Search results for: drug carriers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2242

Search results for: drug carriers

1672 Chitosan Functionalized Fe3O4@Au Core-Shell Nanomaterials for Targeted Drug Delivery

Authors: S. S. Pati, L. Herojit Singh, A. C. Oliveira, V. K. Garg

Abstract:

Chitosan functionalized Fe3O4-Au core shell nanoparticles have been prepared using a two step wet chemical approach using NaBH4 as reducing agent for formation of Au inethylene glycol. X-ray diffraction studies shows individual phases of Fe3O4 and Au in the as prepared samples with crystallite size of 5.9 and 11.4 nm respectively. The functionalization of the core-shell nanostructure with Chitosan has been confirmed using Fourier transform infrared spectroscopy along with signatures of octahedral and tetrahedral sites of Fe3O4 below 600cm-1. Mössbauer spectroscopy shows decrease in particle-particle interaction in presence of Au shell (72% sextet) than pure oleic coated Fe3O4 nanoparticles (88% sextet) at room temperature. At 80K, oleic acid coated Fe3O4 shows only sextets whereas the Chitosan functionalized Fe3O4 and Chitosan functionalized Fe3O4@Au core shell show presence of 5 and 11% doublet, respectively.

Keywords: core shell, drug delivery, gold nanoparticles, magnetic nanoparticles

Procedia PDF Downloads 371
1671 One-Step Synthesis and Characterization of Biodegradable ‘Click-Able’ Polyester Polymer for Biomedical Applications

Authors: Wadha Alqahtani

Abstract:

In recent times, polymers have seen a great surge in interest in the field of medicine, particularly chemotherapeutics. One recent innovation is the conversion of polymeric materials into “polymeric nanoparticles”. These nanoparticles can be designed and modified to encapsulate and transport drugs selectively to cancer cells, minimizing collateral damage to surrounding healthy tissues, and improve patient quality of life. In this study, we have synthesized pseudo-branched polyester polymers from bio-based small molecules, including sorbitol, glutaric acid and a propargylic acid derivative to further modify the polymer to make it “click-able" with an azide-modified target ligand. Melt polymerization technique was used for this polymerization reaction, using lipase enzyme catalyst NOVO 435. This reaction was conducted between 90- 95 °C for 72 hours. The polymer samples were collected in 24-hour increments for characterization and to monitor reaction progress. The resulting polymer was purified with the help of methanol dissolving and filtering with filter paper then characterized via NMR, GPC, FTIR, DSC, TGA and MALDI-TOF. Following characterization, these polymers were converted to a polymeric nanoparticle drug delivery system using solvent diffusion method, wherein DiI optical dye and chemotherapeutic drug Taxol can be encapsulated simultaneously. The efficacy of the nanoparticle’s apoptotic effects were analyzed in-vitro by incubation with prostate cancer (LNCaP) and healthy (CHO) cells. MTT assays and fluorescence microscopy were used to assess the cellular uptake and viability of the cells after 24 hours at 37 °C and 5% CO2 atmosphere. Results of the assays and fluorescence imaging confirmed that the nanoparticles were successful in both selectively targeting and inducing apoptosis in 80% of the LNCaP cells within 24 hours without affecting the viability of the CHO cells. These results show the potential of using biodegradable polymers as a vehicle for receptor-specific drug delivery and a potential alternative for traditional systemic chemotherapy. Detailed experimental results will be discussed in the e-poster.

Keywords: chemotherapeutic drug, click chemistry, nanoparticle, prostat cancer

Procedia PDF Downloads 110
1670 Modeling and Simulation of the Structural, Electronic and Magnetic Properties of Fe-Ni Based Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest in the modeling and simulation of magnetic nanoalloys by various computational methods. Magnetic crystalline/amorphous nanoparticles (NP) are interesting materials from both the applied and fundamental points of view, as their properties differ from those of bulk materials and are essential for advanced applications such as high-performance permanent magnets, high-density magnetic recording media, drug carriers, sensors in biomedical technology, etc. As an important magnetic material, Fe-Ni based nanoalloys have promising applications in the chemical industry (catalysis, battery), aerospace and stealth industry (radar absorbing material, jet engine alloys), magnetic biomedical applications (drug delivery, magnetic resonance imaging, biosensor) and computer hardware industry (data storage). The physical and chemical properties of the nanoalloys depend not only on the particle or crystallite size but also on composition and atomic ordering. Therefore, computer modeling is an essential tool to predict structural, electronic, magnetic and optical behavior at atomistic levels and consequently reduce the time for designing and development of new materials with novel/enhanced properties. Although first-principles quantum mechanical methods provide the most accurate results, they require huge computational effort to solve the Schrodinger equation for only a few tens of atoms. On the other hand, molecular dynamics method with appropriate empirical or semi-empirical inter-atomic potentials can give accurate results for the static and dynamic properties of larger systems in a short span of time. In this study, structural evolutions, magnetic and electronic properties of Fe-Ni based nanoalloys have been studied by using molecular dynamics (MD) method in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and Density Functional Theory (DFT) in the Vienna Ab initio Simulation Package (VASP). The effects of particle size (in 2-10 nm particle size range) and temperature (300-1500 K) on stability and structural evolutions of amorphous and crystalline Fe-Ni bulk/nanoalloys have been investigated by combining molecular dynamic (MD) simulation method with Embedded Atom Model (EAM). EAM is applicable for the Fe-Ni based bimetallic systems because it considers both the pairwise interatomic interaction potentials and electron densities. Structural evolution of Fe-Ni bulk and nanoparticles (NPs) have been studied by calculation of radial distribution functions (RDF), interatomic distances, coordination number, core-to-surface concentration profiles as well as Voronoi analysis and surface energy dependences on temperature and particle size. Moreover, spin-polarized DFT calculations were performed by using a plane-wave basis set with generalized gradient approximation (GGA) exchange and correlation effects in the VASP-MedeA package to predict magnetic and electronic properties of the Fe-Ni based alloys in bulk and nanostructured phases. The result of theoretical modeling and simulations for the structural evolutions, magnetic and electronic properties of Fe-Ni based nanostructured alloys were compared with experimental and other theoretical results published in the literature.

Keywords: density functional theory, embedded atom model, Fe-Ni systems, molecular dynamics, nanoalloys

Procedia PDF Downloads 237
1669 The OQAM-OFDM System Using WPT/IWPT Replaced FFT/IFFT

Authors: Alaa H. Thabet, Ehab F. Badran, Moustafa H. Aly

Abstract:

With the rapid expand of wireless digital communications, demand for wireless systems that are reliable and have a high spectral efficiency have increased too. FBMC scheme based on the OFDM/OQAM has been recognized for its good performance to achieve high data rates. Fast Fourier Transforms (FFT) has been used to produce the orthogonal sub-carriers. Due to the drawbacks of OFDM -FFT based system which are the high peak-to-average ratio (PAR) and the synchronization. In this paper, Wavelet Packet Transform (WPT) is used in the place of FFT, and show better performance.

Keywords: OQAM-OFDM, wavelet packet transform, PAPR, FFT

Procedia PDF Downloads 452
1668 Structure-Based Drug Design of Daptomycin, Antimicrobial lipopeptide

Authors: Satya Eswari Jujjavarapu, Swast Dhagat

Abstract:

Contagious diseases enact severe public health problems and have upsetting consequences. The cyclic lipopeptides explained by bacteria Bacillus, Paenibacillus, Pseudomonas, Streptomyces, Serratia, Propionibacterium and fungus Fusarium are very critical in confining the pathogens. As the degree of drug resistance upsurges in unparalleled manner, the perseverance of searching novel cyclic lipopeptides is being professed. The intense study has shown the implication of these bioactive compounds extending beyond antibacterial and antifungal. Lipopeptides, composed of single units of peptide and fatty acyl moiety, show broad spectrum antimicrobial effects. Among the surplus of cyclic lipopeptides, only few have materialized as strong antibiotics. For their functional vigor, polymyxin, daptomycin, surfactin, iturin and bacillomycin have been integrated in mainstream healthcare. In our work daptomycin has been a major part of antimicrobial resource since the past decade. Daptomycin, a cyclic lipopeptide consists of 13-member amino acid with a decanoyl side-chain. This structure of daptomycin confers it the mechanism of action through which it forms pore in the bacterial cell membrane resulting in the death of cell. Daptomycin is produced by Streptococccus roseoporus and acts against Streptococcus pneumonia (PSRP), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). The PDB structure and ligands of daptomycin are available online. The molecular docking studies of these ligands with the lipopeptides were performed and their docking score and glide energy were recorded.

Keywords: daptomycin, molecular docking, structure-based drug design, lipopeptide

Procedia PDF Downloads 259
1667 Characterization of PRL-3 Oncogenic Phosphatase in Its Role in Mediating Acquired Resistance to Bortezomib in Multiple Myeloma

Authors: Shamill Amedot Udonwa, Phyllis S. Y. Chong, Lim S. L. Julia, Wee-Joo Chng

Abstract:

In this paper, we investigated how PRL-3 expression in H929 and U266 cells affects the efficacy of drug treatment. H929 and U266 cells were treated with Bortezomib (BTZ) of different concentrations, and it was observed that H929 cells were resistant to BTZ, while U266 cells were not viable. Investigations into how BTZ targets these cells were conducted, and it was observed that BTZ affects the PARP-Caspase3 pathway as well as PRL-3-Leo1 pathways. These pathways regulate cell proliferation and cell cycle, respectively. Hence, we are able to show the mechanism of how BTZ affects cells and also the role PRL-3 plays on downstream oncogenes such as cyclin-D1 and c-MYC. More importantly, this investigation into PRL-3 in BTZ resistance will be highly applicable in the future as the first clinical trials of PRL-3 antibody (PRL3-zumab) are ongoing at the National University Hospital, Singapore (NUHS). This would mean that understanding the mechanism of resistance through PRL-3, which has yet to be studied, will demonstrate the potential of PRL-3 in developing novel strategies to improve the treatment of MM.

Keywords: drug resistance, hematology, multiple myeloma, oncogene

Procedia PDF Downloads 141
1666 Outreach Intervention Addressing Crack Cocaine Addiction in Users with Co-Occurring Opioid Use Disorder

Authors: Louise Penzenstadler, Tiphaine Robet, Radu Iuga, Daniele Zullino

Abstract:

Context: The outpatient clinic of the psychiatric addiction service of Geneva University Hospital has been providing support to individuals affected by various narcotics for 30 years. However, the increasing consumption of crack cocaine in Geneva has presented a new challenge for the healthcare system. Research Aim: The aim of this research is to evaluate the impact of an outreach intervention on crack cocaine addiction in users with co-occurring opioid use disorder. Methodology: The research utilizes a combination of quantitative and qualitative retrospective data analysis to evaluate the effectiveness of the outreach intervention. Findings: The data collected from October 2023 to December 2023 show that the outreach program successfully made 1,071 contacts with drug users and led to 15 new requests for care and enrollment in treatment. Patients expressed high satisfaction with the intervention, citing easy and rapid access to treatment and social support. Theoretical Importance: This research contributes to the understanding of the challenges and specific needs of a complex group of drug users who face severe health problems. It highlights the importance of outreach interventions in establishing trust, connecting users with care, and facilitating medication-assisted treatment for opioid addiction. Data Collection: Data was collected through the outreach program's interactions with drug users, including street outreach interventions and presence at locations frequented by users. Patient satisfaction surveys were also utilized. Analysis Procedures: The collected data was analyzed using both quantitative and qualitative methods. The quantitative analysis involved examining the number of contacts made, new requests for care, and treatment enrollment. The qualitative analysis focused on patient satisfaction and their perceptions of the intervention. Questions Addressed: The research addresses the following questions: What is the impact of an outreach intervention on crack cocaine addiction in users with co-occurring opioid use disorder? How effective is the outreach program in connecting drug users with care and initiating medication-assisted treatment? Conclusion: The outreach program has proven to be an effective intervention in establishing trust with crack users, connecting them with care, and initiating medication-assisted treatment for opioid addiction. It has also highlighted the importance of addressing the specific challenges faced by this group of drug users.

Keywords: crack addiction, outreach treatment, peer intervention, polydrug use

Procedia PDF Downloads 59
1665 Targeted Photoactivatable Multiagent Nanoconjugates for Imaging and Photodynamic Therapy

Authors: Shazia Bano

Abstract:

Nanoconjugates that integrate photo-based therapeutics and diagnostics within a single platform promise great advances in revolutionizing cancer treatments. However, to achieve high therapeutic efficacy, designing functionally efficacious nanocarriers to tightly retain the drug, promoting selective drug localization and release, and the validation of the efficacy of these nanoconjugates is a great challenge. Here we have designed smart multiagent, liposome based targeted photoactivatable multiagent nanoconjugates, doped with a photoactivatable chromophore benzoporphyrin derivative (BPD) labelled with an active targeting ligand cetuximab to target the EGFR receptor (over expressed in various cancer cells) to deliver a combination of therapeutic agents. This study establishes a tunable nanoplatform for the delivery of the photoactivatable multiagent nanoconjugates for tumor-specific accumulation and targeted destruction of cancer cells in complex cancer model to enhance the therapeutic index of the administrated drugs.

Keywords: targeting, photodynamic therapy, photoactivatable, nanoconjugates

Procedia PDF Downloads 133
1664 Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field

Authors: Anurag Gaur Nidhi

Abstract:

Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67 % at magnetic field 2-5kG, respectively at particle concentration 0.6 mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44 % by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67 % by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively.

Keywords: capture efficiency, implant assisted-Magnetic drug targeting (IA-MDT), magnetic nanoparticles, In-vitro study

Procedia PDF Downloads 297
1663 Tuberculosis in Humans and Animals in the Eastern Part of the Sudan

Authors: Yassir Adam Shuaib, Stefan Niemann, Eltahir Awad Khalil, Ulrich Schaible, Lothar Heinz Wieler, Mohammed Ahmed Bakhiet, Abbashar Osman Mohammed, Mohamed Abdelsalam Abdalla, Elvira Richter

Abstract:

Tuberculosis (TB) is a chronic bacterial disease of humans and animals and it is characterized by the progressive development of specific granulomatous tubercle lesions in affected tissues. In a six-month study, from June to November 2014, a total of 2,304 carcasses of cattle, camel, sheep, and goats slaughtered at East and West Gaash slaughterhouses, Kassala, were investigated during postmortem, in parallel, 101 sputum samples from TB suspected patients at Kassala and El-Gadarif Teaching Hospitals were collected in order to investigate tuberculosis in animals and humans. Only 0.1% carcasses were found with suspected TB lesions in the liver and lung and peritoneal cavity of two sheep and no tuberculous lesions were found in the carcasses of cattle, goats or camels. All samples, tissue lesions and sputum, were decontaminated by the NALC-NaOH method and cultured for mycobacterial growth at the NRZ for Mycobacteria, Research Center Borstel, Germany. Genotyping and molecular characterization of the grown strains were done by line probe assay (GenoType CM and MTBC) and 16S rDNA, rpoB gene, and ITS sequencing, spoligotyping, MIRU-VNTR typing and next generation sequencing (NGS). Culture of the specimens revealed growth of organisms from 81.6% of all samples. Mycobacterium tuberculosis (76.2%), M. intracellulare (14.2%), mixed infection with M. tuberculosis and M. intracellulare (6.0%) and mixed infection with M. tuberculosis and M. fortuitum and with M. intracellulare and unknown species (1.2%) were detected in the sputum samples and unknown species (1.2%) were detected in the samples of one of the animals tissues. From the 69 M. tuberculosis strains, 25 (36.2%) were showing either mono-drug-resistant or multi-drug-resistant or poly-drug-resistant but none was extensively drug-resistant. In conclusion, the prevalence of TB in animals was very low while in humans M. tuberculosis-Delhi/CAS lineage was responsible for most cases and there was an evidence of MDR transmission and acquisition.

Keywords: animal, human, slaughterhouse, Sudan, tuberculosis

Procedia PDF Downloads 360
1662 Design and Facile Synthesis of New Amino Acid Derivatives with Anti-Tumor and Antimicrobial Activities

Authors: Hoda Sabry Othman, Randa Helmy Swellem, Galal Abd El-Moein Nawwar

Abstract:

N-cyanoacetyl glycine is a reactive polyfunctional precursor for synthesis of new difficult accessible compounds including pyridones, thiazolopyridine and others. The key step of this protocol is the formation of different ylidines which underwent Michael addition with carbon nucleophiles affording various heterocyclic compounds. Selected compounds underwent pharmacological evaluation, in vitro against two cell lines; breast cell line (MCF-7),and liver cell line(HEPG2). Compounds 14, 15a and 16 showed IC50 values 8.93, 8.18 and 8.03 (µ/ml) respectively for breast cell line (MCF-7), while the standard drug (Tamoxifen) revealed IC50 8.31. With respect to the liver cell line (HEPG2), compounds 14 and 15a revealed IC50 18.4 and 13.6(µ/ml) respectively while the IC50 of the standard drug(5-Flurouracil) is 25(µ/ml). The antimicrobial activity was also screened and revealed that oxime 7 and ylidine 9f showed a broad-spectrum activity.

Keywords: antitumor, cyanoacetyl glycine, heterocycles, pyridones

Procedia PDF Downloads 331
1661 pH-Responsive Carrier Based on Polymer Particle

Authors: Florin G. Borcan, Ramona C. Albulescu, Adela Chirita-Emandi

Abstract:

pH-responsive drug delivery systems are gaining more importance because these systems deliver the drug at a specific time in regards to pathophysiological necessity, resulting in improved patient therapeutic efficacy and compliance. Polyurethane materials are well-known for industrial applications (elastomers and foams used in different insulations and automotive), but they are versatile biocompatible materials with many applications in medicine, as artificial skin for the premature neonate, membrane in the hybrid artificial pancreas, prosthetic heart valves, etc. This study aimed to obtain the physico-chemical characterization of a drug delivery system based on polyurethane microparticles. The synthesis is based on a polyaddition reaction between an aqueous phase (mixture of polyethylene-glycol M=200, 1,4-butanediol and Tween® 20) and an organic phase (lysin-diisocyanate in acetone) combined with simultaneous emulsification. Different active agents (omeprazole, amoxicillin, metoclopramide) were used to verify the release profile of the macromolecular particles in different pH mediums. Zetasizer measurements were performed using an instrument based on two modules: a Vasco size analyzer and a Wallis Zeta potential analyzer (Cordouan Technol., France) in samples that were kept in various solutions with different pH and the maximum absorbance in UV-Vis spectra were collected on a UVi Line 9,400 Spectrophotometer (SI Analytics, Germany). The results of this investigation have revealed that these particles are proper for a prolonged release in gastric medium where they can assure an almost constant concentration of the active agents for 1-2 weeks, while they can be disassembled faster in a medium with neutral pHs, such as the intestinal fluid.

Keywords: lysin-diisocyanate, nanostructures, polyurethane, Zetasizer

Procedia PDF Downloads 178
1660 Association of Genetically Proxied Cholesterol-Lowering Drug Targets and Head and Neck Cancer Survival: A Mendelian Randomization Analysis

Authors: Danni Cheng

Abstract:

Background: Preclinical and epidemiological studies have reported potential protective effects of low-density lipoprotein cholesterol (LDL-C) lowering drugs on head and neck squamous cell cancer (HNSCC) survival, but the causality was not consistent. Genetic variants associated with LDL-C lowering drug targets can predict the effects of their therapeutic inhibition on disease outcomes. Objective: We aimed to evaluate the causal association of genetically proxied cholesterol-lowering drug targets and circulating lipid traits with cancer survival in HNSCC patients stratified by human papillomavirus (HPV) status using two-sample Mendelian randomization (MR) analyses. Method: Single-nucleotide polymorphisms (SNPs) in gene region of LDL-C lowering drug targets (HMGCR, NPC1L1, CETP, PCSK9, and LDLR) associated with LDL-C levels in genome-wide association study (GWAS) from the Global Lipids Genetics Consortium (GLGC) were used to proxy LDL-C lowering drug action. SNPs proxy circulating lipids (LDL-C, HDL-C, total cholesterol, triglycerides, apoprotein A and apoprotein B) were also derived from the GLGC data. Genetic associations of these SNPs and cancer survivals were derived from 1,120 HPV-positive oropharyngeal squamous cell carcinoma (OPSCC) and 2,570 non-HPV-driven HNSCC patients in VOYAGER program. We estimated the causal associations of LDL-C lowering drugs and circulating lipids with HNSCC survival using the inverse-variance weighted method. Results: Genetically proxied HMGCR inhibition was significantly associated with worse overall survival (OS) in non-HPV-drive HNSCC patients (inverse variance-weighted hazard ratio (HR IVW), 2.64[95%CI,1.28-5.43]; P = 0.01) but better OS in HPV-positive OPSCC patients (HR IVW,0.11[95%CI,0.02-0.56]; P = 0.01). Estimates for NPC1L1 were strongly associated with worse OS in both total HNSCC (HR IVW,4.17[95%CI,1.06-16.36]; P = 0.04) and non-HPV-driven HNSCC patients (HR IVW,7.33[95%CI,1.63-32.97]; P = 0.01). A similar result was found that genetically proxied PSCK9 inhibitors were significantly associated with poor OS in non-HPV-driven HNSCC (HR IVW,1.56[95%CI,1.02 to 2.39]). Conclusion: Genetically proxied long-term HMGCR inhibition was significantly associated with decreased OS in non-HPV-driven HNSCC and increased OS in HPV-positive OPSCC. While genetically proxied NPC1L1 and PCSK9 had associations with worse OS in total and non-HPV-driven HNSCC patients. Further research is needed to understand whether these drugs have consistent associations with head and neck tumor outcomes.

Keywords: Mendelian randomization analysis, head and neck cancer, cancer survival, cholesterol, statin

Procedia PDF Downloads 93
1659 Formulation and Optimization of Self Nanoemulsifying Drug Delivery System of Rutin for Enhancement of Oral Bioavailability Using QbD Approach

Authors: Shrestha Sharma, Jasjeet K. Sahni, Javed Ali, Sanjula Baboota

Abstract:

Introduction: Rutin is a naturally occurring strong antioxidant molecule belonging to bioflavonoid category. Due to its free radical scavenging properties, it has been found to be beneficial in the treatment of various diseases including inflammation, cancer, diabetes, allergy, cardiovascular disorders and various types of microbial infections. Despite its beneficial effects, it suffers from the problem of low aqueous solubility which is responsible for low oral bioavailability. The aim of our study was to optimize and characterize self-nanoemulsifying drug delivery system (SNEDDS) of rutin using Box-Behnken design (BBD) combined with a desirability function. Further various antioxidant, pharmacokinetic and pharmacodynamic studies were performed for the optimized rutin SNEDDS formulation. Methodologies: Selection of oil, surfactant and co-surfactant was done on the basis of solubility/miscibility studies. Sefsol+ Vitamin E, Solutol HS 15 and Transcutol P were selected as oil phase, surfactant and co-surfactant respectively. Optimization of SNEDDS formulations was done by a three-factor, three-level (33)BBD. The independent factors were Sefsol+ Vitamin E, Solutol HS15, and Transcutol P. The dependent variables were globule size, self emulsification time (SEF), % transmittance and cumulative percentage drug released. Various response surface graphs and contour plots were constructed to understand the effect of different factor, their levels and combinations on the responses. The optimized Rutin SNEDDS formulation was characterized for various parameters such as globule size, zeta potential, viscosity, refractive index , % Transmittance and in vitro drug release. Ex vivo permeation studies and pharmacokinetic studies were performed for optimized formulation. Antioxidant activity was determined by DPPH and reducing power assays. Anti-inflammatory activity was determined by using carrageenan induced rat paw oedema method. Permeation of rutin across small intestine was assessed using confocal laser scanning microscopy (CLSM). Major findings:The optimized SNEDDS formulation consisting of Sefsol+ Vitamin E - Solutol HS15 -Transcutol HP at proportions of 25:35:17.5 (w/w) was prepared and a comparison of the predicted values and experimental values were found to be in close agreement. The globule size and PDI of optimized SNEDDS formulation was found to be 16.08 ± 0.02 nm and 0.124±0.01 respectively. Significant (p˂0.05) increase in percentage drug release was achieved in the case of optimized SNEDDS formulation (98.8 %) as compared to rutin suspension. Furthermore, pharmacokinetic study showed a 2.3-fold increase in relative oral bioavailability compared with that of the suspension. Antioxidant assay results indicated better efficacy of the developed formulation than the pure drug and it was found to be comparable with ascorbic acid. The results of anti-inflammatory studies showed 72.93 % inhibition for the SNEDDS formulation which was significantly higher than the drug suspension 46.56%. The results of CLSM indicated that the absorption of SNEDDS formulation was considerably higher than that from rutin suspension. Conclusion: Rutin SNEDDS have been successfully prepared and they can serve as an effective tool in enhancing oral bioavailability and efficacy of Rutin.

Keywords: rutin, oral bioavilability, pharamacokinetics, pharmacodynamics

Procedia PDF Downloads 494
1658 Development of Extemporaneous Pediatric Syrup of Prednisone

Authors: Amel Chenafa, Sihem Boulenouar, Linda Aoued, Imane Sediri, Ismahan Djebbar, Mohamed Adil Selka

Abstract:

Introduction: The specialties intended for adults are often inadequate marketed for pediatric use, such as for a galenic form or in the dosage. For an industrial, development of a pediatric drug is confronted to various problems. So, the hospital pharmacies have to respond to adaptation needs of pharmaceutical forms for pediatric use. The objective of our work is to develop an oral form of prednisone for pediatric use since no adapted form to children is commercialized. Materials and Methods: Therefore an extemporaneous syrup of prednisone was prepared at the concentration of 0,5mg/ml from 5mg tablets and stored in amber glass bottles. Organoleptic and microbiological stability was studied in two temperatures: 5°C and 25°C, and evaluated at D0, D15, and D30. Results: No organoleptic changes have been detected on the syrup conserved at 25 and 5°C. The results show that there is no presence of bacteria, yeasts, and molds in the syrups stored at both temperatures during the analysis period. Conclusion: Sheltered from light, the developed syrup of prednisone remained stable at room temperature and/or refrigerator for 30 days.

Keywords: extemporaneous syrup, pediatric drug, prednisone, stability

Procedia PDF Downloads 379
1657 Immunoliposome-Mediated Drug Delivery to Plasmodium-Infected and Non-Infected Red Blood Cells as a Dual Therapeutic/Prophylactic Antimalarial Strategy

Authors: Ernest Moles, Patricia Urbán, María Belén Jiménez-Díaz, Sara Viera-Morilla, Iñigo Angulo-Barturen, Maria Antònia Busquets, Xavier Fernàndez-Busquets

Abstract:

Bearing in mind the absence of an effective vaccine against malaria and its severe clinical manifestations causing nearly half a million deaths every year, this disease represents nowadays a major threat to life. Besides, the basic rationale followed by currently marketed antimalarial approaches is based on the administration of drugs on their own, promoting the emergence of drug-resistant parasites owing to the limitation in delivering drug payloads into the parasitized erythrocyte high enough to kill the intracellular pathogen while minimizing the risk of causing toxic side effects to the patient. Such dichotomy has been successfully addressed through the specific delivery of immunoliposome (iLP)-encapsulated antimalarials to Plasmodium falciparum-infected red blood cells (pRBCs). Unfortunately, this strategy has not progressed towards clinical applications, whereas in vitro assays rarely reach drug efficacy improvements above 10-fold. Here, we show that encapsulation efficiencies reaching >96% can be achieved for the weakly basic drugs chloroquine (CQ) and primaquine using the pH gradient active loading method in liposomes composed of neutrally charged, saturated phospholipids. Targeting antibodies are best conjugated through their primary amino groups, adjusting chemical crosslinker concentration to retain significant antigen recognition. Antigens from non-parasitized RBCs have also been considered as targets for the intracellular delivery of drugs not affecting the erythrocytic metabolism. Using this strategy, we have obtained unprecedented nanocarrier targeting to early intraerythrocytic stages of the malaria parasite for which there is a lack of specific extracellular molecular tags. Polyethylene glycol-coated liposomes conjugated with monoclonal antibodies specific for the erythrocyte surface protein glycophorin A (anti-GPA iLP) were capable of targeting 100% RBCs and pRBCs at the low concentration of 0.5 μM total lipid in the culture, with >95% of added iLPs retained into the cells. When exposed for only 15 min to P. falciparum in vitro cultures synchronized at early stages, free CQ had no significant effect over parasite viability up to 200 nM drug, whereas iLP-encapsulated 50 nM CQ completely arrested its growth. Furthermore, when assayed in vivo in P. falciparum-infected humanized mice, anti-GPA iLPs cleared the pathogen below detectable levels at a CQ dose of 0.5 mg/kg. In comparison, free CQ administered at 1.75 mg/kg was, at most, 40-fold less efficient. Our data suggest that this significant improvement in drug antimalarial efficacy is in part due to a prophylactic effect of CQ found by the pathogen in its host cell right at the very moment of invasion.

Keywords: immunoliposomal nanoparticles, malaria, prophylactic-therapeutic polyvalent activity, targeted drug delivery

Procedia PDF Downloads 370
1656 Impect of Human on Prey of Birds in North West Rajasthan

Authors: Dau Lal Bohra, Sradha Vyas

Abstract:

Bird species are already showing climate-related changes in the dates they migrate and breed, and in the timing of other key life-history events. Treats of feeding managements raptors have performed important ecological, traditional and aesthetic functions throughout the Indian subcontinent. The declines in India result from elevated adult and juvenile mortality, and low breeding success. The widespread and rapid pattern of declines, i.e. in all areas irrespective of habitat or protection status suggest that persecution through shooting or poisoning, whilst important at a local scale, are unlikely to have caused the declines. A mass killing of several species of vultures in the Indian subcontinent over the last two decades is largely blamed on the presence of a drug. Veterinary diclofenac caused an unprecedented decline in South Asia’s Gyps vulture populations, with some species declining by more than 97% between 1992 and 2007. Veterinary diclofenac causes renal failure in vultures, and killed tens of millions of such birds in the Indian sub-continent. The drug was finally banned there for veterinary purposes in 2006. This drug is now ‘a global problem’ threatening many vulnerable birds of prey. Recently, stappe eagles are also susceptible to veterinary diclofenac, effectively increasing the potential threat level, and the risks for European biodiversity. Steppe eagles are closely related with golden eagles (Aquila chrysaetus), imperial eagles (Aquila heliaca) and Spanish imperial eagles (Aquila adalberti), and all these species scavenge opportunistically on carcasses throughout their range. The Spanish imperial eagle, considered Vulnerable at global level, is now particularly at risk, due to the availability of diclofenac in Spain. These findings strengthen the case for banning veterinary diclofenac across. From year 2011 to 2014 more than 300 hundred birds dead in jorbeer, Bikaner. Now, with unequivocal evidence that this veterinary drug can cause a much wider impact on Europe´s biodiversity, it is time for action – please ban diclofenac human brand also in multi-dose vial from market.

Keywords: mortility, prey of birds, diclofenac, Rajasthan

Procedia PDF Downloads 366
1655 Formulation and In vivo Evaluation of Venlafaxine Hydrochloride Long Acting Tablet

Authors: Abdulwahhab Khedr, Tamer Shehata, Hanaa El-Ghamry

Abstract:

Venlafaxine HCl is a novel antidepressant drug used in the treatment of major depressive disorder, generalized anxiety disorder, social anxiety disorder and panic disorder. Conventional therapeutic regimens with venlafaxine HCl immediate-release dosage forms require frequent dosing due to short elimination half-life of the drug and reduced bioavailability. Hence, this study was carried out to develop sustained-release dosage forms of venlafaxine HCl to reduce its dosing frequency, to improve patient compliance and to reduce side effects of the drug. The polymers used were hydroxypropylmethyl cellulose, xanthan gum, sodium alginate, sodium carboxymethyl cellulose, Carbopol 940 and ethyl cellulose. The physical properties of the prepared tablets including tablet thickness, diameter, weight uniformity, content uniformity, hardness and friability were evaluated. Also, the in-vitro release of venlafaxine HCl from different matrix tablets was studied. Based on physical characters and in-vitro release profiles, certain formulae showing promising sustained-release profiles were subjected to film coating with 15% w/v EC in dichloromethane/ethanol mixture (1:1 ratio) using 1% w/v HPMC as pore former and 30% w/w dibutyl phthalate as plasticizer. The optimized formulations were investigated for drug-excipient compatibility using FTIR and DSC studies. Physical evaluation of the prepared tablets fulfilled the pharmacopoeial requirements for tablet friability test, where the weight loss of the prepared formulae did not exceed 1% of the weight of the tested tablets. Moderate release was obtained from tablets containing HPMC. FTIR and DSC studies for such formulae revealed the absence of any type of chemical interaction between venlafaxine HCl and the used polymers or excipients. Forced swimming test in rats was used to evaluate the antidepressant activity of the selected matrix tablets of venlafaxine HCl. Results showed that formulations significantly decreased the duration of animals’ immobility during the 24 hr-period of the test compared to non-treated group.

Keywords: antidepressant, sustained-release, matrix tablet, venlafaxine hydrochloride

Procedia PDF Downloads 235
1654 Multiple Approaches for Ultrasonic Cavitation Monitoring of Oxygen-Loaded Nanodroplets

Authors: Simone Galati, Adriano Troia

Abstract:

Ultrasound (US) is widely used in medical field for a variety diagnostic techniques but, in recent years, it has also been creating great interest for therapeutic aims. Regarding drug delivery, the use of US as an activation source provides better spatial delivery confinement and limits the undesired side effects. However, at present there is no complete characterization at a fundamental level of the different signals produced by sono-activated nanocarriers. Therefore, the aim of this study is to obtain a metrological characterization of the cavitation phenomena induced by US through three parallel investigation approaches. US was focused into a channel of a customized phantom in which a solution with oxygen-loaded nanodroplets (OLNDs) was led to flow and the cavitation activity was monitored. Both quantitative and qualitative real-time analysis were performed giving information about the dynamics of bubble formation, oscillation and final implosion with respect to the working acoustic pressure and the type of nanodroplets, compared with pure water. From this analysis a possible interpretation of the observed results is proposed.

Keywords: cavitation, drug delivery, nanodroplets, ultra-sound

Procedia PDF Downloads 102
1653 Quince Seed Mucilage (QSD)/ Multiwall Carbonano Tube Hybrid Hydrogels as Novel Controlled Drug Delivery Systems

Authors: Raouf Alizadeh, Kadijeh Hemmati

Abstract:

The aim of this study is to synthesize several series of hydrogels from combination of a natural based polymer (Quince seed mucilage QSD), a synthetic copolymer contained methoxy poly ethylene glycol -polycaprolactone (mPEG-PCL) in the presence of different amount of multi-walled carbon nanotube (f-MWNT). Mono epoxide functionalized mPEG (mP EG-EP) was synthesized and reacted with sodium azide in the presence of NH4Cl to afford mPEG- N3(-OH). Then ring opening polymerization (ROP) of ε–caprolactone (CL) in the presence of mPEG- N3(-OH) as initiator and Sn(Oct)2 as catalyst led to preparation of mPEG-PCL- N3(-OH ) which was grafted onto propagylated f-MWNT by the click reaction to obtain mPEG-PCL- f-MWNT (-OH ). In the presence of mPEG- N3(-Br) and mixture of NHS/DCC/ QSD, hybrid hydrogels were successfully synthesized. The copolymers and hydrogels were characterized using different techniques such as, scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The gel content of hydrogels showed dependence on the weight ratio of QSD:mPEG-PCL:f-MWNT. The swelling behavior of the prepared hydrogels was also studied under variation of pH, immersion time, and temperature. According to the results, the swelling behavior of the prepared hydrogels showed significant dependence in the gel content, pH, immersion time and temperature. The highest swelling was observed at room temperature, in 60 min and at pH 8. The loading and in-vitro release of quercetin as a model drug were investigated at pH of 2.2 and 7.4, and the results showed that release rate at pH 7.4 was faster than that at pH 2.2. The total loading and release showed dependence on the network structure of hydrogels and were in the range of 65- 91%. In addition, the cytotoxicity and release kinetics of the prepared hydrogels were also investigated.

Keywords: antioxidant, drug delivery, Quince Seed Mucilage(QSD), swelling behavior

Procedia PDF Downloads 311
1652 Biosynthesis, Characterization and Interplay of Bacteriocin-nanoparticles to Combat Infectious Drug Resistant Pathogens

Authors: Asma Ansari, Afsheen Aman, Shah Ali Ul Qader

Abstract:

In the past few years, numerous concerns have been raised against increased bacterial resistance towards effective drugs and become a debated issue all over the world. With the emergence of drug resistant pathogens, the interaction of natural antimicrobial compounds and antibacterial nanoparticles has emerged as a potential candidate for combating infectious diseases. Microbial diversity in the biome provides an opportunity to screen new species which are capable of producing large number of antimicrobial compounds. Among these antimicrobial compounds, bacteriocins are highly specific and efficient antagonists. A combination of bacteriocin along with nanoparticles could prove to be more potent due to broadened antibacterial spectrum with possibly lower doses. In the current study, silver nanoparticles were synthesized through biological reduction using various isolated bacterial, fungal and yeast strains. Spectroscopy and scanning electron microscopy (SEM) was performed for the confirmation of nanoparticles. Bacteriocin was characterized and purified to homogeneity through gel permeation chromatography. The estimated molecular weight of bacteriocin was 10 kDa. Amino acid analysis and N-terminal sequencing revealed the novelty of the protein. Then antibacterial potential of silver nanoparticles and broad inhibitory spectrum bacteriocin was determined through agar well diffusion assay. These synthesized bacteriocin-Nanoparticles exhibit a good potential for clinical applications as compared to bacteriocin alone. This combination of bacteriocin with nanoparticles will be used as a new sort of biocide in the field of nano-proteomics. The advancement of nanoparticles-mediated drug delivery system will open a new age for rapid eradication of pathogens from biological systems.

Keywords: BAC-IB17, multidrug resistance, purification, silver nanoparticles

Procedia PDF Downloads 487
1651 Healthcare Professionals' Perspectives on Warfarin Therapy at Lao-Luxembourg Heart Centre, Mahosot Hospital, Lao PDR

Authors: Vanlounni Sibounheuang, Wanarat Anusornsangiam, Pattarin Kittiboonyakun, Chanthanom Manithip

Abstract:

In worldwide, one of the most common use of oral anticoagulant is warfarin. Its margin between therapeutic inhibition of clot formation and bleeding complications is narrow. Mahosot Hospital, warfarin clinic had not been established yet. The descriptive study was conducted by investigating drug-related problems of outpatients using warfarin, the value of the international normalized ratio (INR) higher than normal ranges (25.40 % of the total 272 outpatients) were mostly identified at Lao-Luxembourg Heart Centre, Mahosot Hospital, Lao PDR. This result led to the present study conducting qualitative interviews in order to help establish a warfarin clinic at Mahosot Hospital for the better outcomes of patients using warfarin. The purpose of this study was to explore perspectives of healthcare professional providing services for outpatients using warfarin. The face to face, in-depth interviews were undertaken among nine healthcare professionals (doctor=3, nurse=3, pharmacist=3) working at out-patient clinic, Lao-Luxembourg Heart Centre, Mahosot Hospital, Lao PDR. The interview guides were developed, and they were validated by the experts in the fields of qualitative research. Each interview lasted approximately 20 minutes. Three major themes emerged; healthcare professional’s experiences of current practice problems with warfarin therapy, healthcare professionals’ views of medical problems related to patients using warfarin, and healthcare professionals’ perspectives on ways of service improvement. All healthcare professionals had the same views that it’s difficult to achieve INR goal for individual patients because of some important patient barriers especially lack of knowledge about to use warfarin properly and safety, patients not regularly follow-up due to problems with transportations and financial support. Doctors and nurses agreed to have a pharmacist running a routine warfarin clinic and provided counselling to individual patients on the following points: how to take drug properly and safety, drug-drug and food-drug interactions, common side effects and how to manage them, lifestyle modifications. From the interviews, some important components of the establishment of a warfarin clinic included financial support, increased human resources, improved the system of keeping patients’ medical records, short course training for pharmacists. This study indicated the acceptance of healthcare professionals on the important roles of pharmacists and the feasibility of setting up warfarin clinic by working together with the multidisciplinary health care team in order to help improve health outcomes of patients using warfarin at Mahosot Hospital, Lao PDR.

Keywords: perspectives, healthcare professional, warfarin therapy, Mahosot Hospital

Procedia PDF Downloads 96
1650 Targeted Delivery of Novel Copper-Based Nanoparticles for Advance Cancer Therapeutics

Authors: Arindam Pramanik, Parimal Karmakar

Abstract:

We have explored the synergistic anti-cancer activity of copper ion and acetylacetone complex containing 1,3 diketone group (like curcumin) in metallorganic compound “Copper acetylacetonate” (CuAA). The cytotoxicity mechanism of CuAA complex was evaluated on various cancer cell lines in vitro. Among these, reactive oxygen species (ROS), glutathione level (GSH) in the cell was found to increase. Further mitochondrial membrane damage was observed. The fate of cell death was found to be induced by apoptosis. For application purpose, we have developed a novel biodegradable, non-toxic polymer-based nanoparticle which has hydrophobically modified core for loading of the CuAA. Folic acid is conjugated on the surface of the polymer (chitosan) nanoparticle for targeting to cancer cells for minimizing toxicity to normal cells in-vivo. Thus, this novel drug CuAA has an efficient anticancer activity which has been targeted specifically to cancer cells through polymer nanoparticle.

Keywords: anticancer, apoptosis, copper nanoparticle, targeted drug delivery

Procedia PDF Downloads 477
1649 Pharmacogenetics Study of Dapsone-Induced Severe Cutaneous Adverse Reactions and HLA Class I Alleles in Thai Patients

Authors: Patompong Satapornpong, Therdpong Tempark, Pawinee Rerknimitr, Jettanong Klaewsongkram, Chonlaphat Sukasem

Abstract:

Dapsone (4, 4’-diaminodiphenyl sulfone, DDS) is broadly used for the treatment of inflammatory diseases and infections such as; leprosy, Pneumocystis jiroveci pneumonia in patients with HIV infection, neutrophilic dermatoses, dermatitis herpetiformis and autoimmune bullous disease. The severe cutaneous adverse drug reactions (SCARs) including, Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) and drug reaction with eosinophilia and systemic symptoms (DRESS) are rare but severe life-threatening adverse drug reactions. Dapsone is one of many culprit drugs induced SJS, TEN and DRESS. Notwithstanding, to our knowledge, there are no studies of the association of HLA class I alleles and dapsone-induced SCARs in non-leprosy Thai patients. This investigation was a prospective cohort study, which performed in a total of 45 non-leprosy patients. Fifteen patients of dapsone-induced SCARs were classified as following the RegiSCAR criteria, and 30 dapsone-tolerant controls were exposed to dapsone more than 6 months without any evidence of cutaneous reactions. The genotyping of HLA-A, -B and –C were performed using sequence-specific oligonucleotides (PCR-SSOs). The Ethics Committee of Ramathibodi hospital, Mahidol University, approved this study. Among all HLA class I alleles, HLA-A*24:07, HLA-B*13:01, HLA-B*15:02, HLA-C*03:04 and HLA-C*03:09 were significantly associated with dapsone-induced SCARs (OR = 10.55, 95% CI = 1.06 – 105.04, p = 0.0360; OR = 56.00, 95% CI = 8.27 – 379.22, p = 0.0001; OR = 7.00, 95% CI = 1.17 – 42.00, p = 0.0322; OR = 6.00, 95% CI = 1.24 – 29.07, p = 0.0425 and OR = 17.08, 95% CI = 0.82 – 355.45, p = 0.0321, respectively). Furthermore, HLA-B*13:01 allele had strong association with dapsone-induced SJS-TEN and DRESS when compared with dapsone-tolerant controls (OR = 42.00, 95% CI = 2.88 – 612.31, p = 0.0064 and OR = 63.00, 95% CI = 7.72 – 513.94 and p = 0.0001, respectively). Consequently, HLA-B*13:01 might serve as a pharmacogenetic marker for screening before initiating the therapy with dapsone for prevention of dapsone-induced SCARs.

Keywords: dapsone-induced SCARs, HLA-B*13:01, HLA class I alleles, severe cutaneous adverse reactions, Thai

Procedia PDF Downloads 230
1648 Formulation and Optimization of Topical 5-Fluorouracil Microemulsions Using Central Compisite Design

Authors: Sudhir Kumar, V. R. Sinha

Abstract:

Water in oil topical microemulsions of 5-FU were developed and optimized using face centered central composite design. Topical w/o microemulsion of 5-FU were prepared using sorbitan monooleate (Span 80), polysorbate 80 (Tween 80), with different oils such as oleic acid (OA), triacetin (TA), and isopropyl myristate (IPM). The ternary phase diagrams designated the microemulsion region and face centered central composite design helped in determining the effects of selected variables viz. type of oil, smix ratio and water concentration on responses like drug content, globule size and viscosity of microemulsions. The CCD design exhibited that the factors have statistically significant effects (p<0.01) on the selected responses. The actual responses showed excellent agreement with the predicted values as suggested by the CCD with lower residual standard error. Similarly, the optimized values were found within the range as predicted by the model. Furthermore, other characteristics of microemulsions like pH, conductivity were investigated. For the optimized microemulsion batch, ex-vivo skin flux, skin irritation and retention studies were performed and compared with marketed 5-FU formulation. In ex vivo skin permeation studies, higher skin retention of drug and minimal flux was achieved for optimized microemulsion batch then the marketed cream. Results confirmed the actual responses to be in agreement with predicted ones with least residual standard errors. Controlled release of drug was achieved for the optimized batch with higher skin retention of 5-FU, which can further be utilized for the treatment of many dermatological disorders.

Keywords: 5-FU, central composite design, microemulsion, ternanry phase diagram

Procedia PDF Downloads 473
1647 Engineering the Topological Insulator Structures for Terahertz Detectors

Authors: M. Marchewka

Abstract:

The article is devoted to the possible optical transitions in double quantum wells system based on HgTe/HgCd(Mn)Te heterostructures. Such structures can find applications as detectors and sources of radiation in the terahertz range. The Double Quantum Wells (DQW) systems consist of two QWs separated by the transparent for electrons barrier. Such systems look promising from the point of view of the additional degrees of freedom. In the case of the topological insulator in about 6.4nm wide HgTe QW or strained 3D HgTe films at the interfaces, the topologically protected surface states appear at the interfaces/surfaces. Electrons in those edge states move along the interfaces/surfaces without backscattering due to time-reversal symmetry. Combination of the topological properties, which was already verified by the experimental way, together with the very well know properties of the DQWs, can be very interesting from the applications point of view, especially in the THz area. It is important that at the present stage, the technology makes it possible to create high-quality structures of this type, and intensive experimental and theoretical studies of their properties are already underway. The idea presented in this paper is based on the eight-band KP model, including the additional terms related to the structural inversion asymmetry, interfaces inversion asymmetry, the influence of the magnetically content, and the uniaxial strain describe the full pictures of the possible real structure. All of this term, together with the external electric field, can be sources of breaking symmetry in investigated materials. Using the 8 band KP model, we investigated the electronic shape structure with and without magnetic field from the application point of view as a THz detector in a small magnetic field (below 2T). We believe that such structures are the way to get the tunable topological insulators and the multilayer topological insulator. Using the one-dimensional electrons at the topologically protected interface states as fast and collision-free signal carriers as charge and signal carriers, the detection of the optical signal should be fast, which is very important in the high-resolution detection of signals in the THz range. The proposed engineering of the investigated structures is now one of the important steps on the way to get the proper structures with predicted properties.

Keywords: topological insulator, THz spectroscopy, KP model, II-VI compounds

Procedia PDF Downloads 114
1646 Protective Effect of Levetiracetam on Aggravation of Memory Impairment in Temporal Lobe Epilepsy by Phenytoin

Authors: Asher John Mohan, Krishna K. L.

Abstract:

Objectives: (1) To assess the extent of memory impairment induced by Phenytoin (PHT) at normal and reduced dose on temporal lobe epileptic mice. (2) To evaluate the protective effect of Levetiracetam (LEV) on aggravation of memory impairment in temporal lobe epileptic mice by PHT. Materials and Methods: Albino mice of either sex (n=36) were used for the study for a period of 64 days. Convulsions were induced by intraperitoneal administration of pilocarpine 280 mg/kg on every 6th day. Radial arm maze (RAM) was employed to evaluate the memory impairment activity on every 7th day. The anticonvulsant and memory impairment activity were assessed in PHT normal and reduced doses both alone and in combination with LEV. RAM error scores and convulsive scores were the parameters considered for this study. Brain acetylcholine esterase and glutamate were determined along with histopathological studies of frontal cortex. Results: Administration of PHT for 64 days on mice has shown aggravation of memory impairment activity on temporal lobe epileptic mice. Although the reduction in PHT dose was found to decrease the degree of memory impairment the same decreased the anticonvulsant potency. The combination with LEV not only brought about the correction of impaired memory but also replaced the loss of potency due to the reduction of the dose of the antiepileptic drug employed. These findings were confirmed with enzyme and neurotransmitter levels in addition to histopathological studies. Conclusion: This study thus builds a foundation in combining a nootropic anticonvulsant with an antiepileptic drug to curb the adverse effect of memory impairment associated with temporal lobe epilepsy. However further extensive research is a must for the practical incorporation of this approach into disease therapy.

Keywords: anti-epileptic drug, Phenytoin, memory impairment, Pilocarpine

Procedia PDF Downloads 307
1645 Proniosomes as a Carrier for Ocular Drug Delivery

Authors: Rawia M. Khalil, Ghada Abd-Elbary, Mona Basha, Ghada E. A. Awad, Hadeer A. Elhashemy

Abstract:

Background: Bacterial infections of the eye are the clinical conditions responsible for ocular morbidity and blindness. Conjunctivitis is an inflammation of the conjunctiva, due to Staphylococcus aureus. Lomefloxacin HCl (LXN) is a third generation flouroquinolone antibiotic with a broad spectrum against wide range of bacteria and very effective against Staph infections especially in conjunctiva (conjunctivitis). The present study aims to develop and evaluate novel ocular proniosomal gels of Lomefloxacin Hcl (LXN); in order to improve its ocular bioavailability for the management of bacterial conjunctivitis. Materials and methods: Proniosomes were prepared by coacervation phase separation method using different types of nonionic surfactants (Span 60,40,20,Tween 20,40,60,80,Brij 35,98,72) solely and as mixtures with Span® 60. The formed gels were characterized for entrapment efficiency, vesicle size and in vitro drug release. The optimum proniosomal gel; P-LXN 7 were characterized for pH measurement, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) as well as Stability study and microbiological evaluation .The results revealed that only Span 60 was able to form stable LXN proniosomal gel when used individually while the other nonionic surfactants formed gels only in combination with Span 60 at different ratios. The optimum proniosomal gel; P-LXN 7 (Span60:Tween60, 9:1) appeared as spherical shaped vesicles having high entrapment efficiency (>80 %), appropriate vesicle size (187 nm) as well as controlled drug release over 12h. DSC confirmed the amorphous nature and the uniformity of LXN inclusion within the vesicles. Physical stability study did not show any significant changes in appearance or entrapment efficiency or vesicle size after storage for 3 months at 4°C. Ocular irritancy test revealed that P-LXN 7 was safe, well tolerable and suitable for ocular delivery. In vivo antibacterial activity of P-LXN 7 evaluated using the susceptibility test and topical therapy of induced ocular conjunctivitis confirmed the enhanced antibacterial therapeutic efficacy of the LXN-proniosomal gel compared to the commercially available LXN eye drops; Orchacin®. Conclusions: Our results suggest that proniosomal gels could provide a promising carrier of LXN for efficient ocular treatment of bacterial conjunctivitis.

Keywords: bacterial conjunctivitis, lomefloxacin HCl, ocular drug delivery, proniosomes

Procedia PDF Downloads 221
1644 Stretchable and Flexible Thermoelectric Polymer Composites for Self-Powered Volatile Organic Compound Vapors Detection

Authors: Petr Slobodian, Pavel Riha, Jiri Matyas, Robert Olejnik, Nuri Karakurt

Abstract:

Thermoelectric devices generate an electrical current when there is a temperature gradient between the hot and cold junctions of two dissimilar conductive materials typically n-type and p-type semiconductors. Consequently, also the polymeric semiconductors composed of polymeric matrix filled by different forms of carbon nanotubes with proper structural hierarchy can have thermoelectric properties which temperature difference transfer into electricity. In spite of lower thermoelectric efficiency of polymeric thermoelectrics in terms of the figure of merit, the properties as stretchability, flexibility, lightweight, low thermal conductivity, easy processing, and low manufacturing cost are advantages in many technological and ecological applications. Polyethylene-octene copolymer based highly elastic composites filled with multi-walled carbon nanotubes (MWCTs) were prepared by sonication of nanotube dispersion in a copolymer solution followed by their precipitation pouring into non-solvent. The electronic properties of MWCNTs were moderated by different treatment techniques such as chemical oxidation, decoration by Ag clusters or addition of low molecular dopants. In this concept, for example, the amounts of oxygenated functional groups attached on MWCNT surface by HNO₃ oxidation increase p-type charge carriers. p-type of charge carriers can be further increased by doping with molecules of triphenylphosphine. For partial altering p-type MWCNTs into less p-type ones, Ag nanoparticles were deposited on MWCNT surface and then doped with 7,7,8,8-tetracyanoquino-dimethane. Both types of MWCNTs with the highest difference in generated thermoelectric power were combined to manufacture polymeric based thermoelectric module generating thermoelectric voltage when the temperature difference is applied between hot and cold ends of the module. Moreover, it was found that the generated voltage by the thermoelectric module at constant temperature gradient was significantly affected when exposed to vapors of different volatile organic compounds representing then a self-powered thermoelectric sensor for chemical vapor detection.

Keywords: carbon nanotubes, polymer composites, thermoelectric materials, self-powered gas sensor

Procedia PDF Downloads 145
1643 Determinants of Multidrug-Resistant Tuberculosis in Patients Who Underwent First-Line Treatment in Addis Ababa: A Case Control Study

Authors: Selamawit Hirpa, Girmay Medhin, Belaineh Girma, Muluken Melese, Alemayehu Mekonen, Pedro Suarez, Gobena Ameni

Abstract:

Worldwide, there were 650,000 multi-drug resistant tuberculosis (MDR-TB) cases in 2010. Ethiopia is 15th among the 27 MDR-TB high-burden countries. A case control study was conducted at St. Peter Hospital and five health centers in Addis Ababa. Cases were MDR-TB patients who were in treatment at St. Peter Hospital during the study period. Controls were patients who were on first-line anti-TB treatment and were registered as cured or having completed treatment in the period 9 April 2009– 28 February 2010, in five health centers. A structured interview questionnaire was used to assess factors that could potentially be associated with the occurrence of MDR-TB. Factors that were significantly associated with MDR-TB: drug side effects during first-line treatment (adjusted odds ratio (AOR): 4.5, 95% CI; 1.9 - 10.5); treatment not directly observed by a health worker (AOR = 11.7, 95% CI; 4–34.3); and retreatment with the Category II regimen (P = 0.000).

Keywords: adherence to TB treatment, MDR-TB, TB treatment, TB treatment regimens

Procedia PDF Downloads 492