Search results for: local cluster detection
8856 Colorimetric Detection of Melamine in Milk Sample by Using In-Situ Formed Silver Nanoparticles by Tannic Acid
Authors: Md Fazle Alam, Amaj Ahmed Laskar, Hina Younus
Abstract:
Melamine toxicity which causes renal failure and death of humans and animals have recently attracted worldwide attention. Developing an easy, fast and sensitive method for the routine melamine detection is the need of the hour. Herein, we have developed a rapid, sensitive, one step and selective colorimetric method for the detection of melamine in milk samples based upon in-situ formation of silver nanoparticles (AgNPs) via tannic acid at room temperature. These AgNPs thus formed were characterized by UV-VIS spectrophotometer, transmission electron microscope (TEM), zetasizer and dynamic light scattering (DLS). Under optimal conditions, melamine could be selectively detected within the concentration range of 0.05-1.4 µM with a limit of detection (LOD) of 10.1 nM, which is lower than the strictest melamine safety requirement of 1 ppm. This assay does not utilize organic cosolvents, enzymatic reactions, light sensitive dye molecules and sophisticated instrumentation, thereby overcoming some of the limitations of conventional methods.Keywords: milk adulteration, melamine, silver nanoparticles, tannic acid
Procedia PDF Downloads 2468855 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach
Authors: Abe Degale D., Cheng Jian
Abstract:
When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.Keywords: violence detection, faster RCNN, transfer learning and, surveillance video
Procedia PDF Downloads 1068854 Modern Spectrum Sensing Techniques for Cognitive Radio Networks: Practical Implementation and Performance Evaluation
Authors: Antoni Ivanov, Nikolay Dandanov, Nicole Christoff, Vladimir Poulkov
Abstract:
Spectrum underutilization has made cognitive radio a promising technology both for current and future telecommunications. This is due to the ability to exploit the unused spectrum in the bands dedicated to other wireless communication systems, and thus, increase their occupancy. The essential function, which allows the cognitive radio device to perceive the occupancy of the spectrum, is spectrum sensing. In this paper, the performance of modern adaptations of the four most widely used spectrum sensing techniques namely, energy detection (ED), cyclostationary feature detection (CSFD), matched filter (MF) and eigenvalues-based detection (EBD) is compared. The implementation has been accomplished through the PlutoSDR hardware platform and the GNU Radio software package in very low Signal-to-Noise Ratio (SNR) conditions. The optimal detection performance of the examined methods in a realistic implementation-oriented model is found for the common relevant parameters (number of observed samples, sensing time and required probability of false alarm).Keywords: cognitive radio, dynamic spectrum access, GNU Radio, spectrum sensing
Procedia PDF Downloads 2458853 Cracks Detection and Measurement Using VLP-16 LiDAR and Intel Depth Camera D435 in Real-Time
Authors: Xinwen Zhu, Xingguang Li, Sun Yi
Abstract:
Crack is one of the most common damages in buildings, bridges, roads and so on, which may pose safety hazards. However, cracks frequently happen in structures of various materials. Traditional methods of manual detection and measurement, which are known as subjective, time-consuming, and labor-intensive, are gradually unable to meet the needs of modern development. In addition, crack detection and measurement need be safe considering space limitations and danger. Intelligent crack detection has become necessary research. In this paper, an efficient method for crack detection and quantification using a 3D sensor, LiDAR, and depth camera is proposed. This method works even in a dark environment, which is usual in real-world applications. The LiDAR rapidly spins to scan the surrounding environment and discover cracks through lasers thousands of times per second, providing a rich, 3D point cloud in real-time. The LiDAR provides quite accurate depth information. The precision of the distance of each point can be determined within around ±3 cm accuracy, and not only it is good for getting a precise distance, but it also allows us to see far of over 100m going with the top range models. But the accuracy is still large for some high precision structures of material. To make the depth of crack is much more accurate, the depth camera is in need. The cracks are scanned by the depth camera at the same time. Finally, all data from LiDAR and Depth cameras are analyzed, and the size of the cracks can be quantified successfully. The comparison shows that the minimum and mean absolute percentage error between measured and calculated width are about 2.22% and 6.27%, respectively. The experiments and results are presented in this paper.Keywords: LiDAR, depth camera, real-time, detection and measurement
Procedia PDF Downloads 2248852 RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System
Authors: Kay Thinzar Phu, Lwin Lwin Oo
Abstract:
In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset.Keywords: adaptive thresholding based on RGB color, blue color detection, feature extraction, yellow color detection
Procedia PDF Downloads 3138851 Generation of Automated Alarms for Plantwide Process Monitoring
Authors: Hyun-Woo Cho
Abstract:
Earlier detection of incipient abnormal operations in terms of plant-wide process management is quite necessary in order to improve product quality and process safety. And generating warning signals or alarms for operating personnel plays an important role in process automation and intelligent plant health monitoring. Various methodologies have been developed and utilized in this area such as expert systems, mathematical model-based approaches, multivariate statistical approaches, and so on. This work presents a nonlinear empirical monitoring methodology based on the real-time analysis of massive process data. Unfortunately, the big data includes measurement noises and unwanted variations unrelated to true process behavior. Thus the elimination of such unnecessary patterns of the data is executed in data processing step to enhance detection speed and accuracy. The performance of the methodology was demonstrated using simulated process data. The case study showed that the detection speed and performance was improved significantly irrespective of the size and the location of abnormal events.Keywords: detection, monitoring, process data, noise
Procedia PDF Downloads 2528850 Traffic Light Detection Using Image Segmentation
Authors: Vaishnavi Shivde, Shrishti Sinha, Trapti Mishra
Abstract:
Traffic light detection from a moving vehicle is an important technology both for driver safety assistance functions as well as for autonomous driving in the city. This paper proposed a deep-learning-based traffic light recognition method that consists of a pixel-wise image segmentation technique and a fully convolutional network i.e., UNET architecture. This paper has used a method for detecting the position and recognizing the state of the traffic lights in video sequences is presented and evaluated using Traffic Light Dataset which contains masked traffic light image data. The first stage is the detection, which is accomplished through image processing (image segmentation) techniques such as image cropping, color transformation, segmentation of possible traffic lights. The second stage is the recognition, which means identifying the color of the traffic light or knowing the state of traffic light which is achieved by using a Convolutional Neural Network (UNET architecture).Keywords: traffic light detection, image segmentation, machine learning, classification, convolutional neural networks
Procedia PDF Downloads 1738849 Spatial Distribution and Cluster Analysis of Sexual Risk Behaviors and STIs Reported by Chinese Adults in Guangzhou, China: A Representative Population-Based Study
Authors: Fangjing Zhou, Wen Chen, Brian J. Hall, Yu Wang, Carl Latkin, Li Ling, Joseph D. Tucker
Abstract:
Background: Economic and social reforms designed to open China to the world has been successful, but also appear to have rapidly laid the foundation for the reemergence of STIs since 1980s. Changes in sexual behaviors, relationships, and norms among Chinese contributed to the STIs epidemic. As the massive population moved during the last 30 years, early coital debut, multiple sexual partnerships, and unprotected sex have increased within the general population. Our objectives were to assess associations between residences location, sexual risk behaviors and sexually transmitted infections (STIs) among adults living in Guangzhou, China. Methods: Stratified cluster sampling followed a two-step process was used to select populations aged 18-59 years in Guangzhou, China. Spatial methods including Geographic Information Systems (GIS) were utilized to identify 1400 coordinates with latitude and longitude. Face-to-face household interviews were conducted to collect self-report data on sexual risk behaviors and diagnosed STIs. Kulldorff’s spatial scan statistic was implemented to identify and detect spatial distribution and clusters of sexual risk behaviors and STIs. The presence and location of statistically significant clusters were mapped in the study areas using ArcGIS software. Results: In this study, 1215 of 1400 households attempted surveys, with 368 refusals, resulting in a sample of 751 completed surveys. The prevalence of self-reported sexual risk behaviors was between 5.1% and 50.0%. The self-reported lifetime prevalence of diagnosed STIs was 7.06%. Anal intercourse clustered in an area located along the border within the rural-urban continuum (p=0.001). High rate clusters for alcohol or other drugs using before sex (p=0.008) and migrants who lived in Guangzhou less than one year (p=0.007) overlapped this cluster. Excess cases for sex without a condom (p=0.031) overlapped the cluster for college students (p<0.001). Conclusions: Short-term migrants and college students reported greater sexual risk behaviors. Programs to increase safer sex within these communities to reduce the risk of STIs are warranted in Guangzhou. Spatial analysis identified geographical clusters of sexual risk behaviors, which is critical for optimizing surveillance and targeting control measures for these locations in the future.Keywords: cluster analysis, migrant, sexual risk behaviors, spatial distribution
Procedia PDF Downloads 3408848 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka
Procedia PDF Downloads 2968847 Unlocking E-commerce: Analyzing User Behavior and Segmenting Customers for Strategic Insights
Authors: Aditya Patil, Arun Patil, Vaishali Patil, Sudhir Chitnis, Anjum Patel
Abstract:
Rapid growth has given e-commerce platforms a lot of client behavior and spending data. To maximize their strategy, businesses must understand how customers utilize online shopping platforms and what influences their purchases. Our research focuses on e-commerce user behavior and purchasing trends. This extensive study examines spending and user behavior. Regression and grouping disclose relevant data from the dataset. We can understand user spending trends via multilevel regression. We can analyze how pricing, user demographics, and product categories affect customer purchase decisions with this technique. Clustering groups consumers by spending. Important information was found. Purchase habits vary by user group. Our analysis illuminates the complex world of e-commerce consumer behavior and purchase trends. Understanding user behavior helps create effective e-commerce marketing strategies. This market can benefit from K-means clustering. This study focuses on tailoring strategies to user groups and improving product and price effectiveness. Customer buying behaviors across categories were shown via K-means clusters. Average spending is highest in Cluster 4 and lowest in Cluster 3. Clothing is less popular than gadgets and appliances around the holidays. Cluster spending distribution is examined using average variables. Our research enhances e-commerce analytics. Companies can improve customer service and decision-making with this data.Keywords: e-commerce, regression, clustering, k-means
Procedia PDF Downloads 188846 Spectroscopic Relation between Open Cluster and Globular Cluster
Authors: Robin Singh, Mayank Nautiyal, Priyank Jain, Vatasta Koul, Vaibhav Sharma
Abstract:
The curiosity to investigate the space and its mysteries was dependably the main impetus of human interest, as the particle of livings exists from the "debut de l'Univers" (beginning of the Universe) typified with its few other living things. The sharp drive to uncover the secrets of stars and their unusual deportment was dependably an ignitor of stars investigation. As humankind lives in civilizations and states, stars likewise live in provinces named ‘clusters’. Clusters are separates into 2 composes i.e. open clusters and globular clusters. An open cluster is a gathering of thousand stars that were moulded from a comparable goliath sub-nuclear cloud and for the most part; contain Propulsion I (extremely metal-rich) and Propulsion II (mild metal-rich), where globular clusters are around gathering of more than thirty thousand stars that circles a galactic focus and basically contain Propulsion III (to a great degree metal-poor) stars. Futurology of this paper lies in the spectroscopic investigation of globular clusters like M92 and NGC419 and open clusters like M34 and IC2391 in different color bands by using software like VIREO virtual observatory, Aladin, CMUNIWIN, and MS-Excel. Assessing the outcome Hertzsprung-Russel (HR) diagram with exemplary cosmological models like Einstein model, De Sitter and Planck survey demonstrate for a superior age estimation of respective clusters. Colour-Magnitude Diagram of these clusters was obtained by photometric analysis in g and r bands which further transformed into BV bands which will unravel the idea of stars exhibit in the individual clusters.Keywords: color magnitude diagram, globular clusters, open clusters, Einstein model
Procedia PDF Downloads 2268845 Analysing the Behaviour of Local Hurst Exponent and Lyapunov Exponent for Prediction of Market Crashes
Authors: Shreemoyee Sarkar, Vikhyat Chadha
Abstract:
In this paper, the local fractal properties and chaotic properties of financial time series are investigated by calculating two exponents, the Local Hurst Exponent: LHE and Lyapunov Exponent in a moving time window of a financial series.y. For the purpose of this paper, the Dow Jones Industrial Average (DIJA) and S&P 500, two of the major indices of United States have been considered. The behaviour of the above-mentioned exponents prior to some major crashes (1998 and 2008 crashes in S&P 500 and 2002 and 2008 crashes in DIJA) is discussed. Also, the optimal length of the window for obtaining the best possible results is decided. Based on the outcomes of the above, an attempt is made to predict the crashes and accuracy of such an algorithm is decided.Keywords: local hurst exponent, lyapunov exponent, market crash prediction, time series chaos, time series local fractal properties
Procedia PDF Downloads 1528844 Anomaly Detection Based on System Log Data
Authors: M. Kamel, A. Hoayek, M. Batton-Hubert
Abstract:
With the increase of network virtualization and the disparity of vendors, the continuous monitoring and detection of anomalies cannot rely on static rules. An advanced analytical methodology is needed to discriminate between ordinary events and unusual anomalies. In this paper, we focus on log data (textual data), which is a crucial source of information for network performance. Then, we introduce an algorithm used as a pipeline to help with the pretreatment of such data, group it into patterns, and dynamically label each pattern as an anomaly or not. Such tools will provide users and experts with continuous real-time logs monitoring capability to detect anomalies and failures in the underlying system that can affect performance. An application of real-world data illustrates the algorithm.Keywords: logs, anomaly detection, ML, scoring, NLP
Procedia PDF Downloads 948843 Speech Detection Model Based on Deep Neural Networks Classifier for Speech Emotions Recognition
Authors: A. Shoiynbek, K. Kozhakhmet, P. Menezes, D. Kuanyshbay, D. Bayazitov
Abstract:
Speech emotion recognition has received increasing research interest all through current years. There was used emotional speech that was collected under controlled conditions in most research work. Actors imitating and artificially producing emotions in front of a microphone noted those records. There are four issues related to that approach, namely, (1) emotions are not natural, and it means that machines are learning to recognize fake emotions. (2) Emotions are very limited by quantity and poor in their variety of speaking. (3) There is language dependency on SER. (4) Consequently, each time when researchers want to start work with SER, they need to find a good emotional database on their language. In this paper, we propose the approach to create an automatic tool for speech emotion extraction based on facial emotion recognition and describe the sequence of actions of the proposed approach. One of the first objectives of the sequence of actions is a speech detection issue. The paper gives a detailed description of the speech detection model based on a fully connected deep neural network for Kazakh and Russian languages. Despite the high results in speech detection for Kazakh and Russian, the described process is suitable for any language. To illustrate the working capacity of the developed model, we have performed an analysis of speech detection and extraction from real tasks.Keywords: deep neural networks, speech detection, speech emotion recognition, Mel-frequency cepstrum coefficients, collecting speech emotion corpus, collecting speech emotion dataset, Kazakh speech dataset
Procedia PDF Downloads 1018842 An E-Assessment Website to Implement Hierarchical Aggregate Assessment
Authors: M. Lesage, G. Raîche, M. Riopel, F. Fortin, D. Sebkhi
Abstract:
This paper describes a Web server implementation of the hierarchical aggregate assessment process in the field of education. This process describes itself as a field of teamwork assessment where teams can have multiple levels of hierarchy and supervision. This process is applied everywhere and is part of the management, education, assessment and computer science fields. The E-Assessment website named “Cluster” records in its database the students, the course material, the teams and the hierarchical relationships between the students. For the present research, the hierarchical relationships are team member, team leader and group administrator appointments. The group administrators have the responsibility to supervise team leaders. The experimentation of the application has been performed by high school students in geology courses and Canadian army cadets for navigation patrols in teams. This research extends the work of Nance that uses a hierarchical aggregation process similar as the one implemented in the “Cluster” application.Keywords: e-learning, e-assessment, teamwork assessment, hierarchical aggregate assessment
Procedia PDF Downloads 3698841 Microwave Tomography: The Analytical Treatment for Detecting Malignant Tumor Inside Human Body
Authors: Muhammad Hassan Khalil, Xu Jiadong
Abstract:
Early detection through screening is the best tool short of a perfect treatment against the malignant tumor inside the breast of a woman. By detecting cancer in its early stages, it can be recognized and treated before it has the opportunity to spread and change into potentially dangerous. Microwave tomography is a new imaging method based on contrast in dielectric properties of materials. The mathematical theory of microwave tomography involves solving an inverse problem for Maxwell’s equations. In this paper, we present designed antenna for breast cancer detection, which will use in microwave tomography configuration.Keywords: microwave imaging, inverse scattering, breast cancer, malignant tumor detection
Procedia PDF Downloads 3718840 Comparing Nonverbal Deception Detection of Police Officers and Human Resources Students in the Czech Republic
Authors: Lenka Mynaříková, Hedvika Boukalová
Abstract:
The study looks at the ability to detect nonverbal deception among police officers and management students in the Czech Republic. Respondents from police departments (n=197) and university students of human resources (n=161) completed a deception detection task and evaluated veracity of the statements of suspects in 21 video clips from real crime investigations. Their evaluations were based on nonverbal behavior. Voices in the video clips were modified so that words were not recognizable, yet paraverbal voice characteristics were preserved. Results suggest that respondents have a tendency to lie bias based on their profession. In the evaluation of video clips, stereotypes also played a significant role. The statements of suspects of a different ethnicity, younger age or specific visual features were considered deceitful more often. Research might be beneficial for training in professions that are in need of deception detection techniques.Keywords: deception detection, police officers, human resources, forensic psychology, forensic studies, organizational psychology
Procedia PDF Downloads 4318839 Electrochemical Sensor Based on Poly(Pyrogallol) for the Simultaneous Detection of Phenolic Compounds and Nitrite in Wastewater
Authors: Majid Farsadrooh, Najmeh Sabbaghi, Seyed Mohammad Mostashari, Abolhasan Moradi
Abstract:
Phenolic compounds are chief environmental contaminants on account of their hazardous and toxic nature on human health. The preparation of sensitive and potent chemosensors to monitor emerging pollution in water and effluent samples has received great consideration. A novel and versatile nanocomposite sensor based on poly pyrogallol is presented for the first time in this study, and its electrochemical behavior for simultaneous detection of hydroquinone (HQ), catechol (CT), and resorcinol (RS) in the presence of nitrite is evaluated. The physicochemical characteristics of the fabricated nanocomposite were investigated by emission-scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET). The electrochemical response of the proposed sensor to the detection of HQ, CT, RS, and nitrite is studied using cyclic voltammetry (CV), chronoamperometry (CA), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The kinetic characterization of the prepared sensor showed that both adsorption and diffusion processes can control reactions at the electrode. In the optimized conditions, the new chemosensor provides a wide linear range of 0.5-236.3, 0.8-236.3, 0.9-236.3, and 1.2-236.3 μM with a low limit of detection of 21.1, 51.4, 98.9, and 110.8 nM (S/N = 3) for HQ, CT and RS, and nitrite, respectively. Remarkably, the electrochemical sensor has outstanding selectivity, repeatability, and stability and is successfully employed for the detection of RS, CT, HQ, and nitrite in real water samples with the recovery of 96.2%–102.4%, 97.8%-102.6%, 98.0%–102.4% and 98.4%–103.2% for RS, CT, HQ, and nitrite, respectively. These outcomes illustrate that poly pyrogallol is a promising candidate for effective electrochemical detection of dihydroxybenzene isomers in the presence of nitrite.Keywords: electrochemical sensor, poly pyrogallol, phenolic compounds, simultaneous determination
Procedia PDF Downloads 688838 The Use of Image Analysis Techniques to Describe a Cluster Cracks in the Cement Paste with the Addition of Metakaolinite
Authors: Maciej Szeląg, Stanisław Fic
Abstract:
The impact of elevated temperatures on the construction materials manifests in change of their physical and mechanical characteristics. Stresses and thermal deformations that occur inside the volume of the material cause its progressive degradation as temperature increase. Finally, the reactions and transformations of multiphase structure of cementitious composite cause its complete destruction. A particularly dangerous phenomenon is the impact of thermal shock – a sudden high temperature load. The thermal shock leads to a high value of the temperature gradient between the outer surface and the interior of the element in a relatively short time. The result of mentioned above process is the formation of the cracks and scratches on the material’s surface and inside the material. The article describes the use of computer image analysis techniques to identify and assess the structure of the cluster cracks on the surfaces of modified cement pastes, caused by thermal shock. Four series of specimens were tested. Two Portland cements were used (CEM I 42.5R and CEM I 52,5R). In addition, two of the series contained metakaolinite as a replacement for 10% of the cement content. Samples in each series were made in combination of three w/b (water/binder) indicators of respectively 0.4; 0.5; 0.6. Surface cracks of the samples were created by a sudden temperature load at 200°C for 4 hours. Images of the cracked surfaces were obtained via scanning at 1200 DPI; digital processing and measurements were performed using ImageJ v. 1.46r software. In order to examine the cracked surface of the cement paste as a system of closed clusters – the dispersal systems theory was used to describe the structure of cement paste. Water is used as the dispersing phase, and the binder is used as the dispersed phase – which is the initial stage of cement paste structure creation. A cluster itself is considered to be the area on the specimen surface that is limited by cracks (created by sudden temperature loading) or by the edge of the sample. To describe the structure of cracks two stereological parameters were proposed: A ̅ – the cluster average area, L ̅ – the cluster average perimeter. The goal of this study was to compare the investigated stereological parameters with the mechanical properties of the tested specimens. Compressive and tensile strength testes were carried out according to EN standards. The method used in the study allowed the quantitative determination of defects occurring in the examined modified cement pastes surfaces. Based on the results, it was found that the nature of the cracks depends mainly on the physical parameters of the cement and the intermolecular interactions on the dispersal environment. Additionally, it was noted that the A ̅/L ̅ relation of created clusters can be described as one function for all tested samples. This fact testifies about the constant geometry of the thermal cracks regardless of the presence of metakaolinite, the type of cement and the w/b ratio.Keywords: cement paste, cluster cracks, elevated temperature, image analysis, metakaolinite, stereological parameters
Procedia PDF Downloads 3888837 Comparing Community Detection Algorithms in Bipartite Networks
Authors: Ehsan Khademi, Mahdi Jalili
Abstract:
Despite the special features of bipartite networks, they are common in many systems. Real-world bipartite networks may show community structure, similar to what one can find in one-mode networks. However, the interpretation of the community structure in bipartite networks is different as compared to one-mode networks. In this manuscript, we compare a number of available methods that are frequently used to discover community structure of bipartite networks. These networks are categorized into two broad classes. One class is the methods that, first, transfer the network into a one-mode network, and then apply community detection algorithms. The other class is the algorithms that have been developed specifically for bipartite networks. These algorithms are applied on a model network with prescribed community structure.Keywords: community detection, bipartite networks, co-clustering, modularity, network projection, complex networks
Procedia PDF Downloads 6258836 Rapid, Label-Free, Direct Detection and Quantification of Escherichia coli Bacteria Using Nonlinear Acoustic Aptasensor
Authors: Shilpa Khobragade, Carlos Da Silva Granja, Niklas Sandström, Igor Efimov, Victor P. Ostanin, Wouter van der Wijngaart, David Klenerman, Sourav K. Ghosh
Abstract:
Rapid, label-free and direct detection of pathogenic bacteria is critical for the prevention of disease outbreaks. This paper for the first time attempts to probe the nonlinear acoustic response of quartz crystal resonator (QCR) functionalized with specific DNA aptamers for direct detection and quantification of viable E. coli KCTC 2571 bacteria. DNA aptamers were immobilized through biotin and streptavidin conjugation, onto the gold surface of QCR to capture the target bacteria and the detection was accomplished by shift in amplitude of the peak 3f signal (3 times the drive frequency) upon binding, when driven near fundamental resonance frequency. The developed nonlinear acoustic aptasensor system demonstrated better reliability than conventional resonance frequency shift and energy dissipation monitoring that were recorded simultaneously. This sensing system could directly detect 10⁽⁵⁾ cells/mL target bacteria within 30 min or less and had high specificity towards E. coli KCTC 2571 bacteria as compared to the same concentration of S.typhi bacteria. Aptasensor response was observed for the bacterial suspensions ranging from 10⁽⁵⁾-10⁽⁸⁾ cells/mL. Conclusively, this nonlinear acoustic aptasensor is simple to use, gives real-time output, cost-effective and has the potential for rapid, specific, label-free direction detection of bacteria.Keywords: acoustic, aptasensor, detection, nonlinear
Procedia PDF Downloads 5668835 A Relative Entropy Regularization Approach for Fuzzy C-Means Clustering Problem
Authors: Ouafa Amira, Jiangshe Zhang
Abstract:
Clustering is an unsupervised machine learning technique; its aim is to extract the data structures, in which similar data objects are grouped in the same cluster, whereas dissimilar objects are grouped in different clusters. Clustering methods are widely utilized in different fields, such as: image processing, computer vision , and pattern recognition, etc. Fuzzy c-means clustering (fcm) is one of the most well known fuzzy clustering methods. It is based on solving an optimization problem, in which a minimization of a given cost function has been studied. This minimization aims to decrease the dissimilarity inside clusters, where the dissimilarity here is measured by the distances between data objects and cluster centers. The degree of belonging of a data point in a cluster is measured by a membership function which is included in the interval [0, 1]. In fcm clustering, the membership degree is constrained with the condition that the sum of a data object’s memberships in all clusters must be equal to one. This constraint can cause several problems, specially when our data objects are included in a noisy space. Regularization approach took a part in fuzzy c-means clustering technique. This process introduces an additional information in order to solve an ill-posed optimization problem. In this study, we focus on regularization by relative entropy approach, where in our optimization problem we aim to minimize the dissimilarity inside clusters. Finding an appropriate membership degree to each data object is our objective, because an appropriate membership degree leads to an accurate clustering result. Our clustering results in synthetic data sets, gaussian based data sets, and real world data sets show that our proposed model achieves a good accuracy.Keywords: clustering, fuzzy c-means, regularization, relative entropy
Procedia PDF Downloads 2598834 Analysis of Collision Avoidance System
Authors: N. Gayathri Devi, K. Batri
Abstract:
The advent of technology has increased the traffic hazards and the road accidents take place. Collision detection system in automobile aims at reducing or mitigating the severity of an accident. This project aims at avoiding Vehicle head on collision by means of collision detection algorithm. This collision detection algorithm predicts the collision and the avoidance or minimization have to be done within few seconds on confirmation. Under critical situation collision minimization is made possible by turning the vehicle to the desired turn radius so that collision impact can be reduced. In order to avoid the collision completely, the turning of the vehicle should be achieved at reduced speed in order to maintain the stability.Keywords: collision avoidance system, time to collision, time to turn, turn radius
Procedia PDF Downloads 5498833 Dual Mode “Turn On-Off-On” Photoluminescence Detection of EDTA and Lead Using Moringa Oleifera Gum-Derived Carbon Dots
Authors: Anisha Mandal, Swambabu Varanasi
Abstract:
Lead is one of the most prevalent toxic heavy metal ions, and its pollution poses a significant threat to the environment and human health. On the other hand, Ethylenediaminetetraacetic acid is a widely used metal chelating agent that, due to its poor biodegradability, is an incessant pollutant to the environment. For the first time, a green, simple, and cost-effective approach is used to hydrothermally synthesise photoluminescent carbon dots using Moringa Oleifera Gum in a single step. Then, using Moringa Oleifera Gum-derived carbon dots, a photoluminescent "ON-OFF-ON" mechanism for dual mode detection of trace Pb2+ and EDTA was proposed. MOG-CDs detect Pb2+ selectively and sensitively using a photoluminescence quenching mechanism, with a detection limit (LOD) of 0.000472 ppm. (1.24 nM). The quenched photoluminescence can be restored by adding EDTA to the MOG-CD+Pb2+ system; this strategy is used to quantify EDTA at a level of detection of 0.0026 ppm. (8.9 nM). The quantification of Pb2+ and EDTA in actual samples encapsulated the applicability and dependability of the proposed photoluminescent probe.Keywords: carbon dots, photoluminescence, sensor, moringa oleifera gum
Procedia PDF Downloads 1148832 A Comprehensive Study of Camouflaged Object Detection Using Deep Learning
Authors: Khalak Bin Khair, Saqib Jahir, Mohammed Ibrahim, Fahad Bin, Debajyoti Karmaker
Abstract:
Object detection is a computer technology that deals with searching through digital images and videos for occurrences of semantic elements of a particular class. It is associated with image processing and computer vision. On top of object detection, we detect camouflage objects within an image using Deep Learning techniques. Deep learning may be a subset of machine learning that's essentially a three-layer neural network Over 6500 images that possess camouflage properties are gathered from various internet sources and divided into 4 categories to compare the result. Those images are labeled and then trained and tested using vgg16 architecture on the jupyter notebook using the TensorFlow platform. The architecture is further customized using Transfer Learning. Methods for transferring information from one or more of these source tasks to increase learning in a related target task are created through transfer learning. The purpose of this transfer of learning methodologies is to aid in the evolution of machine learning to the point where it is as efficient as human learning.Keywords: deep learning, transfer learning, TensorFlow, camouflage, object detection, architecture, accuracy, model, VGG16
Procedia PDF Downloads 1498831 Grain Boundary Detection Based on Superpixel Merges
Authors: Gaokai Liu
Abstract:
The distribution of material grain sizes reflects the strength, fracture, corrosion and other properties, and the grain size can be acquired via the grain boundary. In recent years, the automatic grain boundary detection is widely required instead of complex experimental operations. In this paper, an effective solution is applied to acquire the grain boundary of material images. First, the initial superpixel segmentation result is obtained via a superpixel approach. Then, a region merging method is employed to merge adjacent regions based on certain similarity criterions, the experimental results show that the merging strategy improves the superpixel segmentation result on material datasets.Keywords: grain boundary detection, image segmentation, material images, region merging
Procedia PDF Downloads 1708830 The Application of Local Wisdom in Health Care of Early Childhood at Ban Nam Chieo Community, Laem Ngop, Trat Province
Authors: Supalak Fakkhum, Wannita Pochanakul
Abstract:
This research is qualitative research that aims to study the application of local wisdom in health care of early childhood at Ban Nam Chieo Community, Laem Ngop, Trat Province. The target is one folk medicine healer and 45 parents who have children or grandchildren aged between 0-5 years. The folk medicine healer was interviewed and observed during early childhood health care practice. Parents were interviewed. The results showed that local wisdom in health care of early childhood are as follows: 1. Local wisdom about early childhood diseases: It is believed that the disease was determined while the child was still in the womb, in the third month of pregnancy. When a child is born, they will have La, La-ong and Saang diseases, which are URI (upper respiratory infection) and DI (diarrhea) diseases. Supernatural aspect is also considered. 2. The treatment is chosen to match the symptoms of the disease. Caring for early childhood includes psychological therapy by rituals and spells. 3. For local wisdom concerning prevention and health promotion, parents normally bring their child to folk medicine healers for “throat paint” as an act of protection and health promotion. Folk healers often prescribe food according to belief and local wisdom.Keywords: local wisdom, early childhood, folk medicine, healer
Procedia PDF Downloads 4808829 Anatomical Survey for Text Pattern Detection
Abstract:
The ultimate aim of machine intelligence is to explore and materialize the human capabilities, one of which is the ability to detect various text objects within one or more images displayed on any canvas including prints, videos or electronic displays. Multimedia data has increased rapidly in past years. Textual information present in multimedia contains important information about the image/video content. However, it needs to technologically testify the commonly used human intelligence of detecting and differentiating the text within an image, for computers. Hence in this paper feature set based on anatomical study of human text detection system is proposed. Subsequent examination bears testimony to the fact that the features extracted proved instrumental to text detection.Keywords: biologically inspired vision, content based retrieval, document analysis, text extraction
Procedia PDF Downloads 4448828 Algorithm for Improved Tree Counting and Detection through Adaptive Machine Learning Approach with the Integration of Watershed Transformation and Local Maxima Analysis
Authors: Jigg Pelayo, Ricardo Villar
Abstract:
The Philippines is long considered as a valuable producer of high value crops globally. The country’s employment and economy have been dependent on agriculture, thus increasing its demand for the efficient agricultural mechanism. Remote sensing and geographic information technology have proven to effectively provide applications for precision agriculture through image-processing technique considering the development of the aerial scanning technology in the country. Accurate information concerning the spatial correlation within the field is very important for precision farming of high value crops, especially. The availability of height information and high spatial resolution images obtained from aerial scanning together with the development of new image analysis methods are offering relevant influence to precision agriculture techniques and applications. In this study, an algorithm was developed and implemented to detect and count high value crops simultaneously through adaptive scaling of support vector machine (SVM) algorithm subjected to object-oriented approach combining watershed transformation and local maxima filter in enhancing tree counting and detection. The methodology is compared to cutting-edge template matching algorithm procedures to demonstrate its effectiveness on a demanding tree is counting recognition and delineation problem. Since common data and image processing techniques are utilized, thus can be easily implemented in production processes to cover large agricultural areas. The algorithm is tested on high value crops like Palm, Mango and Coconut located in Misamis Oriental, Philippines - showing a good performance in particular for young adult and adult trees, significantly 90% above. The s inventories or database updating, allowing for the reduction of field work and manual interpretation tasks.Keywords: high value crop, LiDAR, OBIA, precision agriculture
Procedia PDF Downloads 4028827 Trend Detection Using Community Rank and Hawkes Process
Authors: Shashank Bhatnagar, W. Wilfred Godfrey
Abstract:
We develop in this paper, an approach to find the trendy topic, which not only considers the user-topic interaction but also considers the community, in which user belongs. This method modifies the previous approach of user-topic interaction to user-community-topic interaction with better speed-up in the range of [1.1-3]. We assume that trend detection in a social network is dependent on two things. The one is, broadcast of messages in social network governed by self-exciting point process, namely called Hawkes process and the second is, Community Rank. The influencer node links to others in the community and decides the community rank based on its PageRank and the number of users links to that community. The community rank decides the influence of one community over the other. Hence, the Hawkes process with the kernel of user-community-topic decides the trendy topic disseminated into the social network.Keywords: community detection, community rank, Hawkes process, influencer node, pagerank, trend detection
Procedia PDF Downloads 384