Search results for: decision tree classifiers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4831

Search results for: decision tree classifiers

4261 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 203
4260 Managing Information Technology: An Overview of Information Technology Governance

Authors: Mehdi Asgarkhani

Abstract:

Today, investment on Information Technology (IT) solutions in most organizations is the largest component of capital expenditure. As capital investment on IT continues to grow, IT managers and strategists are expected to develop and put in practice effective decision making models (frameworks) that improve decision-making processes for the use of IT in organizations and optimize the investment on IT solutions. To be exact, there is an expectation that organizations not only maximize the benefits of adopting IT solutions but also avoid the many pitfalls that are associated with rapid introduction of technological change. Different organizations depending on size, complexity of solutions required and processes used for financial management and budgeting may use different techniques for managing strategic investment on IT solutions. Decision making processes for strategic use of IT within organizations are often referred to as IT Governance (or Corporate IT Governance). This paper examines IT governance - as a tool for best practice in decision making about IT strategies. Discussions in this paper represent phase I of a project which was initiated to investigate trends in strategic decision making on IT strategies. Phase I is concerned mainly with review of literature and a number of case studies, establishing that the practice of IT governance, depending on the complexity of IT solutions, organization's size and organization's stage of maturity, varies significantly – from informal approaches to sophisticated formal frameworks.

Keywords: IT governance, corporate governance, IT governance frameworks, IT governance components, aligning IT with business strategies

Procedia PDF Downloads 406
4259 Improving Decision-Making in Multi-Project Environments within Organizational Information Systems Using Blockchain Technology

Authors: Seyed Hossein Iranmanesh, Hassan Nouri, Seyed Reza Iranmanesh

Abstract:

In the dynamic and complex landscape of today’s business, organizations often face challenges in impactful decision-making across multi-project settings. To efficiently allocate resources, coordinate tasks, and optimize project outcomes, establishing robust decision-making processes is essential. Furthermore, the increasing importance of information systems and their integration within organizational workflows introduces an additional layer of complexity. This research proposes the use of blockchain technology as a suitable solution to enhance decision-making in multi-project environments, particularly within the realm of information systems. The conceptual framework in this study comprises four independent variables and one dependent variable. The identified independent variables for the targeted research include: Blockchain Layer in Integrated Systems, Quality of Generated Information ,User Satisfaction with Integrated Systems and Utilization of Integrated Systems. The project’s performance, considered as the dependent variable and moderated by organizational policies and procedures, reflects the impact of blockchain technology adoption on organizational effectiveness1. The results highlight the significant influence of blockchain implementation on organizational performance.

Keywords: multi-project environments, decision support systems, information systems, blockchain technology, decentralized systems.

Procedia PDF Downloads 58
4258 Parallel Fuzzy Rough Support Vector Machine for Data Classification in Cloud Environment

Authors: Arindam Chaudhuri

Abstract:

Classification of data has been actively used for most effective and efficient means of conveying knowledge and information to users. The prima face has always been upon techniques for extracting useful knowledge from data such that returns are maximized. With emergence of huge datasets the existing classification techniques often fail to produce desirable results. The challenge lies in analyzing and understanding characteristics of massive data sets by retrieving useful geometric and statistical patterns. We propose a supervised parallel fuzzy rough support vector machine (PFRSVM) for data classification in cloud environment. The classification is performed by PFRSVM using hyperbolic tangent kernel. The fuzzy rough set model takes care of sensitiveness of noisy samples and handles impreciseness in training samples bringing robustness to results. The membership function is function of center and radius of each class in feature space and is represented with kernel. It plays an important role towards sampling the decision surface. The success of PFRSVM is governed by choosing appropriate parameter values. The training samples are either linear or nonlinear separable. The different input points make unique contributions to decision surface. The algorithm is parallelized with a view to reduce training times. The system is built on support vector machine library using Hadoop implementation of MapReduce. The algorithm is tested on large data sets to check its feasibility and convergence. The performance of classifier is also assessed in terms of number of support vectors. The challenges encountered towards implementing big data classification in machine learning frameworks are also discussed. The experiments are done on the cloud environment available at University of Technology and Management, India. The results are illustrated for Gaussian RBF and Bayesian kernels. The effect of variability in prediction and generalization of PFRSVM is examined with respect to values of parameter C. It effectively resolves outliers’ effects, imbalance and overlapping class problems, normalizes to unseen data and relaxes dependency between features and labels. The average classification accuracy for PFRSVM is better than other classifiers for both Gaussian RBF and Bayesian kernels. The experimental results on both synthetic and real data sets clearly demonstrate the superiority of the proposed technique.

Keywords: FRSVM, Hadoop, MapReduce, PFRSVM

Procedia PDF Downloads 490
4257 Structured Access Control Mechanism for Mesh-based P2P Live Streaming Systems

Authors: Chuan-Ching Sue, Kai-Chun Chuang

Abstract:

Peer-to-Peer (P2P) live streaming systems still suffer a challenge when thousands of new peers want to join into the system in a short time, called flash crowd, and most of new peers suffer long start-up delay. Recent studies have proposed a slot-based user access control mechanism, which periodically determines a certain number of new peers to enter the system, and a user batch join mechanism, which divides new peers into several tree structures with fixed tree size. However, the slot-based user access control mechanism is difficult for accurately determining the optimal time slot length, and the user batch join mechanism is hard for determining the optimal tree size. In this paper, we propose a structured access control (SAC) mechanism, which constructs new peers to a multi-layer mesh structure. The SAC mechanism constructs new peer connections layer by layer to replace periodical access control, and determines the number of peers in each layer according to the system’s remaining upload bandwidth and average video rate. Furthermore, we propose an analytical model to represent the behavior of the system growth if the system can utilize the upload bandwidth efficiently. The analytical result has shown the similar trend in system growth as the SAC mechanism. Additionally, the extensive simulation is conducted to show the SAC mechanism outperforms two previously proposed methods in terms of system growth and start-up delay.

Keywords: peer-to-peer, live video streaming system, flash crowd, start-up delay, access control

Procedia PDF Downloads 318
4256 Immature Palm Tree Detection Using Morphological Filter for Palm Counting with High Resolution Satellite Image

Authors: Nur Nadhirah Rusyda Rosnan, Nursuhaili Najwa Masrol, Nurul Fatiha MD Nor, Mohammad Zafrullah Mohammad Salim, Sim Choon Cheak

Abstract:

Accurate inventories of oil palm planted areas are crucial for plantation management as this would impact the overall economy and production of oil. One of the technological advancements in the oil palm industry is semi-automated palm counting, which is replacing conventional manual palm counting via digitizing aerial imagery. Most of the semi-automated palm counting method that has been developed was limited to mature palms due to their ideal canopy size represented by satellite image. Therefore, immature palms were often left out since the size of the canopy is barely visible from satellite images. In this paper, an approach using a morphological filter and high-resolution satellite image is proposed to detect immature palm trees. This approach makes it possible to count the number of immature oil palm trees. The method begins with an erosion filter with an appropriate window size of 3m onto the high-resolution satellite image. The eroded image was further segmented using watershed segmentation to delineate immature palm tree regions. Then, local minimum detection was used because it is hypothesized that immature oil palm trees are located at the local minimum within an oil palm field setting in a grayscale image. The detection points generated from the local minimum are displaced to the center of the immature oil palm region and thinned. Only one detection point is left that represents a tree. The performance of the proposed method was evaluated on three subsets with slopes ranging from 0 to 20° and different planting designs, i.e., straight and terrace. The proposed method was able to achieve up to more than 90% accuracy when compared with the ground truth, with an overall F-measure score of up to 0.91.

Keywords: immature palm count, oil palm, precision agriculture, remote sensing

Procedia PDF Downloads 76
4255 Improving Equipment Life and Overall Equipment Effectiveness (O.E.E.) through Proper Maintenance Strategy Using Value Engineering

Authors: Malay Niraj, Praveen Kumar

Abstract:

The present study is a new approach for improving equipment life and Overall Equipment Efficiency (O.E.E.) through suitable maintenance practice with the help of value engineering. Value engineering is a one of the most powerful decision-making techniques which depend on many factors. The improvements are the result of recommendations made by multidisciplinary teams representing all parties involved. VE is a rigorous, systematic effort to improve the OEE and optimize the life cycle cost of a facility. The study describes problems in maintenance arising due to the absence of having clear criteria and strong decision constrain how to maintain failing equipment. Using factor comparisons, the study has been made between different maintenance practices and finally best maintenance practice based on value engineering technique has been selected.

Keywords: maintenance strategy, overall equipment efficiency, value engineering, decision-making

Procedia PDF Downloads 409
4254 Extended Intuitionistic Fuzzy VIKOR Method in Group Decision Making: The Case of Vendor Selection Decision

Authors: Nastaran Hajiheydari, Mohammad Soltani Delgosha

Abstract:

Vendor (supplier) selection is a group decision-making (GDM) process, in which, based on some predetermined criteria, the experts’ preferences are provided in order to rank and choose the most desirable suppliers. In the real business environment, our attitudes or our choices would be made in an uncertain and indecisive situation could not be expressed in a crisp framework. Intuitionistic fuzzy sets (IFSs) could handle such situations in the best way. VIKOR method was developed to solve multi-criteria decision-making (MCDM) problems. This method, which is used to determine the compromised feasible solution with respect to the conflicting criteria, introduces a multi-criteria ranking index based on the particular measure of 'closeness' to the 'ideal solution'. Until now, there has been a little investigation of VIKOR with IFS, therefore we extended the intuitionistic fuzzy (IF) VIKOR to solve vendor selection problem under IF GDM environment. The present study intends to develop an IF VIKOR method in a GDM situation. Therefore, a model is presented to calculate the criterion weights based on entropy measure. Then, the interval-valued intuitionistic fuzzy weighted geometric (IFWG) operator utilized to obtain the total decision matrix. In the next stage, an approach based on the positive idle intuitionistic fuzzy number (PIIFN) and negative idle intuitionistic fuzzy number (NIIFN) was developed. Finally, the application of the proposed method to solve a vendor selection problem illustrated.

Keywords: group decision making, intuitionistic fuzzy set, intuitionistic fuzzy entropy measure, vendor selection, VIKOR

Procedia PDF Downloads 156
4253 Temporal Migration and Community Development in Rural Indonesia

Authors: Gunawan Prayitno, Kakuya Matshusima, Kiyoshi Kobayashi

Abstract:

Indonesia’s rural regions are characterized by wide-spread poverty, under-employment, and surplus of low-skilled labor. The aim of this paper is to empirically prove the effect of social ties (strong and weak tie) as social capital construct on households’ migration decision in the case of developing country (Indonesia). The methodology incorporated indicators of observe variables (four demographic attributes data: income, occupation, education, and family members) and indicators of latent variables (ties to neighbors, ties to community and sense of place) provided by responses to survey questions to aid in estimating the model. Using structural equation model that we employed in Mplus program, the result of our study shows that ties to community positively have a significant impact to the decision of respondents (migrate or not). Besides, education as observed variable directly influences the migration decisions. It seems that higher level of education have impact on migration decision. Our current model so far could explain the relation between social capital and migration decision choice.

Keywords: migration, ties to community, ties to neighbors, education

Procedia PDF Downloads 323
4252 The Assessment Groundwater Geochemistry of Some Wells in Rafsanjan Plain, Southeast of Iran

Authors: Milad Mirzaei Aminiyan, Abdolreza Akhgar, Farzad Mirzaei Aminiyan

Abstract:

Water quality is the critical factor that influence on human health and quantity and quality of grain production in semi-humid and semi-arid area. Pistachio is a main crop that accounts for a considerable portion of Iranian agricultural exports. Give that pistachio tree is a tolerant type of tree to saline and alkaline soil and water conditions, but groundwater and irrigation water quality play important roles in main production this crop. For this purpose, 94 well water samples were taken from 25 wells and samples were analyzed. The results showed give that region’s geological, climatic characteristics, statistical analysis, and based on dominant cations and anions in well water samples (piper diagram); four main types of water were found: Na-Cl, K-Cl, Na-SO4, and K-SO4. It seems that most wells in terms of water quality (salinity and alkalinity) and based on Wilcox diagram have critical status. The analysis suggested that more than eighty-seven percentage of the well water samples have high values of EC that these values are higher than into critical limit EC value for irrigation water, which may be due to the sandy soils in this area. Most groundwater were relatively unsuitable for irrigation but it could be used by application of correct management such as removing and reducing the ion concentrations of Cl‾, SO42‾, Na+ and total hardness in groundwater and also the concentrated deep groundwater was required treatment to reduce the salinity and sodium hazard. Given that irrigation water quality in this area was relatively unsuitable for most agriculture production but pistachio tree was adapted to this area conditions. The integrated management of groundwater for irrigation is the way to solve water quality issues not only in Rafsanjan area, but also in other arid and semi-arid areas.

Keywords: groundwater quality, irrigation water quality, salinity, alkalinity, Rafsanjan plain, pistachio

Procedia PDF Downloads 417
4251 An Integrated DEMATEL-QFD Model for Medical Supplier Selection

Authors: Mehtap Dursun, Zeynep Şener

Abstract:

Supplier selection is considered as one of the most critical issues encountered by operations and purchasing managers to sharpen the company’s competitive advantage. In this paper, a novel fuzzy multi-criteria group decision making approach integrating quality function deployment (QFD) and decision making trial and evaluation laboratory (DEMATEL) method is proposed for supplier selection. The proposed methodology enables to consider the impacts of inner dependence among supplier assessment criteria. A house of quality (HOQ) which translates purchased product features into supplier assessment criteria is built using the weights obtained by DEMATEL approach to determine the desired levels of supplier assessment criteria. Supplier alternatives are ranked by a distance-based method.

Keywords: DEMATEL, group decision making, QFD, supplier selection

Procedia PDF Downloads 436
4250 ‘Doctor Knows Best’: Reconsidering Paternalism in the NICU

Authors: Rebecca Greenberg, Nipa Chauhan, Rashad Rehman

Abstract:

Paternalism, in its traditional form, seems largely incompatible with Western medicine. In contrast, Family-Centred Care, a partial response to historically authoritative paternalism, carries its own challenges, particularly when operationalized as family-directed care. Specifically, in neonatology, decision-making is left entirely to Substitute Decision Makers (most commonly parents). Most models of shared decision-making employ both the parents’ and medical team’s perspectives but do not recognize the inherent asymmetry of information and experience – asking parents to act like physicians to evaluate technical data and encourage physicians to refrain from strong medical opinions and proposals. They also do not fully appreciate the difficulties in adjudicating which perspective to prioritize and, moreover, how to mitigate disagreement. Introducing a mild form of paternalism can harness the unique skillset both parents and clinicians bring to shared decision-making and ultimately work towards decision-making in the best interest of the child. The notion expressed here is that within the model of shared decision-making, mild paternalism is prioritized inasmuch as optimal care is prioritized. This mild form of paternalism is known as Beneficent Paternalism and justifies our encouragement for physicians to root down in their own medical expertise to propose treatment plans informed by medical expertise, standards of care, and the parents’ values. This does not mean that we forget that paternalism was historically justified on ‘beneficent’ grounds; however, our recommendation is that a re-integration of mild paternalism is appropriate within our current Western healthcare climate. Through illustrative examples from the NICU, this paper explores the appropriateness and merits of Beneficent Paternalism and ultimately its use in promoting family-centered care, patient’s best interests and reducing moral distress. A distinctive feature of the NICU is the fact that communication regarding a patient’s treatment is exclusively done with substitute decision-makers and not the patient, i.e., the neonate themselves. This leaves the burden of responsibility entirely on substitute decision-makers and the clinical team; the patient in the NICU does not have any prior wishes, values, or beliefs that can guide decision-making on their behalf. Therefore, the wishes, values, and beliefs of the parent become the map upon which clinical proposals are made, giving extra weight to the family’s decision-making responsibility. This leads to why Family Directed Care is common in the NICU, where shared decision-making is mandatory. However, the zone of parental discretion is not as all-encompassing as it is currently considered; there are appropriate times when the clinical team should strongly root down in medical expertise and perhaps take the lead in guiding family decision-making: this is just what it means to adopt Beneficent Paternalism.

Keywords: care, ethics, expertise, NICU, paternalism

Procedia PDF Downloads 145
4249 Decomposition-Based Pricing Technique for Solving Large-Scale Mixed IP

Authors: M. Babul Hasan

Abstract:

Management sciences (MS), big group of companies and industries or government policies (GP) is affiliated with a huge number of decision ingredients and complicated restrictions. Every factor in MS, every product in Industries or decision in GP is not always bankable in practice. After formulating these models there arises large-scale mixed integer programming (MIP) problem. In this paper, we developed decomposition-based pricing procedure to filter the unnecessary decision ingredients from MIP where the variables in huge number will be abated and the complicacy of restrictions will be elementary. A real life numerical example has been illustrated to demonstrate the methods. We develop the computer techniques for these methods by using a mathematical programming language (AMPL).

Keywords: Lagrangian relaxation, decomposition, sub-problem, master-problem, pricing, mixed IP, AMPL

Procedia PDF Downloads 505
4248 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios

Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong

Abstract:

Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.

Keywords: decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle

Procedia PDF Downloads 134
4247 Study of Irritant and Anti-inflammatory Activity of Snuhi/Zaqqum (Euphorbia nerifolia) with Special Reference to Holy Quran and Ayurveda

Authors: Mohammed Khalil Ur Rahman, Pradnya Chigle, Bushra Farhen

Abstract:

Indian mythology believes that Vedas are eternal treatises. Vedas are categorized into four divisions viz., Rigveda, Yajurveda, Samveda, Atharveda. All these spiritual classics not only deal with rituals and customs but also consist of inclusion of many references related to health. Out of these four, Atharveda deals with maximum principles pertaining to health sciences. Therefore, it is said that the science and the art of Ayurveda has developed from Atharveda. Ayurveda deals with many medicinal plants either as a single therapeutic use or in combination. One such medicinal plant is Snuhi (Euphorbia neriifolia Linn.) which finds its extensive importance along with Haridra and Apamargakshar, in the preparation of Ksharsutra which in turn is used for the treatment of Fistula in Ano. It is interesting to note that this plant Snuhi is also referred in Holy Quran as the Tree of Zaqqum advocated as the food for the sinners as a part of torment. The reference in Surat Ad-Dukhan is as follows: - 44:43-46. “Verily, the tree of Zaqqum will be the food of the sinners, Like boiling oil, it will boil in the bellies, like the boiling of scalding water.” The above verse implies that plant Snuhi/Zaqqum due to irritant property acts as a drastic purgative but at the same time it also possesses anti inflammatory properties in order to relieve the irritation. These properties of Zaqqum has been unfolded in the modern research which states that, Diterpene polycyclic esters are responsible for its toxic and irritant nature whereas; triterpenes are responsible for its anti inflammatory property. Present work will be an effort to review the concept of Quran about latex of the Tree of Zaqqum in terms of its phytochemistry and its therapeutic use in Ksharsutra pertaining to irritant and anti inflammatory property.

Keywords: ayurveda, Quran, zaqqum, ksharsutra, latex piles, inflammation

Procedia PDF Downloads 353
4246 HelpMeBreathe: A Web-Based System for Asthma Management

Authors: Alia Al Rayssi, Mahra Al Marar, Alyazia Alkhaili, Reem Al Dhaheri, Shayma Alkobaisi, Hoda Amer

Abstract:

We present in this paper a web-based system called “HelpMeBreathe” for managing asthma. The proposed system provides analytical tools, which allow better understanding of environmental triggers of asthma, hence better support of data-driven decision making. The developed system provides warning messages to a specific asthma patient if the weather in his/her area might cause any difficulty in breathing or could trigger an asthma attack. HelpMeBreathe collects, stores, and analyzes individuals’ moving trajectories and health conditions as well as environmental data. It then processes and displays the patients’ data through an analytical tool that leads to an effective decision making by physicians and other decision makers.

Keywords: asthma, environmental triggers, map interface, web-based systems

Procedia PDF Downloads 294
4245 Shared Decision Making in Oropharyngeal Cancer: The Development of a Decision Aid for Resectable Oropharyngeal Carcinoma, a Mixed Methods Study

Authors: Anne N. Heirman, Lisette van der Molen, Richard Dirven, Gyorgi B. Halmos, Michiel W.M. van den Brekel

Abstract:

Background: Due to the rising incidence of oropharyngeal squamous cell cancer (OPSCC), many patients are challenged with choosing between transoral(robotic) surgery and radiotherapy, with equal survival and oncological outcomes. Also, functional outcomes are of little difference over the years. With this study, the wants and needs of patients and caregivers are identified to develop a comprehensible patient decision aid (PDA). Methods: The development of this PDA is based on the International Patient Decision Aid Standards criteria. In phase 1, relevant literature was reviewed and compared to current counseling papers. We interviewed ten post-treatment patients and ten doctors from four head and neck centers in the Netherlands, which were transcribed verbatim and analyzed. With these results, the first draft of the PDA was developed. Phase 2 beholds testing the first draft for comprehensibility and usability. Phase 3 beholds testing for feasibility. After this phase, the final version of the PDA was developed. Results: All doctors and patients agreed a PDA was needed. Phase 1 showed that 50% of patients felt well-informed after standard care and 35% missed information about treatment possibilities. Side effects and functional outcomes were rated as the most important for decision-making. With this information, the first version was developed. Doctors and patients stated (phase 2) that they were satisfied with the comprehensibility and usability, but there was too much text. The PDA underwent text reduction revisions and got more graphics. After revisions, all doctors found the PDA feasible and would contribute to regular counseling. Patients were satisfied with the results and wished they would have seen it before their treatment. Conclusion: Decision-making for OPSCC should focus on differences in side-effects and functional outcomes. Patients and doctors found the PDA to be of great value. Future research will explore the benefits of the PDA in clinical practice.

Keywords: head-and-neck oncology, oropharyngeal cancer, patient decision aid, development, shared decision making

Procedia PDF Downloads 144
4244 Behaviors and Factors Affecting the Selection of Spa Services among Consumers in Amphawa, Samut Songkhram, Thailand

Authors: Chutima Klaysung

Abstract:

This research aims to study the factors that influence the decision to choose the spa service of consumers in Amphawa, Samut Songkhram, Thailand. The research method will use quantitative research; data were collected by questionnaires distributed to spa consumers, both female and male, aged between 20 years and 70 years in the Amphawa, Samut Songkhram area for 400 samples by convenience sampling method. The data were analyzed using descriptive statistics including percentage, mean, standard deviation and inferential statistics, including Pearson correlation for hypothesis testing. The results showed that the demographic variables including age, education, occupation, income and frequency of access to service spa were related to the decision to choose the spa service of consumers in Amphawa, Samut Songkhram. In addition, the researchers found the marketing mixed factors such as products, prices, places, promotion, personnel selling, physical evidence and processes were associated with the decision to choose the spa service of consumers in Amphawa, Samut Songkhram, Thailand.

Keywords: consumer in amphawa, samut songkhram, decision to choose the spa service, marketing mixed factor, spa service

Procedia PDF Downloads 238
4243 Study for an Optimal Cable Connection within an Inner Grid of an Offshore Wind Farm

Authors: Je-Seok Shin, Wook-Won Kim, Jin-O Kim

Abstract:

The offshore wind farm needs to be designed carefully considering economics and reliability aspects. There are many decision-making problems for designing entire offshore wind farm, this paper focuses on an inner grid layout which means the connection between wind turbines as well as between wind turbines and an offshore substation. A methodology proposed in this paper determines the connections and the cable type for each connection section using K-clustering, minimum spanning tree and cable selection algorithms. And then, a cost evaluation is performed in terms of investment, power loss and reliability. Through the cost evaluation, an optimal layout of inner grid is determined so as to have the lowest total cost. In order to demonstrate the validity of the methodology, the case study is conducted on 240MW offshore wind farm, and the results show that it is helpful to design optimally offshore wind farm.

Keywords: offshore wind farm, optimal layout, k-clustering algorithm, minimum spanning algorithm, cable type selection, power loss cost, reliability cost

Procedia PDF Downloads 385
4242 Influence of Species and Harvesting Height on Chemical Composition, Buffer Nitrogen Solubility and in vitro Ruminal Fermentation of Browse Tree Leaves

Authors: Thabiso M. Sebolai, Victor Mlambo, Solomon Tefera, Othusitse R. Madibela

Abstract:

In some tree species, sustained herbivory can induce changes in biosynthetic pathways resulting in overproduction of anti-nutritional secondary plant compounds. This inductive mechanism, which has not been demonstrated in semi-arid rangelands of South Africa, may result in browse leaves of lower nutritive value. In this study we investigate the interactive effect of browsing pressure and tree species on chemical composition, buffer nitrogen solubility index (NSI), in vitro ruminal dry matter degradability (IVDMD) and in vitro ruminal N degradability (IVND) of leaves. Leaves from Maytenus capitata, Olea africana, Coddia rudis, Carissa macrocarpa, Rhus refracta, Ziziphus mucronata, Boscia oliedes, Grewia robusta, Phyllanthus vessucosus and Ehretia rigida trees growing in a communal grazing area were harvested at two heights: browsable ( < 1.5 m) and non-browsable ( > 1.5 m), representing high and low browsing pressure, respectively. The type of animals utilizing the communal rangeland includes cattle at 1 livestock unit (450kg)/12 to 15 hectors and goats at 1 livestock unit/4 ha. Harvested leaves were dried, milled and analysed for proximate components, soluble phenolics, condensed tannins, minerals and in vitro ruminal fermentation. A significant plant species and harvesting height interaction effect (P < 0.05) was observed for total nitrogen (N) and soluble phenolics concentration. Tree species and harvesting height affected (P < 0.05) condensed tannin (CTs) content where samples harvested from the non-browsable height had higher (0.61 AU550 nm/200 mg) levels than those harvested at browsable height (0.55 AU550 nm/200 mg) while their interaction had no effects. Macro and micro-minerals were only influenced (P < 0.05) by browse species but not harvesting height. Species and harvesting height interacted (P < 0.05) to influence IVDMD and IVND of leaves at 12, 24 and 36 hours of incubation. The different browse leaves contained moderate to high protein, moderate level of phenolics and minerals, suggesting that they have the potential to provide supplementary nutrients for ruminants during the dry seasons.

Keywords: browse plants, chemical composition, harvesting heights, phenolics

Procedia PDF Downloads 143
4241 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction

Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan

Abstract:

Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.

Keywords: decision trees, neural network, myocardial infarction, Data Mining

Procedia PDF Downloads 429
4240 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry

Authors: Deepika Christopher, Garima Anand

Abstract:

To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.

Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications

Procedia PDF Downloads 57
4239 Economic Assessment Methodology to Support Decisions for Transport Infrastructure Development

Authors: Dimitrios J. Dimitriou

Abstract:

The decades after the end of the second War provide evidence that infrastructures investments contibute to economic development, on terms of productivity and income growth. In order to force productivity and increase competitiveness the financing of large transport infrastructure projects are on the top of the agenda in strategic planning process. Such a decision may take form some days to some decades and stakeholders as well as decision makers need tools in order to estimate the economic impact on natioanl economy of such an investment. The key question in such decisions is if the effects caused by the new infrastructure could be able to boost economic development on one hand, and create new jobs and activities on the other. This paper deals with the review of estimation of the mega transport infrastructure projects economic effects in economy.

Keywords: economic impact, transport infrastructure, strategic planning, decision making

Procedia PDF Downloads 290
4238 The Impact of Behavioral Factors on the Decision Making of Real Estate Investor of Pakistan

Authors: Khalid Bashir, Hammad Zahid

Abstract:

Most of the investors consider that economic and financial information is the most important at the time of making investment decisions. But it is not true, as in the past two decades, the Behavioral aspects and the behavioral biases have gained an important place in the decision-making process of an investor. This study is basically conducted on this fact. The purpose of this study is to examine the impact of behavioral factors on the decision-making of the individual real estate investor in Pakistan. Some important behavioral factors like overconfidence, anchoring, gambler’s fallacy, home bias, loss aversion, regret aversion, mental accounting, herding and representativeness are used in this study to find their impact on the psychology of individual investors. The targeted population is the real estate investor of Pakistan, and a sample of 650 investors is selected on the basis of convenience sampling technique. The data is collected through the questionnaire with a response rate of 46.15 %. Descriptive statistical techniques and SEM are used to analyze the data by using statistical software. The results revealed the fact that some behavioral factors have a significant impact on the decision-making of investors. Among all the behavioral biases, overconfidence, anchoring, gambler’s fallacy, loss aversion and representativeness have a significant positive impact on the decision-making of the individual investor, while the rest of biases like home bias, regret aversion, mental accounting, herding have less impact on the decision-making process of an individual.

Keywords: behavioral finance, anchoring, gambler’s fallacy, loss aversion

Procedia PDF Downloads 69
4237 Comparative Isotherms Studies on Adsorptive Removal of Methyl Orange from Wastewater by Watermelon Rinds and Neem-Tree Leaves

Authors: Sadiq Sani, Muhammad B. Ibrahim

Abstract:

Watermelon rinds powder (WRP) and neem-tree leaves powder (NLP) were used as adsorbents for equilibrium adsorption isotherms studies for detoxification of methyl orange dye (MO) from simulated wastewater. The applicability of the process to various isotherm models was tested. All isotherms from the experimental data showed excellent linear reliability (R2: 0.9487-0.9992) but adsorptions onto WRP were more reliable (R2: 0.9724-0.9992) than onto NLP (R2: 0.9487-0.9989) except for Temkin’s Isotherm where reliability was better onto NLP (R2: 0.9937) than onto WRP (R2: 0.9935). Dubinin-Radushkevich’s monolayer adsorption capacities for both WRP and NLP (qD: 20.72 mg/g, 23.09 mg/g) were better than Langmuir’s (qm: 18.62 mg/g, 21.23 mg/g) with both capacities higher for adsorption onto NLP (qD: 23.09 mg/g; qm: 21.23 mg/g) than onto WRP (qD: 20.72 mg/g; qm: 18.62 mg/g). While values for Langmuir’s separation factor (RL) for both adsorbents suggested unfavourable adsorption processes (RL: -0.0461, -0.0250), Freundlich constant (nF) indicated favourable process onto both WRP (nF: 3.78) and NLP (nF: 5.47). Adsorption onto NLP had higher Dubinin-Radushkevich’s mean free energy of adsorption (E: 0.13 kJ/mol) than WRP (E: 0.08 kJ/mol) and Temkin’s heat of adsorption (bT) was better onto NLP (bT: -0.54 kJ/mol) than onto WRP (bT: -0.95 kJ/mol) all of which suggested physical adsorption.

Keywords: adsorption isotherms, methyl orange, neem leaves, watermelon rinds

Procedia PDF Downloads 273
4236 Unraveling the Threads of Madness: Henry Russell’s 'The Maniac' as an Advocate for Deinstitutionalization in the Nineteenth Century

Authors: T. J. Laws-Nicola

Abstract:

Henry Russell was best known as a composer of more than 300 songs. Many of his compositions were popular for both their sentimental texts, as in ‘The Old Armchair,’ and those of a more political nature, such as ‘Woodsman, Spare That Tree!’ Indeed, Russell had written such songs of advocacy as those associated with abolitionism (‘The Slave Ship’) and environmentalism (‘Woodsman, Spare that Tree!’). ‘The Maniac’ is his only composition addressing the issue of institutionalization. The text is borrowed and adapted from the monodrama The Captive by M.G. ‘Monk’ Lewis. Through an analysis of form, harmony, melody, text, and thematic development and interactions between text and music we can approach a clearer understanding of ‘The Maniac’ and how the text and music interact. Select periodicals, such as The London Times, provide contemporary critical review for ‘The Maniac.’ Additional nineteenth century songs whose texts focus on madness and/or institutionalization will assist in building a stylistic and cultural context for ‘The Maniac.’ Through comparative analyses of ‘The Maniac’ with a body of songs that focus on similar topics, we can approach a clear understanding of the song as a vehicle for deinstitutionalization.

Keywords: 19th century song, institutionalization, M. G. Lewis, Henry Russell

Procedia PDF Downloads 535
4235 Consumer Behavior and Marketing Mixed Factor Effect on Consumer Decision Making for Independent Movies Presented in Lido Cinema

Authors: Pongsawee Supanonth

Abstract:

This study aims to investigate the consumer behavior and marketing mixed factor affect on consumer decision making for independent movies presented in Lido cinema. The research method will use quantitative research, data was collected by questionnaires distributed to the audience in the Lido cinema for 400 sample by accidental sampling technique. Data was analyzed by descriptive statistic including percentage, mean, standard deviation and inferential statistic including independent t-test for hypothesis testing. The results showed that marketing mixed factors affecting consumer decision-making for Independent movies presented in Lido cinema by gender as different as less than the 0.05 significance level, it was found that the kind of movie ,quality of theater ,price of ticket, facility of watching movies, staff services and promotion of Lido cinema respectively had a vital influence on their attention and response which makes the advertisement more attractive is in harmony with the research hypotheses also.

Keywords: consumer behavior, marketing mixed factor, resonance, consumer decision making, Lido cinema

Procedia PDF Downloads 312
4234 Group Consensus of Hesitant Fuzzy Linguistic Variables for Decision-Making Problem

Authors: Chen T. Chen, Hui L. Cheng

Abstract:

Due to the different knowledge, experience and expertise of experts, they usually provide the different opinions in the group decision-making process. Therefore, it is an important issue to reach the group consensus of opinions of experts in group multiple-criteria decision-making (GMCDM) process. Because the subjective opinions of experts always are fuzziness and uncertainties, it is difficult to use crisp values to describe the real opinions of experts or decision-makers. It is reasonable for experts to use the linguistic variables to express their opinions. The hesitant fuzzy set are extended from the concept of fuzzy sets. Experts use the hesitant fuzzy sets can be flexible to describe their subjective opinions. In order to aggregate the hesitant fuzzy linguistic variables of all experts effectively, an adjustment method based on distance function will be presented in this paper. Based on the opinions adjustment method, this paper will present an effective approach to adjust the hesitant fuzzy linguistic variables of all experts to reach the group consensus. Then, a new hesitant linguistic GMCDM method will be presented based on the group consensus of hesitant fuzzy linguistic variables. Finally, an example will be implemented to illustrate the computational process to enhance the practical value of the proposed model.

Keywords: group multi-criteria decision-making, linguistic variables, hesitant fuzzy linguistic variables, distance function, group consensus

Procedia PDF Downloads 156
4233 Developing Rice Disease Analysis System on Mobile via iOS Operating System

Authors: Rujijan Vichivanives, Kittiya Poonsilp, Canasanan Wanavijit

Abstract:

This research aims to create mobile tools to analyze rice disease quickly and easily. The principle of object-oriented software engineering and objective-C language were used for software development methodology and the principle of decision tree technique was used for analysis method. Application users can select the features of rice disease or the color appears on the rice leaves for recognition analysis results on iOS mobile screen. After completing the software development, unit testing and integrating testing method were used to check for program validity. In addition, three plant experts and forty farmers have been assessed for usability and benefit of this system. The overall of users’ satisfaction was found in a good level, 57%. The plant experts give a comment on the addition of various disease symptoms in the database for more precise results of the analysis. For further research, it is suggested that image processing system should be developed as a tool that allows users search and analyze for rice diseases more convenient with great accuracy.

Keywords: rice disease, data analysis system, mobile application, iOS operating system

Procedia PDF Downloads 287
4232 Multi-Criteria Decision-Making in Ranking Drinking Water Supply Options (Case Study: Tehran City)

Authors: Mohsen Akhlaghi, Tahereh Ebrahimi

Abstract:

Considering the increasing demand for water and limited resources, there is a possibility of a water crisis in the not-so-distant future. Therefore, to prevent this crisis, other options for drinking water supply should be examined. In this regard, the application of multi-criteria decision-making methods in various aspects of water resource management and planning has always been of great interest to researchers. In this report, six options for supplying drinking water to Tehran City were considered. Then, experts' opinions were collected through matrices and questionnaires, and using the TOPSIS method, which is one of the types of multi-criteria decision-making methods, they were calculated and analyzed. In the TOPSIS method, the options were ranked by calculating their proximity to the ideal (Ci). The closer the numerical value of Ci is to one, the more desirable the option is. Based on this, the option with the optimization pattern of water consumption, with Ci = 0.9787, is the best option among the proposed options for supplying drinking water to Tehran City. The other options, in order of priority, are rainwater harvesting, wastewater reuse, increasing current water supply sources, desalination and its transfer, and transferring water from freshwater sources between basins. In conclusion, the findings of this study highlight the importance of exploring alternative drinking water supply options and utilizing multi-criteria decision-making approaches to address the potential water crisis.

Keywords: multi-criteria decision, sustainable development, topsis, water supply

Procedia PDF Downloads 70