus galli L., Setaria italica L., Portulaca oeracea L., and Solanum nigrum L. The validation process was done with a random selection of RGB images containing the aforementioned species. The mean average precision (mAP) was established as the metric for object detection. The results showed agreements higher than 95 %. The system will provide the input for an online spraying system. Thus, this work plays an important role in Site Specific Weed Management by reducing herbicide use in a single step.Keywords: deep learning, object detection, cnn, tomato, weeds
Procedia PDF Downloads 1068456 Predicting Intentions of Physical Activity in Patients with Coronary Artery Disease: Attitudes, Subjective Norms and Perceived Behavioral Control
Authors: Shadi Kanan, Ghada Shahrour, Barbara Broome, Donna Bernert, Muntaha Alibrahim, Dana Hansen
Abstract:
Coronary artery disease is responsible for over 7 million deaths a year worldwide. In developing countries, such as Jordan, the incidence of coronary artery disease exceeds that of developed countries. One contributing factor to this disparity is decreased physical activity among the population, for reasons related to specific cultural and religious values. Using the theory of planned behaviour, the purpose of this study was to investigate the intentions of Jordanian patients with coronary artery disease regarding physical activity. A total of 109 patients with coronary artery disease were recruited for this cross-sectional study from King Abdullah University Hospital in Jordan. A 15-item questionnaire based on the theory of planned behaviour was used to assess participants’ attitudes, subjective norms, perceived behavioural control and intentions towards engagement in physical activity. Perceived behavioural control was found to have the strongest significant relationship with participants’ intentions to engage in physical activity. Barriers to physical activity included lack of time, lack of support from family or friends, and feelings of exhaustion. Lifestyle interventions for patients with coronary artery disease should focus on fostering a sense of control over the environment to encourage patients to engage in physical activity.Keywords: coronary artery disease, perceived behavioural control, subjective norms, theory of planned behaviour
Procedia PDF Downloads 1628455 Model of Optimal Centroids Approach for Multivariate Data Classification
Authors: Pham Van Nha, Le Cam Binh
Abstract:
Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.Keywords: analysis of optimization, artificial intelligence based optimization, optimization for learning and data analysis, global optimization
Procedia PDF Downloads 2098454 Applying Semi-Automatic Digital Aerial Survey Technology and Canopy Characters Classification for Surface Vegetation Interpretation of Archaeological Sites
Authors: Yung-Chung Chuang
Abstract:
The cultural layers of archaeological sites are mainly affected by surface land use, land cover, and root system of surface vegetation. For this reason, continuous monitoring of land use and land cover change is important for archaeological sites protection and management. However, in actual operation, on-site investigation and orthogonal photograph interpretation require a lot of time and manpower. For this reason, it is necessary to perform a good alternative for surface vegetation survey in an automated or semi-automated manner. In this study, we applied semi-automatic digital aerial survey technology and canopy characters classification with very high-resolution aerial photographs for surface vegetation interpretation of archaeological sites. The main idea is based on different landscape or forest type can easily be distinguished with canopy characters (e.g., specific texture distribution, shadow effects and gap characters) extracted by semi-automatic image classification. A novel methodology to classify the shape of canopy characters using landscape indices and multivariate statistics was also proposed. Non-hierarchical cluster analysis was used to assess the optimal number of canopy character clusters and canonical discriminant analysis was used to generate the discriminant functions for canopy character classification (seven categories). Therefore, people could easily predict the forest type and vegetation land cover by corresponding to the specific canopy character category. The results showed that the semi-automatic classification could effectively extract the canopy characters of forest and vegetation land cover. As for forest type and vegetation type prediction, the average prediction accuracy reached 80.3%~91.7% with different sizes of test frame. It represented this technology is useful for archaeological site survey, and can improve the classification efficiency and data update rate.Keywords: digital aerial survey, canopy characters classification, archaeological sites, multivariate statistics
Procedia PDF Downloads 1448453 Estimating Leaf Area and Biomass of Wheat Using UAS Multispectral Remote Sensing
Authors: Jackson Parker Galvan, Wenxuan Guo
Abstract:
Unmanned aerial vehicle (UAV) technology is being increasingly adopted in high-throughput plant phenotyping for applications in plant breeding and precision agriculture. Winter wheat is an important cover crop for reducing soil erosion and protecting the environment in the Southern High Plains. Efficiently quantifying plant leaf area and biomass provides critical information for producers to practice site-specific management of crop inputs, such as water and fertilizers. The objective of this study was to estimate wheat biomass and leaf area index using UAV images. This study was conducted in an irrigated field in Garza County, Texas. High-resolution images were acquired on three dates (February 18, March 25, and May 15th ) using a multispectral sensor onboard a Matrice 600 UAV. On each data of image acquisition, 10 random plant samples were collected and measured for biomass and leaf area. Images were stitched using Pix4D, and ArcGIS was applied to overlay sampling locations and derive data for sampling locations.Keywords: precision agriculture, UAV plant phenotyping, biomass, leaf area index, winter wheat, southern high plains
Procedia PDF Downloads 958452 Major Histocompatibility Complex (MHC) Polymorphism and Disease Resistance
Authors: Oya Bulut, Oguzhan Avci, Zafer Bulut, Atilla Simsek
Abstract:
Livestock breeders have focused on the improvement of production traits with little or no attention for improvement of disease resistance traits. In order to determine the association between the genetic structure of the individual gene loci with possibility of the occurrence and the development of diseases, MHC (major histocompatibility complex) are frequently used. Because of their importance in the immune system, MHC locus is considered as candidate genes for resistance/susceptibility against to different diseases. Major histocompatibility complex (MHC) molecules play a critical role in both innate and adaptive immunity and have been considered candidate molecular markers of an association between polymorphisms and resistance/susceptibility to diseases. The purpose of this study is to give some information about MHC genes become an important area of study in recent years in terms of animal husbandry and determine the relation between MHC genes and resistance/susceptibility to disease.Keywords: MHC, polymorphism, disease, resistance
Procedia PDF Downloads 6328451 Spontaneous and Posed Smile Detection: Deep Learning, Traditional Machine Learning, and Human Performance
Authors: Liang Wang, Beste F. Yuksel, David Guy Brizan
Abstract:
A computational model of affect that can distinguish between spontaneous and posed smiles with no errors on a large, popular data set using deep learning techniques is presented in this paper. A Long Short-Term Memory (LSTM) classifier, a type of Recurrent Neural Network, is utilized and compared to human classification. Results showed that while human classification (mean of 0.7133) was above chance, the LSTM model was more accurate than human classification and other comparable state-of-the-art systems. Additionally, a high accuracy rate was maintained with small amounts of training videos (70 instances). The derivation of important features to further understand the success of our computational model were analyzed, and it was inferred that thousands of pairs of points within the eyes and mouth are important throughout all time segments in a smile. This suggests that distinguishing between a posed and spontaneous smile is a complex task, one which may account for the difficulty and lower accuracy of human classification compared to machine learning models.Keywords: affective computing, affect detection, computer vision, deep learning, human-computer interaction, machine learning, posed smile detection, spontaneous smile detection
Procedia PDF Downloads 1268450 Study of the Genotoxic Potential of Plant Growth Regulator Ethephon
Authors: Mahshid Hodjat, Maryam Baeeri, Mohammad Amin Rezvanfar, Mohammad Abdollahi
Abstract:
Ethephon is one of the most widely used plant growth regulator in agriculture that its application has been increased in recent years. The toxicity of organophosphate compounds is mostly attributed to their potent inhibition of acetylcholinesterase and their involvement in neurodegenerative disease. Although there are few reports on butyrylcholinesterase inhibitory role of ethephon, still there is no evidence on neurotoxicity and genotoxicity of this compound. The aim of the current study is to assess the potential genotoxic effect of ethephon using two genotoxic endpoints; γH2AX expression and comet assay on embryonic murine fibroblast. γH2AX serves as an early and sensitive biomarker for evaluating the genotoxic effects of chemicals. Oxidative stress biomarkers, including intracellular reactive oxygen species, lipid peroxidation and antioxidant capacity were also examined. The results showed a significant increase in cell proliferation 24h post-treatment with 10, 40,160µg/ml ethephon. The γH2AX expression and γH2AX foci count per cell were increased at low concentration of ethephon that was concomitant with increased DNA damage break at 40 and 160 µg/ml as illustrated by increased comet tail moment. A significant increase in lipid peroxidation and ROS formation were observed at 160 µg/ml and higher doses. The results showed that low-dose of ethephon promoted cell proliferation while induce DNA damage, raising the possibility of ethephon mutagenicity. Ethephon-induced genotoxic effect of low dose might not related to oxidative damage. However, ethephon was found to increase oxidative stress at higher doses, lead to cellular cytotoxicity. Taken together, all data indicated that ethylene, deserves more attention as a plant regulator with potential genotoxicity for which appropriate control is needed to reduce its usage.Keywords: ethephon, DNA damage, γH2AX, oxidative stress
Procedia PDF Downloads 3098449 Common Caper (Capparis Spinosa L.) From Oblivion and Neglect to the Interface of Medicinal Plants
Authors: Ahmad Alsheikh Kaddour
Abstract:
Herbal medicine has been a long-standing phenomenon in Arab countries since ancient times because of its breadth and moderate temperament. Therefore, it possesses a vast natural and economic wealth of medicinal and aromatic herbs. This prompted ancient Egyptians and Arabs to discover and exploit them. The economic importance of the plant is not only from medicinal uses; it is a plant of high economic value for its various uses, especially in food, cosmetic and aromatic industries. It is also an ornamental plant and soil stabilization. The main objective of this research is to study the chemical changes that occur in the plant during the growth period, as well as the production of plant buds, which were previously considered unwanted plants. The research was carried out in the period 2021-2022 in the valley of Al-Shaflah (common caper), located in Qumhana village, 7 km north of Hama Governorate, Syria. The results of the research showed a change in the percentage of chemical components in the plant parts. The ratio of protein content and the percentage of fatty substances in fruits and the ratio of oil in the seeds until the period of harvesting of these plant parts improved, but the percentage of essential oils decreased with the progress of the plant growth, while the Glycosides content where improved with the plant aging. The production of buds is small, with dimensions as 0.5×0.5 cm, which is preferred for commercial markets, harvested every 2-3 days in quantities ranging from 0.4 to 0.5 kg in one cut/shrubs with 3 years’ age as average for the years 2021-2022. The monthly production of a shrub is between 4-5 kg per month. The productive period is 4 months approximately. This means that the seasonal production of one plant is 16-20 kg and the production of 16-20 tons per year with a plant density of 1,000 shrubs per hectare, which is the optimum rate of cultivation in the unit of mass, given the price of a kg of these buds is equivalent to 1 US $; however, this means that the annual output value of the locally produced hectare ranges from 16,000 US $ to 20,000 US $ for farmers. The results showed that it is possible to transform the cultivation of this plant from traditional random to typical areas cultivation, with a plant density of 1,000-1,100 plants per hectare according to the type of soil to obtain production of medicinal and nutritious buds, as well as, the need to pay attention to this national wealth and invest in the optimal manner, which leads to the acquisition of hard currency through export to support the national income.Keywords: common caper, medicinal plants, propagation, medical, economic importance
Procedia PDF Downloads 728448 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models
Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi
Abstract:
This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control
Procedia PDF Downloads 578447 An AK-Chart for the Non-Normal Data
Authors: Chia-Hau Liu, Tai-Yue Wang
Abstract:
Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.Keywords: multivariate control chart, statistical process control, one-class classification method, non-normal data
Procedia PDF Downloads 4238446 Bias-Corrected Estimation Methods for Receiver Operating Characteristic Surface
Authors: Khanh To Duc, Monica Chiogna, Gianfranco Adimari
Abstract:
With three diagnostic categories, assessment of the performance of diagnostic tests is achieved by the analysis of the receiver operating characteristic (ROC) surface, which generalizes the ROC curve for binary diagnostic outcomes. The volume under the ROC surface (VUS) is a summary index usually employed for measuring the overall diagnostic accuracy. When the true disease status can be exactly assessed by means of a gold standard (GS) test, unbiased nonparametric estimators of the ROC surface and VUS are easily obtained. In practice, unfortunately, disease status verification via the GS test could be unavailable for all study subjects, due to the expensiveness or invasiveness of the GS test. Thus, often only a subset of patients undergoes disease verification. Statistical evaluations of diagnostic accuracy based only on data from subjects with verified disease status are typically biased. This bias is known as verification bias. Here, we consider the problem of correcting for verification bias when continuous diagnostic tests for three-class disease status are considered. We assume that selection for disease verification does not depend on disease status, given test results and other observed covariates, i.e., we assume that the true disease status, when missing, is missing at random. Under this assumption, we discuss several solutions for ROC surface analysis based on imputation and re-weighting methods. In particular, verification bias-corrected estimators of the ROC surface and of VUS are proposed, namely, full imputation, mean score imputation, inverse probability weighting and semiparametric efficient estimators. Consistency and asymptotic normality of the proposed estimators are established, and their finite sample behavior is investigated by means of Monte Carlo simulation studies. Two illustrations using real datasets are also given.Keywords: imputation, missing at random, inverse probability weighting, ROC surface analysis
Procedia PDF Downloads 4168445 Constraining the Potential Nickel Laterite Area Using Geographic Information System-Based Multi-Criteria Rating in Surigao Del Sur
Authors: Reiner-Ace P. Mateo, Vince Paolo F. Obille
Abstract:
The traditional method of classifying the potential mineral resources requires a significant amount of time and money. In this paper, an alternative way to classify potential mineral resources with GIS application in Surigao del Sur. The three (3) analog map data inputs integrated to GIS are geologic map, topographic map, and land cover/vegetation map. The indicators used in the classification of potential nickel laterite integrated from the analog map data inputs are a geologic indicator, which is the presence of ultramafic rock from the geologic map; slope indicator and the presence of plateau edges from the topographic map; areas of forest land, grassland, and shrublands from the land cover/vegetation map. The potential mineral of the area was classified from low up to very high potential. The produced mineral potential classification map of Surigao del Sur has an estimated 4.63% low nickel laterite potential, 42.15% medium nickel laterite potential, 43.34% high nickel laterite potential, and 9.88% very high nickel laterite from its ultramafic terrains. For the validation of the produced map, it was compared with known occurrences of nickel laterite in the area using a nickel mining tenement map from the area with the application of remote sensing. Three (3) prominent nickel mining companies were delineated in the study area. The generated potential classification map of nickel-laterite in Surigao Del Sur may be of aid to the mining companies which are currently in the exploration phase in the study area. Also, the currently operating nickel mines in the study area can help to validate the reliability of the mineral classification map produced.Keywords: mineral potential classification, nickel laterites, GIS, remote sensing, Surigao del Sur
Procedia PDF Downloads 1248444 Antifungal Potential of the Plant Growth-Promoting Rhizobacteria Infecting Kidney Beans
Authors: Zhazira Shemsheyeva, Zhanara Suleimenova, Olga Shemshura, Gulnaz Mombekova, Zhanar Rakhmetova
Abstract:
Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR). They not only provide nutrients to the plants (direct plant growth promotion) and protect plants against the phytopathogens (indirect plant growth promotion) but also increase the soil fertility. Indirectly PGPRs improve the plant growth by becoming a biocontrol agent for a fungal pathogen. The antifungal activities of the PGPrhizobacteria were assayed against different species of phytopathogenic fungi such as Fusarium tricinctum, Fusarium oxysporum, Sclerotiniasclerotiorum, and Botrytis cinerea. Pseudomonas putidaSM-1, Azotobacter sp., and Bacillus thuringiensis AKS/16 strains have been used in experimental tests on growth inhibition of phytopathogenic fungi infecting Kidney beans. Agar well diffusion method was used in this study. Diameters of the zones of inhibition were measured in millimeters. It was found that Bacillus thuringiensis AKS/16 strain showed the lowest antifungal activity against all fungal pathogens tested. Zones of inhibition were 15-18 mm. In contrast, Pseudomonas putida SM-1 exhibited good antifungal activity against Fusarium oxysporum and Fusarium tricinctum by producing 29-30 mm clear zones of inhibition. The moderate inhibitory effect was shown by Azotobacter sp. against all fungal pathogens tested with zones of inhibition from24 to 26 mm. In summary, Pseudomonas putida SM-1 strain demonstrated the potential of controlling root rot diseases in kidney beans.Keywords: PGPR, pseudomonas putida, kindey beans, antifungal activity
Procedia PDF Downloads 1568443 Experience of Hydatid Disease of Liver at a Tertiary Care Center 7 Years Experience
Authors: Jibran Abbasy, Rizwan Sultan, Ammar Humayun, Tabish Chawla
Abstract:
Background: Hydatid disease caused by Echinococcus Granulosus affects liver in 70-90% of cases. Dogs are the definitive host while humans are the accidental host. Modalities used for its treatment are especially important for our population as the disease is endemic in many Asian countries. The aim of the study was to perform an audit of the various modalities used for treatment of hydatid disease of liver and the response to each modality in tertiary care center of Pakistan. Materials and Methods: Retrospective audit of patients diagnosed and treated for Hydatid disease of the liver at Aga Khan University Hospital from 1st January 2007 to 31st December 2014 was completed. All patients aged 16 and above were included. Patients who had extra hepatic disease and missing records were excluded. Outcome measures were morbidity, mortality and recurrence of the disease. Results: During the study period 56 patients were treated for isolated hepatic hydatid disease and were included. Mean age was 39 years with 48% being females and 52% males. Most common presenting complaint was abdominal pain seen in 53% of patients(n=41). Duration of symptoms was less than 6 months in 74% (n=38). Mostly right lobe was involved in 69% (n=38).Most common treatment modality used was surgery in 34 patients followed by PAIR in 14 patients while 8 patients were treated medically. At a median follow up of 34 months recurrence was seen in 2 patients treated with PAIR while no patient treated with surgery had recurrence with the median follow up of 20 months. While no morbidity and mortality were observed in PAIR, but in surgery 5 patients had morbidity while 1 patient had mortality. Conclusion: Our data is comparative to other studies in terms of morbidity, mortality, and recurrence. We had adequate follow up. In our study PAIR and surgery both are effective and have less complications and recurrence rate. Surgery is still the gold standard in terms of recurrence.Keywords: echinococcous granulosus, puncture aspiration irrigation reaspiration (PAIR), surgery, hydatid disease
Procedia PDF Downloads 2668442 Integrating Deterministic and Probabilistic Safety Assessment to Decrease Risk & Energy Consumption in a Typical PWR
Authors: Ebrahim Ghanbari, Mohammad Reza Nematollahi
Abstract:
Integrating deterministic and probabilistic safety assessment (IDPSA) is one of the most commonly used issues in the field of safety analysis of power plant accident. It has also been recognized today that the role of human error in creating these accidents is not less than systemic errors, so the human interference and system errors in fault and event sequences are necessary. The integration of these analytical topics will be reflected in the frequency of core damage and also the study of the use of water resources in an accident such as the loss of all electrical power of the plant. In this regard, the SBO accident was simulated for the pressurized water reactor in the deterministic analysis issue, and by analyzing the operator's behavior in controlling the accident, the results of the combination of deterministic and probabilistic assessment were identified. The results showed that the best performance of the plant operator would reduce the risk of an accident by 10%, as well as a decrease of 6.82 liters/second of the water sources of the plant.Keywords: IDPSA, human error, SBO, risk
Procedia PDF Downloads 1318441 Determination of Morphological Characteristics of Brassica napus, Sinapis arvensis, Sinapis alba and Camelina sativa
Authors: Betül Gıdık, Fadul Önemli
Abstract:
The Brassicaceae (Cruciferae) is an important family of plants that include many economically important vegetable production, industrial oilseed, spice, fodder crop species and energy production. Canola and mustard species that are in Brassicaceae family have too high contribution to world herbal production. In this study, genotypes of two kinds of (Caravel and Excalibul) canola (Brassica napus), wild mustard (Sinapis arvensis), white mustard (Sinapis alba) and Camelina (Camelina sativa) were grown in the experimental field, and their morphological characteristics were determined. According to the results of the research; plant length was varied between 76.75 cm and 151.50 cm, and the longest plant was belonging to species of Sinapis arvensis. The number of branches varied from 3.75 piece/plant to 17.75 piece/plant and the most numerous branch was counted in species of Sinapis alba. It was determined that the number of grains in one capsule was between 3.75 piece/capsule and 35.75 piece/capsule and the largest amount of grains in the one capsule was in the Excalibul variety of species of Brassica napus. In our research, it has been determined that the plant of Sinapis arvensis is a potential plant for industrial of oil production; such as Brassica napus, Sinapis alba and Camelina (Camelina sativa).Keywords: Brassica napus, Camelina sativa, canola, Sinapis alba, Sinapis arvensis, wild mustard
Procedia PDF Downloads 1998440 Nucleotide Based Validation of the Endangered Plant Diospyros mespiliformis (Ebenaceae) by Evaluating Short Sequence Region of Plastid rbcL Gene
Authors: Abdullah Alaklabi, Ibrahim A. Arif, Sameera O. Bafeel, Ahmad H. Alfarhan, Anis Ahamed, Jacob Thomas, Mohammad A. Bakir
Abstract:
Diospyros mespiliformis (Hochst. ex A.DC.; Ebenaceae) is a large deciduous medicinal plant. This plant species is currently listed as endangered in Saudi Arabia. Molecular identification of this plant species based on short sequence regions (571 and 664 bp) of plastid rbcL (ribulose-1, 5-biphosphate carboxylase) gene was investigated in this study. The endangered plant specimens were collected from Al-Baha, Saudi Arabia (GPS coordinate: 19.8543987, 41.3059349). Phylogenetic tree inferred from the rbcL gene sequences showed that this species is very closely related with D. brandisiana. The close relationship was also observed among D. bejaudii, D. Philippinensis and D. releyi (≥99.7% sequence homology). The partial rbcL gene sequence region (571 bp) that was amplified by rbcL primer-pair rbcLaF-rbcLaR failed to discriminate D. mespiliformis from the closely related plant species, D. brandisiana. In contrast, primer-pair rbcL1F-rbcL724R yielded longer amplicon, discriminated the species from D. brandisiana and demonstrated nucleotide variations in 3 different sites (645G>T; 663A>C; 710C>G). Although D. mespiliformis (EU980712) and D. brandisiana (EU980656) are very closely related species (99.4%); however, studied specimen showed 100% sequence homology with D. mespiliformis and 99.6% with D. brandisiana. The present findings showed that rbcL short sequence region (664 bp) of plastid rbcL gene, amplified by primer-pair rbcL1F-rbcL724R, can be used for authenticating samples of D. mespiliforformis and may provide help in authentic identification and management process of this medicinally valuable endangered plant species.Keywords: Diospyros mespiliformis, endangered plant, identification partial rbcL
Procedia PDF Downloads 433